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The Gravitational Wave Spectrum
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The Gravitational Wave Spectrum
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The Gravitational Wave Spectrum

Supermassive Black Hole Binary Merger
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The Gravitational Wave Snectrum
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The Gravitational Wave Spectrum
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The Gravitational Wave Spectrum
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Gravitational Wave Detection from Space

* We want to detect GVVs via the slowly-oscillating (~1 hour), relative motion they
impose onto far apart free=falling bodies.

That is, ~ 200 times slower than this. .--~_45°
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LISA

4+ polarization X Polarization

To achieve the low-frequency band [0.] mHz, | Hz] we
need a very long baseline detector (L ~ | million km).
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Basicsof LISA 0.1mHz < f < 1Hz

With such baselines we cannot use mirrors for reflection (LISA #L1GO in Space).
Active mirrors with phase locked laser transponders on the S/C will be implemented.

Duration 4.5 years science orbit e >82 % duty cycle e ~6.25 years including transfer and commissioning

: Three drag-free satellites forming an equilateral triangle e 2.5 x 10° km separation e trailing/leading
Constellation . o oy
Earth by ~20° e inclined by 60° with respect to the ecliptic

Orbits Heliocentric orbits ¢ semimajor axis ~1 AU e eccentricity e ~0.0096 e inclination / ~0.96°

Passive Orbits

1 AU (150 million km)
Sun
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Basicsof LISA 0.1mHz < f < 1Hz

Measurement S/C to test mass Measurement S/C to test mass
— < — <
i, W
< S/C to S/C measurement >

Passive Orbits

1 AU (150 million km)

Sun
#&: Institute of exceLEncia - Carlos F.  Institute of Space Sciences  International Meeting on Fundamental Physics R
cac <= Space Sciences % DEMaezru Sopuerta (ICE-CSIC & IEEC) Benasque, 12 September 2024



Gravitational Wave Detection from Space

*Time=-delay interferometry (TDI): Correlations in the frequency noise can be calculated and
subtracted by algebraically combining phase measurements from different craft delayed by the

SC;

multiples of the time delay between the spacecrafts.
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Gravitational Wave Detection from Space

* Orders of magnitude better than in any other application in differential

acceleration sensitivity:

* We need an instrument to detect
tiny motion: ~ the size of an atom
pick to pick

* No forces allowed above the
weight of a bacteria...
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Basics of LISA

ESA Member States /
Consortium
= Mission Implementation = Partner to ESA » |nstrument Hardware
Responsibility Contributions
= Mission Architect = Telescopes (Gravitational Reference
= Laser Systems ?enffor Systefmb _
= Space Segment = Charge Management nterferometric Detection .
= Ground Segment Devices St Dl M aln P I aye 'S
Diagnostics)
= Launcher
= Qverall System : Fs’glrefgrcria?lifal:;\rg S Y e s s
: Y : = Science Data Processing
Engineering Operations Support

= Performance and
Operations Support

e ot

= Platform Hardware

= GRS Head (IT) = Optical Bench (UK)

« GRS FEE (CH), FEE PCU (IT) = ePMS (DE% )

» GRS MCU (IT = IDS AIVT (FR .

« CMD (NASS\ v)ia ESA) = OB-MCU (NL) Main Instrumental
= QPRs (NL+BE) . i
= BAM (BE) Contributions
= FSUA (C2)

PAAM (DE - TBC)

i Institute of
calc = Space Sciences

exceLENciA - Carlos F. Institute of Space Sciences  International Meeting on Fundamental Physics l E E c E
DE MAEZTU Sopuerta (ICE-CSIC & IEEC) Benasque, 12 September 2024



Basics of LISA

NASA ESA Member_ States /
Consortium
= Mission Implementation = Partner to ESA » |Instrument Hardware
Responsibility Contributions
= Mission Architect = Telescopes (Gravitational Reference
» Laser Systems Sensor System, |
= Space Segment = Charge Management Interferometric Detection .
= Ground Segment Devices System, Data and M ain P I aye s
Diagnostics)
= Launcher
= Science Data Processing - Performance Test GSE
= Qverall System = Performance and : )
: : : = Science Data Processing
Engineering Operations Support

= Performance and

= Platform Hardware Operations Support

= GRS Head (IT) = Optical Bench (UK) e e,

= GRS FEE (CH), FEE PCU (IT) = ePMS (DE) 3 vomesses™

= GRS MCU (IT) = IDS AIVT (FR) . MINISTERIO AGENCIA

= CMD (NASA via ESA) = OB-MCU (NL) Main Instrumental e S ESPACIAL
= QPRs (NL+BE) E INNOVACION ESPANIOLA

= BAM (BE) Contributions
= FSUA (C2)
= PAAM (DE - TBC)

i Institute of
calc = Space Sciences

MARIA

DE MAEZTU Sopuerta (ICE-CSIC & IEEC) Benasque, 12 September 2024

? EXCELENCIA  Carlos F.  Institute of Space Sciences International Meeting on Fundamental Physics l E E c ﬂ



How did we get here?
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How did we get here?

* 1974- : First ideas about Gravitational VWave Detection in Space: Bender, Weiss, Drever, etc.

