Many body physics with Rydberg arrays – Lecture 3

Lecture 1: Many-body problem and quantum simulation Arrays of atoms & "Rydbergology" Interactions between atoms

Lecture 2: Rydberg Interactions and spin models Engineering many-body Hamiltonians

Lecture 3: Examples of quantum simulations in and out-of-equilibrium: quantum magnetism Mary atom

Combining arrays of atoms and Rydberg interactions

How to study a many-body system?

Out-of-equilibrium Dynamics following "quench"

Involve ~ *all states* of Hilbert space

Very hard to simulate: Massive generation of entanglement

(Volume law)

g.s. of *gapped* many-body system = weakly entangled (area laws)

"Easy" to simulate: Monte Carlo, MPS (when no frustration, away from QPT)

Hauschild & Pollman, SciPost 2016

Outline – Lecture 3

- 1. Studying the ground state of quantum magnets
 - Ising model in 2D
 - Dipolar XY model in 2D
- 2. Out-of-equilibrium dynamics: Quench dynamics in Ising model. Thermalization or not...?
- 3. Outlook: what we did not discuss... & beyond

From van der Waals interaction to spin models...

Transverse Field Ising model:

$$H = \frac{\hbar\Omega}{2} \sum_{i} \hat{\sigma}_{x}^{i} + \frac{\hbar\delta\sum_{i} \hat{\sigma}_{z}^{i}}{i} + \frac{\sum_{i < j} \frac{C_{6}}{R_{ij}^{6}} \hat{n}_{i} \hat{n}_{j}}{B_{\parallel}}$$
 From Easer: $B_{\perp} = \frac{B_{\parallel}}{B_{\parallel}}$ spin-spin interactions

Controlled parameters:

From negligible to dominant interactions

Quantum Ising model: an old problem...with open questions

Classical Ising model
$$H_{\rm C} = \sum_{i \neq j} V_{ij} n_i n_j - \delta \sum_i n_i , \quad n_{i,j} = 0, 1$$

1D solved (Ising, 1924); 2D solved (Onsager, 1944)

Ernst Ising (1900 - 98)

$$[\hat{n}_i, \sigma_x^i] \neq 0$$

Quantum Ising model

$$H_{\mathbf{Q}} = \sum_{i \neq j} V_{ij} \hat{n}_i \hat{n}_j - \delta \sum_i \hat{n}_i + \Omega \sum_i \sigma_x^i$$

Solved in 1D (Lieb, 1961)

Monte-Carlo in 2D: critical exponent, critical point but never measured...

Triangular, Kagomé geometry: geometrical frustration critical exponents (MC ~2000), spin liquids...??

Dynamics: growth of entanglement (>2D)?? disordered V_{ii} (even in 1D)...??

2D Ising anti-ferromagnet on a square

Anti-ferromagnetic ground state

Ex of antiferromagnets: MnO, FeO, CoO, NiO, FeCl₂...

AFM (Néel) ordering (Z_2 phase)

2D Ising anti-ferromagnet on a square

Known by Quantum Monte-Carlo

Never implemented and measured in 2D... (approximation in material)

2D Ising anti-ferromagnet on a square

Adiabatic preparation of a 2D Ising anti-ferromagnet

Adiabatic preparation of a ground state: quantum annealing

Sakurai, Quantum Mechanics & Wikipedia

$$\hat{H}(t) = (1 - \lambda(t))\hat{H}_0 + \lambda(t)\hat{H}_1$$

Instantaneous eigenstates:

$$\hat{H}(t)|\phi_n(t)\rangle = E_n(t)|\phi_n(t)\rangle$$

Solve:
$$i\hbar \frac{d}{dt} |\psi(t)\rangle = \hat{H}(t) |\psi(t)\rangle$$
 with $|\psi(t)\rangle = \sum_{n} a_{n}(t) |\phi_{n}(t)\rangle, \ a_{n}(0) = \delta_{n,0}$
 $\Rightarrow |a_{n}(t)| \sim \frac{|\langle \phi_{n} | \frac{d\hat{H}}{dt} | \phi_{0} \rangle|^{2}}{\hbar \omega_{n0}^{2}}$ Adiabatic following: $|\langle \phi_{n} | \frac{d\hat{H}}{dt} | \phi_{0} \rangle|^{2} \ll \hbar \omega_{n0}^{2}$

Rate of change of *H* slow with respect to the energy gaps...

Adiabatic preparation of an antiferromagnet on a square array

Scholl et al. Nature (2021)

1D: Pohl PRL 2010; Bloch Science 2015; Lukin Nature 2017, 2019; **2D:** Lienhard PRX 2018, Bakr PRX 2018; Lukin Nature 2021

Adiabatic preparation of an antiferromagnet on a square array

Scholl et al. Nature (2021)

Adiabatic preparation of an antiferromagnet on a square array

Scholl et al. Nature (2021)

10

Also: Lukin Nature 2021

Classical simulation of the preparation

 $\frac{C_6}{a^6} \sim \Omega$

10 µm

Simulation with imperfections

But we can push the atom number... by a lot...

Scholl et al. Nature (2021)

14x14

Antiferromagnetic cluster: 182 atomes

Since 2022: more elaborate numerical methods ...!!

Ising model in other geometries

Ising model in other geometries

Use failure of adiabaticity to study quantum phase transition

Adiabaticity criteria:

 $H(t) = (1 - \lambda(t))H_0 + \lambda(t)H_{\rm MB}$

$$|\langle \psi_1(t)|\frac{dH}{dt}|\psi_0(t)\rangle| \ll \frac{\Delta E(t)^2}{\hbar}$$

But...gaps close at the QPT!!

Sweeping too fast \Rightarrow create defects

1D: Keesling, Nature (2019), 2D: arXiv.2012.12281

 $R_b \sim a$ 51 atoms

 $v_{1D} = 0.50(3) (v_{MF} = 1/3)$ $v_{2D,square} = 0.62(4) (v_{MF} = 1/2)$

Outline – Lecture 3

- 1. Studying the ground state of quantum magnets
 - Ising model in 2D
 - Dipolar XY model in 2D
- 2. Out-of-equilibrium dynamics: Quench dynamics in Ising model. Thermalization or not...?
- 3. Outlook: what we did not discuss... & beyond

Quench in Ising Hamiltonian with Rydberg simulator

Labuhn et al., Nature 2016

Petrosyan, PRA 2013

k (sites)

k (sites)

k (sites)

Thermalization of closed Many-Body systems

Question: do closed systems always reach equilibrium?

Answer: it depends... ETH, many-body localization and Quantum Scars

Quantum scarrs in 2D (1D: Lukin Nature 2019)

Bluvstein...Lukin, Science 2021

Scarrs depends on geometry

Blockade constraint breaks ergodicity

Outline – Lecture 3

- 1. Studying the ground state of quantum magnets
 - Ising model in 2D
 - Dipolar XY model in 2D
- 2. Out-of-equilibrium dynamics: Quench dynamics in Ising model. Thermalization or not...?
- 3. Outlook: what we did not discuss... & beyond

Outlook: what we did not discuss...

New developments: circular Rydberg states \Rightarrow lifetimes > 50 s...

Brune (Paris): arXiv:2407