- N e e g T, ©
B st T gnumnn i et WL T o
" 2 % _‘»‘ R VR -.‘ﬁ AN L f‘ﬂ}
o B e ™ v, =%,

et

Peter Bender

Institute of

MARIA

IIIIIIII

e LN;S Space Sciences? DE MAEZTU  Sopuerta (ICE-CSIC & IEEC) Benasque, 12 September 2024

EXCELENCIA  Carlos F.  Institute of Space Sciences International Meeting on Fundamental Physics l E E c ﬂ



x 1974- .
* 1998 :

IIIIIIIIII

cac <= Space Sciences % DEMaezru Sopuerta (ICE-CSIC & IEEC) Benasque, 12 September 2024

How did we get here?

First ideas about Gravitational Wave Detection in Space: Bender, Weiss, Drever, etc.

First serious LISA studies: JPL and LISA International Team
LISA

LISA Mission Concept Study Laser Interferometer Space Antenna
Laser Interferometer Space Antenna for the detection and observation of gravitational waves
For the Detection and Observation of

Gravitational Waves An international project in the field of

Fundamental Physics in Space

March 2, 1998

Pre-Phase A Report

I p L Second Edition

Jet Propulsion Laboratory J l.lly 1998
California Institute of Technology

MPQ 233 July 1998
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How did we get here?

* 1974- : First ideas about Gravitational VWave Detection in Space: Bender, Weiss, Drever, etc.

* 1998 : First serious LISA studies: JPL and LISA International Team

* 2001 : LISA Pathfinder mission to demonstrate LISA main technology

The LISA Technology Qn board SMART-2

_ SSBSTEC Contract #15580/01/NL/HB

Max-Pl| Institut gga
fir Grav, sphysik :
Albert-Einstein-Institut THE UNIVERSITY
OF BIRMINGHAM AR GAVAZA S
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How did we get here?
* 1974- : First ideas about Gravitational VWave Detection in Space: Bender, Weiss, Drever, etc.
* 1998 : First serious LISA studies: JPL and LISA International Team

* 2001 : LISA Pathfinder mission to demonstrate LISA main technology
* 2004 : Alberto Lobo puts Spain in LISA Pathfinder
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How did we get here?

* 1974- : First ideas about Gravitational VWave Detection in Space: Bender, Weiss, Drever, etc.

* 1998 : First serious LISA studies: JPL and LISA International Team

* 2001 : LISA Pathfinder mission to demonstrate LISA main technology

* 2004 : Alberto Lobo puts Spain in LISA Pathfinder

THE GRAVITATIONAL UNIVERSE

A science theme addressed by the eLISA mission observing the entire Universe

*x 2013 : Selection of the science themes for the L2 and L3 missions:

ESA Unclassified — For official use ESA/SPC(2013)29
Att.:  Annex
ESA/SSAC(2013)7

Paris, 31 October 2013
(Original: English)

EUROPEAN SPACE AGENCY

The last century has seen enormous progress in our understanding of
SCIENCE PROGRAMME COMMITTEE the Universe. We know the life cycles of stars, the structure of galaxies,
the remnants of the big bang, and have a general understanding
of how the Universe evolved. We have come remarkably far using

. . .. electromagnetic radiation as our tool for observing the Universe.
Selection of the science themes for the L2 and L3 missions However, gravity is the engine behind many of the processes in the

Universe, and much of its action is dark. Opening a gravitational
window on the Universe will let us go further than any alternative.

Summary:

Following the evaluation of the 32 White Papers proposing science themes for the L2 and L3
mission opportunities (currently foreseen in 2028 and 2034), which were received in response to the
Call issued in March 2013, the Senior Survey Committee convened by the Director of Science and
Robotic Exploration has issued its recommendations (in annex to the present document). Based on
these recommendations the Director of Science and Robotic Exploration is herewith proposing to
the SPC the selection of the science themes for the L2 and L3 mission opportunities.

Decision:
The SPC is invited

1) to approve the selection of the science theme “The hot and energetic Universe” for the L2
opportunity, to be pursued by implementing a large collecting area X-ray observatory with a
planned launch date of 2028, and

2) to approve the selection of the science theme “The gravitational Universe”, to be pursued by
implementing a gravitational wave observatory with a planned launch date of 2034.

Prof. Dr. Karsten Danzmann
Albert Einstein Institute Hannover

MPI for Gravitational Physics and
Leibniz Universitit Hannover
Callinstr. 38

30167 Hannover

Germany

karsten.danzmann@aei.mpg.de

Tel.: +49 511 762 2229
Fax: +49 511 762 2784

Detailed information at
http://elisascience.org/whitepaper

Gravity has its own messenger: Gravitational waves, ripples in the
fabric of spacetime. They travel essentially undisturbed and let us peer
deep into the formation of the first seed black holes, exploring redshifts
as large as z ~ 20, prior to the epoch of cosmic re-ionisation. Exquisite
and unprecedented measurements of black hole masses and spins will
make it possible to trace the history of black holes across all stages
of galaxy evolution, and at the same time constrain any deviation
from the Kerr metric of General Relativity. eLISA will be the first ever
mission to study the entire Universe with gravitational waves. eLISA
is an all-sky monitor and will offer a wide view of a dynamic cosmos
using gravitational waves as new and unique messengers to unveil
The Gravitational Universe. It provides the closest ever view of the
early processes at TeV energies, has guaranteed sources in the form
of verification binaries in the Milky Way, and can probe the entire
Universe, from its smallest scales around singularities and black
holes, all the way to cosmological dimensions.
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How did we get here?
* 1974- : First ideas about Gravitational VWave Detection in Space: Bender, Weiss, Drever, etc.
* 1998 : First serious LISA studies: JPL and LISA International Team
* 2001 : LISA Pathfinder mission to demonstrate LISA main technology
* 2004 : Alberto Lobo puts Spain in LISA Pathfinder

*x 2013 : Selection of the science themes for the L2 and L3 missions:

* 2015 : Launch of LISA Pathfinder and first detection of Gravitational Waves by LIGO
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How did we get here?
* 1974- : First ideas about Gravitational VWave Detection in Space: Bender, Weiss, Drever, etc.
* 1998 : First serious LISA studies: JPL and LISA International Team
* 2001 : LISA Pathfinder mission to demonstrate LISA main technology
* 2004 : Alberto Lobo puts Spain in LISA Pathfinder

*x 2013 : Selection of the science themes for the L2 and L3 missions:

* 2015 : Launch of LISA Pathfinder and first detection of Gravitational Waves by LIGO

* 2016 : Final Report of the Gravitational Observatory

| | The ESA-L3
Advisory Team (GOAT) set up by ESA: (ESA website).
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one black hole is much more massive than the other). But it
necessitates a space-based platform to avoid low-frequency
noise sources arising on Earth, which easily overwhelm
the signal from such waves. These mergers will provide
the most stringent tests of General Relativity in the strong-
gravity regime.

A gravitational wave physically manifests itself as a strain,
AL/ L, on two separated, free-falling test masses: For masses
separated by a distance L, a passing gravitational wave will

*LIGO Lebaratory, Calfornia Institute of Technology, Pasadens, CA
91125, USA

strain can be recorded. To meet its astrophysics goals, LISA
demands a length L of 2 million kilometers and a sensitiv-
ity to a displacement AL of approximately 5 x 10-7" m at
frequencies in a range near 100 mHz |2).

LPF is a single spacecraft whose test masses are separated
by less than a meter. As such, it is completely insensitive
to gravitational-wave strains, but it probes the limits of dis-
placement sensitivity required by LISA, which will consist of
three spacecraft configured in a triangle and located much
further from Earth. The basic concept behind LPF is sim-
ple: place the two test masses in a spacecraft in free-fall and
measure the residual time-dependent longitudinal displace-
ment between the two masses over perieds of days to weeks.
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Paving the Way to Space-Based
Gravitational-Wave Detectors

The first results from the LISA Pathfinder mission demonstrate that two test masses can be
put in free fall with a relative acceleration sufficiently free of noise to meet the requirements
needed for space-based gravitational-wave detection.

by David Reitze"

he announcement in February 2016 that the

Laser Interferometer Gravitational-wave Observa-

tory (LIGO) had detected gravitational waves from

the merger of twe black holes stunned and elec-
trified much or? the physics and astronomy communi-
ties [1). However, while all eyes were tumed toward
LIGQ, the LISA Pathfinder (LPF)—a technology demonstra-
tion mission for the Laser Interferometer Space Antenna
{LISA} gravitational-wave detector [2]—was quietly but con-
vincingly paving the way toward the next revolution in
gravitational-wave astronomy more than 1.5 million kilome-
ters away from Earth. After a six-menth program that began
with the launch of the spacecraft in early December 2015, the
team behind LPF has now announced the first results from
the mission [3]. Fellowing a 50-day journey te Lagrange
Point 1 of the Sun-Earth system, LPF settled into orbit to be-
gin a series of spacecraft acceptance tests and an observing
campaign to measure the limits with which two test masses
can achieve free fall.

LPF was designed to test many of the key technolo-
gies needed by LISA. LISA will target a much lower
gravitational-wave frequency band than LIGO, from about
100 mHz to 1 Hz. This regime is sensitive to gravitational
waves from mergers of intermediate to massive black holes
in the range of 10% to 107 solar masses, as well as from merg-
ers of black holes that have an extreme mass ratio {in which
one black hole is much more massive than the other). But it
necessitates a space-based platform to avoid low-frequency
noise sources arising on Earth, which easily overwhelm
the signal from such waves. These mergers will provide
the most stringent tests of General Relativity in the strong-
gravity regime.

A gravitational wave physically manifests itself as a strain,
AL/ L, on two separated, free-falling test masses: For masses
separated by a distance L, a passing gravitational wave will

*LIGO Lebaratory, Calfornia Institute of Technology, Pasadens, CA
91125, USA

Flgure 1: An artist's concaption of the LISA Pathfinder spacacraft
n orbit &t Lagrange Point 1. Photovoltaic solar cells on the top of
the spacacraft provide power. Micronewton thrusters can be seen
on the sides of the spacecraft. The test masses and laser
nterferometer reatout system are located inside the spacacraft.
{European Space Agency! C. Carreau}

dynamically stretch and compress, through one cycle of the
wave, the distance between the masses along one direc-
tion perpendicular to the propagating wave, by an amount
AL, while simultaneously compressing and stretching the
distance by an equal amount in the other perpendicular
direction. By measuring the time that light takes to travel be-
tween two sets of separated test masses, the time-dependent
strain can be recorded. To meet its astrophysics goals, LISA
demands a length L of 2 million kilometers and a sensitiv-
ity to a displacement AL of approximately 5 x 10-7" m at
frequencies in a range near 100 mHz |2).

LPF is a single spacecraft whose test masses are separated
by less than a meter. As such, it is completely insensitive
to gravitational-wave strains, but it probes the limits of dis-
placement sensitivity required by LISA, which will consist of
three spacecraft configured in a triangle and located much
further from Earth. The basic concept behind LPF is sim-
ple: place the two test masses in a spacecraft in free-fall and
measure the residual time-dependent longitudinal displace-
ment between the two masses over perieds of days to weeks.
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put in free fall with a relative acceleration sufficiently free of noise to meet the requirements
needed for space-based gravitational-wave detection.
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by David Reitze"

he announcement in February 2016 that the

Laser Interferometer Gravitational-wave Observa-

tory (LIGO) had detected gravitational waves from

the merger of twe black holes stunned and elec-
trified much o’? the physics and astronomy communi-
ties [1). However, while all eyes were tumed toward
LIGQ, the LISA Pathfinder (LPF)—a technology demonstra-
tion mission for the Laser Interferometer Space Antenna
{LISA} gravitational-wave detector [2]—was quietly but con-
vincingly paving the way toward the next revolution in
gravitational-wave astronomy more than 1.5 million kilome-
ters away from Earth. After a six-menth program that began
with the launch of the spacecraft in early December 2015, the
team behind LPF has now announced the first results from
the mission [3]. Fellowing a 50-day journey te Lagrange
Point 1 of the Sun-Earth system, LPF settled into orbit to be-
gin a series of spacecraft acceptance tests and an observing
campaign to measure the limits with which two test masses
can achieve free fall.

LPF was designed to test many of the key technolo-
gies needed by LISA. LISA will target a much lower
gravitational-wave frequency band than LIGO, from about
100 mHz to 1 Hz. This regime is sensitive to gravitational
waves from mergers of intermediate to massive black holes
in the range of 10° to 107 solar masses, as well as from merg-
ers of black holes that have an extreme mass ratio {in which
one black hole is much more massive than the other). But it
necessitates a space-based platform to avoid low-frequency
noise sources arising on Earth, which easily overwhelm
the signal from such waves. These mergers will provide
the most stringent tests of General Relativity in the strong-
gravity regime.

A gravitational wave physically manifests itself as a strain,
AL/ L, on two separated, free-falling test masses: For masses
separated by a distance L, a passing gravitational wave will

*LIGO Lebaratory, Calfornia Institute of Technology, Pasadens, CA
91125, USA

Flgure 1: An artist's concaption of the LISA Pathfinder spacacraft
n orbit &t Lagrange Point 1. Photovoltaic solar cells on the top of
the spacacraft provide power. Micronewton thrusters can be seen
on the sides of the spacecraft. The test masses and laser
nterferometer reatout system are located inside the spacacraft.
{European Space Agency! C. Carreau}

dynamically stretch and compress, through one cycle of the
wave, the distance between the masses along one direc-
tion perpendicular to the propagating wave, by an amount
AL, while simultaneously compressing and stretching the
distance by an equal amount in the other perpendicular
direction. By measuring the time that light takes to travel be-
tween two sets of separated test masses, the time-dependent
strain can be recorded. To meet its astrophysics geals, LISA
demands a length L of 2 million kilometers and a sensitiv-
ity to a displacement AL of approximately 5 x 10-7" m at
frequencies in a range near 100 mHz |2).

LPF is a single spacecraft whose test masses are separated
by less than a meter. As such, it is completely insensitive
to gravitational-wave strains, but it probes the limits of dis-
placement sensitivity required by LISA, which will consist of
three spacecraft configured in a triangle and located much
further from Earth. The basic concept behind LPF is sim-
ple: place the two test masses in a spacecraft in free-fall and
measure the residual time-dependent longitudinal displace-
ment between the two masses over perieds of days to weeks.
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How did we get here?

ESA unclassified — For official use only ESA/SPC(2017)12
Att.: ESA/SSAC(2017)6
Paris, 2 June 2017
(Original: English)

- LISA

Laser Interferometer Space Antenna

EUROPEAN SPACE AGENCY

SCIENCE PROGRAMME COMMITTEE

Selection of the L3 mission

Summary

Following the issue of the Call for the L3 Mission a single proposal (named LISA) was
received in response. The LISA proposal has been assessed by a dedicated peer review panel
for consistency with the L3 science theme and by the Executive for technical and
programmatic feasibility. Following the positive outcome of this evaluation, the Executive is
herewith proposing to the SPC the selection of the LISA mission for the L3 flight opportunity.

A proposal in response to the ESA call for L3 mission concepts

Decision

Lead Proposer The SPC is invited to select the LISA mission for the L3 flight opportunity, with a planned
o A launch date in 2034, and with an estimated Cost at Completion (ECaC) of 1.05 B€ (2017 e.c.).
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How did we get here?
* 1974- : First ideas about Gravitational VWave Detection in Space: Bender, Weiss, Drever, etc.
* 1998 : First serious LISA studies: JPL and LISA International Team
* 2001 : LISA Pathfinder mission to demonstrate LISA main technology
* 2004 : Alberto Lobo puts Spain in LISA Pathfinder
* 2013 : Selection of the science themes for the L2 and L3 missions:
* 2015 : Launch of LISA Pathfinder and first detection of Gravitational Waves by LIGO
* 2017 : Success of LISA Pathfinder and Selection of LISA as the L3 mission
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How did we get here?

* 1974- : First ideas about Gravitational VWave Detection in Space: Bender, Weiss, Drever, etc.

* 1998 : First serious LISA studies: JPL and LISA International Team

* 2001 : LISA Pathfinder mission to demonstrate LISA main technology

* 2004 : Alberto Lobo puts Spain in LISA Pathfinder

*x 2013 : Selection of the science themes for the L2 and L3 missions:

* 2015 : Launch of LISA Pathfinder and first detection of Gravitational Waves by LIGO

* 2017 : Success of LISA Pathfinder and Selection of LISA as the L3 mission

* 2017-2024 : LISA goes through Phases 0,A, Bl up to the adoption, which means it enters the
implementation phase! (Phase B2). Expected Launch Date: 2035
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How did we get here?
* LISA after the selection: Future Missions Department

Mission Mission Mission
Mission Definition Consolidation Formulation Mission
Selection Review Review Review Adoption Launch
[ | | [ 0 [
| [ [ [ 0 )
Phase 0 Phase A Phase B1 Phase B2 Phase D Phase E
A . dS€ - N Detailed Definition .
Mission analysis-need oo Preliminary Preliminary e Operations /
.y g Feasibility - [ Qualification and N
identification definition definition : utilization
production
b y y
i [ [ [ 0 0
2017 2018 - 2021 2022 - 2024 2025 -2028 2028 - 2035 2035+
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How did we get here?
“* LISA after the selection: Future Missions Department

* 2017-2024: LISA went through the Mission Preparation Phase: The Assessment Phase
(Phases 0 and A) and Definition Phase (Phase Bl), separated by the Mission Formulation Review.

Mission Mission Mission

Mission Definition Consolidation Formulation Mission

Selection Review Review Review Adoption Launch
[ | | [ [ [
| [ [ [ { |

Phase C/D Phase E

Detailed Definition

Phase O Phase B1 Phase B2

Phase A

i gt Quiicatonnd el
! ! ' ! ! !
i [ [ [ { [

2017 2018 - 2021 2022 - 2024 2025 -2028 2028 - 2035 2035+
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How did we get here?
“* LISA after the selection: Future Missions Department

* 2023-2024: Mission Adoption Review (independent ESA review): Evaluated the mission
definition maturity, technology readiness and implementation risks.A dedicated review panel was
devoted to the mission programmatic elements including cost, schedule and interfaces with
partners. Results are made available to the SPC and constitute, together with SSAC scientific
assessment, the basis of ESA's recommendation to the SPC to implement the mission.

Mission Mission Mission
Mission Definition Consolidation Formulation Mission
Selection Review Review Review Adoption Launch

Phase C/D : Phase F

Detailed Definition

Phase O Phase B1 Phase B2

Phase A

Mission analysis-need ey Preliminary Preliminary B Operations /
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How did we get here?
“* LISA after the selection: Future Missions Department

* 2024: Red Book (aka, Mission Definition Study Report): provides a high-level
summary of the large number of scientific and technical documents produced
as outcome of the definition study for the LISA mission.

Mission Mission Mission
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LISA Definition Study Report (Red Book)
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Sources of Gravitational Waves for LISA
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Sources of Gravitational Waves for LISA

Massive Black

Hole Mergers
(with masses in
the range:

4 7
10° — 10'M,)
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Sources of Gravitational Waves for LISA

Massive Black Intermediate

Hole Mergers Mass Ratio

(with masses in Inspirals (EMRlIs/
the range: IMRIs): a BH of

104 — 10’ M@) 1-50M_/10* — 10 M _

into an IMBH
and/or a MBH
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Sources of Gravitational Waves for LISA

= = Extreme/ Galactic Binaries

Massive Black Intermediate in the Milky Way.

Hole Mergers Mass Ratio Population
(with masses in Inspirals (EMRIs/ dominated by
the range: IMRIs): a BH of double WDs.
104 o 107 M@) 1-50 M@/l()2 — 104 M, Verification
into an IMBH Sinaries:
Guaranteed

and/or a MBH
GW Sources!
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Sources of Gravitational Waves for LISA

T = Extreme/ Galactic Binaries Stochastic GW
Massive Black Intermediate in the Milky Way. Foregrounds
Hole Mergers Mass Ratio Population from Early
(Wlth masses in Inspirals (EMRIS/ dominated by Universe
the range: IMRIS) a BH of double WDs. high-energy
104 — 10'M o) 1-50M,/10° - 10°M,, Verification Phenomena
i 40 an IMBH 2lnarles: . (Energy Scale
and/or a MBH uarantee ~1TeV)

GW Sources!
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Sources of Gravitational Waves for LISA
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memm}— Extreme/ Galactic Binaries Stochastic GW Stellar-Mass Binary
Massive Black Intermediate in the Milky Way. Foregrounds BHs in the inspiral
Hole Mergers Mass Ratio Population from Early phase, before they
(with masses in Inspirals (EMRIs/ dominated by Universe enter the
the range: IMRIs): a BH of double WDs. high-energy LIGO-Virgo-KAGRA
104 — 107 M@) 1-50M_/10* - 10*M_ Verification Phenomena band.

i 40 an IMBH 2lnarles: . (Energy Scale

and/or a MBH uarantee ~1TeV)

GW Sources!
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Sources of Gravitational Waves for LISA
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R

mem* Extreme/ Galactic Binaries Stochastic GW Stellar-Mass Binary
Massive Black Intermediate in the Milky Way. Foregrounds BHs In the inspiral
Hole Mergers Mass Ratio Population from Early phase, before they
(with masses in Inspirals (EMRIs/ dominated by Universe enter the
the range: IMRIs): a BH of double WDs. high-energy LIGO-Virgo-KAGRA
104 — 107 M@) 1-50M_/10* - 10*M_ Verification Phenomena band.

i 40 an IMBH 2lnarles: . (Energy Scale

and/or a MBH uarantee ~1TeV)

GW Sources!
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The Science of LISA

* SO2: Trace the origins, growth and merger histories of massive Black Holes
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The Science of LISA

* SO2: Trace the origins, growth and merger histories of massive Black Holes
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The Science of LISA

* SO2: Trace the origins, growth and merger histories of massive Black Holes
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The Science of LISA

* SO2: Trace the origins, growth and merger histories of massive Black Holes
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The Science of LISA

* SO2: Trace the origins, growth and merger histories of massive Black Holes
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The Science of LISA

* SO2: Trace the origins, growth and merger histories of massive Black Holes

+ How were MBHs born 12
and how did they grow!

4+ What is the nature of the
seeds and how did they
form?

103

=
e
"
Z
O
A

4+ How do MBHs assemble 102
inside the cosmic web?

+ What are the EM signals
of the precursor and post-
merger of MBHBs!? Total mass [M,]
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The Science of LISA

* $O3: Probe the properties and immediate environments of Black Holes in the local Universe
using EMRIs and IMRIs

. —— Extreme Mass-Ratio Inspiral
+ What is the mass and  {5-5
C e o N
spin distribution of T
quiescent MBHs in local =101
Universe? =)
g 1017
+ Which processes £
dominate stellar 21077
dynamics in the galactic @
= —19
centers near the MBH? g 10
<C
. % 1 —20 L1 1 | ]|
+ DO IMBHS eX|St? s 0 ____ Observatory
wn Sensitivity
o 1 — Galactic Foreground
10~ 1 ——- Total
» Mass and Spin ) s e 1a
accuracy -~ 0.001 /O Frequency [Hz]
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The Science of LISA

* SOS5: Explore the Fundamental Nature of Gravity and Black Holes

+ Are the massive objects that merge and their
remnants consistent with being rotating MBHs
described by the Kerr solution of General Relativity?

+ BH spectroscopy: Quasi-normal modes should
be a function of the mass and spin only according to
the no-hair conjecture of General Relativity.

+ Are there Exotic Compact Objects!?

16 1 (2,2)
(3,3)

INSPIRAL NINEIBIGLIUN

(2,1)

14 1 (4.4)

121

101

N SNR=8

4 5 6 7 8 9
log10 (M/Mg)
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The Science of LISA

* SOS5: Explore the Fundamental Nature of Gravity and Black Holes

EMRI System

» Accuracy in the mass of the
MBH ~ 0.001%

» Absolute errorin the Spin

parameter of the MBH ~
0.00001

» Accuracy in the Quadrupole
moment of the MBH~0.01%

X [(AU)

Vi) = -Gy M For a Kerr BH in GR:

m /LM‘

{.m 14
. S,
M, . Multipole moments Mé T 7 JE — Mo c

GOCE can measure up to

lofx ~ 200 Tests of the Kerr geometry

and/or theory of Gravity!
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The Science of LISA

* SOS5: Explore the Fundamental Nature of Gravity and Black Holes

EMRI System

» Accuracy in the mass of the
MBH ~ 0.001%

» Absolute errorin the Spin

parameter of the MBH ~
0.00001

» Accuracy in the Quadrupole
moment of the MBH~0.01%

X [(AU)

Vi) = -Gy M For a Kerr BH in GR:

m /LM‘

{.m 14
. S,
M, . Multipole moments Mé T 7 JE — Mo c

GOCE can measure up to

lofx ~ 200 Tests of the Kerr geometry

and/or theory of Gravity!
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The Science of LISA

* $0O6: Probe the rate of expansion of the Universe with standard sirens

+ LISA will probe the expansion history Example of possible LISA cosmological data

1

of the Universe, d;(z), using GWV sirens

at high redshifts ( WARNING:
provided we can obtain the redshift):
SOBH binaries (z < 0.2), EMRIs (z <
1.5), MBHBs (z < 6).

100 -

10 -

Stellar mass
BHBSs

P
» No need of calibration . I I _ I{

T
<
a
)

dr. (Gpc)

] -

» Ho at few % level with
observationsuptoz ~ 3

D S S R R R SR e

0.01 0.1 10

Z
Tamanini et al, JCAP, 04(2016)002
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» Fractional error on
log (€2 GW) from
FOPT~ 0.5%
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The Science of LISA

* SO7: Understand stochastic GW backgrounds and their implications for the early Universe
and TeV-scale particle physics

Primordial BHs (PBH); Cosmic
Strings (CS); First-Order Phase
Transition (FOPT); Astrophysical
stellar-mass BHBs (sBHB);

The Stochastic Galactic foreground

le-21

— 5(1)

Frequency (Hz)

8
6
4
& 2
| -
O
= 0
>
‘;5 2
4
_—FOPT —PBH —SBHB  ---PLS Ef 6
10-14_ CS — GB -=-- Noise AA e
104 103 102 101 0.0 0.2

0.4 0.6 0.8 1.0
Time In year
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The Science of LISA

* §SO8: Search for GVV bursts and unforeseen sources

10/
—— Model BOS
107 - Model LRS
+ Are cosmic strings present in the Universe? 03
If so, what is their string tension? —
5, 101 -
51071 -
+ Other unknown sources!’ T 03
10—5 _
10-7 | | |
10-1> 10°13 011 102 107/
Gu
Regions excluded after 7' = 82% X 4.5 yrs and
T =82% %10 yrs, for two particular models in

obs

the literature (BOS, LRS).

MARIA

e £ Space Sciences § pEMAzu  Sopuerta (ICE-CSIC & IEEC)

Institute of 9 EXCELENCIA  Carlos F.  Institute of Space Sciences International Meeting on Fundamental Physics E
Benasque, 12 September 2024




Multiband GW Astronomy with LISA and ET/CE

Space-based Ground-based
< > < >
detectors detectors
Y

10718 L ——

\,

. Inspiral

LISA |
(~2034)}

From: Jani, K., Shoemaker,; D. & 1020 |
Cutler, C. (2020): Detectability of |

intermediate-mass black g
holes in multiband gravitational 5
[}
wave astronomy. Nat Astron 4, g
@
260-265 S
10722 |
Inte'rme.dia'Fe-mass- VOY
-ratio binaries (~2025)
(1,200 + 80) M,
R Fin 22D MAZ ET
: (>2030)
Binaries of N CE
comparable IMBHs (~2035)
(3,000 + 1,000) M.
10724 | fo.2 1 MH2

Gravitational wave frequency (Hz)
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Multiband GW Astronomy with LISA and ET/CE

From: Jani, K., Shoemaker, D. &

Cutler, C. (2020): Detectability of N
intermediate-mass black %
holes in multiband gravitational z
wave astronomy. Nat Astron 4, ¢ 10'|
260265 =
10° |
107
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Binary black holes
< Stellar origin > <«—Intermediate-mass range —> < Supermassive
< Lower —»<Medium—>» < Upper —»
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LISA Scientific Operations

S/C 2 S/C 2 S/C 2
relay
satellite
optical J
links \ ) \
S/C 1 S/C 1
S/C 3 S/C 3 S/C 1
S/C 1 SIC 3 S/C 3

downlink

~

IEENEENEEiEEis s iEENEnNEEiEninnn SEENEESEESEESEES
1 2 3 4 5/ 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20

8 hour period days

Communication with the constellation is done through one of the spacecraft (“relay”)
for 5 days, establishing a link for 8 hours a day. During these 5 days, the other
spacecraft communicate to the relay spacecraft via the existing laser link. After the 5
days, the next spacecraft serves as relay, completing the cycle after |5 days.
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LISA Scientific Operations

The protected period can be
G & requested when the approximate
time of the merger of a massive
* * e Black Hole binary is known. A few
e hours before the merger the
' ' accumulated signal-to-noise ratio
(SNR) increases significantly and
the uncertainty region for the sky
position (“skybox™) shrinks
- ... - significantly to the point where
\  Deteminiag protected period . Peod other observatories can start
' ' : observations. The low-latency
period allows to monitor the
continuously shrinking skybox and

" to update the alerts.

AAAAAAAAAAAAAAAAAAA“‘M.

""""""""""""’y'

Strain

SNR

- 3 months -10 days -6 hours merger
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LISA Scientific Operations

4 R
Calibration and data
processing pipelines /
run at SOC
MOC Hsmund Station] LO Telemetry: unprocessed at
. s full res:)‘;ut::; ; o
Spacecraft Telemetry Time ordered and time-stam
LO = LO.5 \ o UTa P
- A

Level 0.5: Calibrated instrument data
Time ordered and time-stamped to UTC

G A

LO.5 = L1

-~

Level 1: Time-Delay Interferometry
(TDI) combinations
At a minimum, A, E, T, X, Y, Z, Sagnac

[ Low Latency \ rl)eclk:atwl prooessing\ (Dedioated proccsslng\
Alerts Pipelines by the DDPC B s i D by the NSGS
run at SOC
i ) [ | ] Level 2: Individual detected sources
X L1 =-» Alert | I L1 = L2 J L1 = L2 ) Including posterior probability densities
and waveforms
l " Consolidation of L2 data
Transient p::;:-t:;::d ;6;? ::gﬂggg Alerts: Transient source alert
Source Alert Including waveform, estimated masses,
distance, and sky location
[ L2 = L3 }
Level 3: Catalogue of detected sources
Includes the coherent merging of the L2
data products
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LISA Scientific Operations

* Then, in many cases it is crucial to have a priori theoretical models A, 1) to extract the
Gravitational Wave signals from the data, in particular in those situations where the signal is

much below the noise. Short LISA data stream
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LISA Scientific Operations

* Then, in many cases it is crucial to have a priori theoretical models i(:, 1) to extract the
Gravitational Wave signals from the data, in particular in those situations where the signal is

much below the noise.
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LISA Scientific Operations

* The Global Fit Problem: Fit the LISA Data to a model that includes: An instrumental noise
model; All the resolvable GW sources (MBHBs, GBs-including VBs, EMRIs, SOBHBs, others?);

All the GW foregrounds (GB-foreground, Stochastic-foreground of diverse origin, ...).

— Noisy data

Long z
LISA |

a 0
0
ara 2

f -1

-2

-3

0 50 100 150 200 250 300 350
Time [days]
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LISA Scientific Operations

* The Global Fit Problem: Fit the LISA Data to a model that includes: An instrumental noise
model; All the resolvable GW sources (MBHBs, GBs-including VBs, EMRIs, SOBHBs, others?);

All the GW foregrounds (GB:foreground, Stochastic-foreground of diverse origin, ...).

— Noisy data

Long z
LISA |

k=
O
a 0
5
ata 2
f -1
-2
-3
0 50 100 150 200 250 300 350
Time [days]
ﬁﬁ Institute of ? EIXA(%{E&ENCIA Carlos F. Institute of Space Sciences International Meeting on Fundamental Physics ﬂ
coc A2 Space Sciences Y DEMAEzru  Sopuerta (ICE-CSIC & IEEC) Benasque, 12 September 2024




LISA Scientific Operatlons

1073 =

A'A'AVWW\/\AW_ : A_\

Extreme Mass-Ratio Inspiral I —— .

W T §1O‘2 _ Post Newtonian i

S ‘ theory :

\ Galactic Binary] o a o aa o p A > :

VWUVVVVUY : |

V VVVVVVVVVVVY 15 i
[Stochastic GW Background} E 101k P

lllllll

'Cosmic String

Cusp J Numerical Gravitational
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LISA Scientific Operations

* The Global Fit Problem: Fit the LISA Data to a model that includes: An instrumental noise
model; All the resolvable GW sources (MBHBs, GBs-including VBs, EMRIs, SOBHBs, others?);
All the GW foregrounds (GB-foreground, Stochastic-foreground of diverse origin, ...).

Residuals are passed
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LISA Scientific Operations
* The Global Fit Problem: Fit the LISA Data to a model that includes: An instrumental noise
model; All the resolvable GW sources (MBHBs, GBs-including VBs, EMRIs, SOBHBSs, others?);
All the GW foregrounds (GB-foreground, Stochastic-foreground of diverse origin, ...).

Residuals are passed
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LISA Scientific Operations

+ Spanish Contribution to the LISA Ground Segment, as established in the Multi-Lateral
Agreement (MLA) between ESA and member states:

Spain
 Be responsible for the development of 1 instance of the following pipelines of the DDPC:
* Global Fit Pipeline;
 Be responsible for the deployment in Spain of 1 DCC and contribute to the system engineering work packages;
« Contribute to the software and data processing (contribution to other work packages than listed before) of the SGS and to the operations.
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LISA Scientific Operations

+ Spanish Contribution to the LISA Ground Segment, as established in the Multi-Lateral
Agreement (MLA) between ESA and member states:

Spain
 Be responsible for the development of 1 instance of the following pipelines of the DDPC:
* Global Fit Pipeline;
» Be responsible for the deployment in Spain of 1 DCC and contribute to the system engineering work packages;
« Contribute to the software and data processing (contribution to other work packages than listed before) of the SGS and to the operations.

DDPC contribution status (07/03/2023) ¢
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LISA Scientific Operations

+ Spanish Contribution to the LISA Ground Segment, as established in the Multi-Lateral
Agreement (MLA) between ESA and member states:

Spain
 Be responsible for the development of 1 instance of the following pipelines of the DDPC:
* Global Fit Pipeline;
 Be responsible for the deployment in Spain of 1 DCC and contribute to the system engineering work packages;
« Contribute to the software and data processing (contribution to other work packages than listed before) of the SGS and to the operations.

DDPC contribution status (07/03/2023)
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LISA Spain Meeting 2024

* October 15th-]6th; 2024. Meeting to
bring together the Spanish community
interested in working in LISA science.

REGISTER HERE:

SPAIN MEETING ¢

Institute of 9 EXCELENCIA

MARIA
R Space Sciences DE MAEZTU

15-16 October 2024
Organized by the Institute of Space Sciences (ICE-CSIC)

IEI

L]

|

.-|'H.-|

Campus UAB, Carrer de Can Magrans s/n,
08193 Cerdanyola del Vallés (Barcelona)

Local Organizing Committee: C. F. Sopuerta, M. Nofrarias,
L. Marti, and S. Husa.
Meeting Website: https://indico.ice.csic.es/event/42/
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https://indico.ice.csic.es/event/42/

Conclusions

“ LISA will be the first ever mission to survey the entire
Universe with Gravitational Waves.

“ LISA will allow us:

To investigate the formation of binary systems in the Milky
Way; to detect the guaranteed signhals from the verification
binaries; to study the history of the Universe out to redshifts
beyond 20, when the Universe was less than 200 million years
old; to test gravity in the dynamical sector and strong-field
regime with unprecedented precision; and to probe the early
Universe at TeV energy scales.

“ LISA will play a unique and prominent role in the scientific
landscape of the 2030s and beyond.
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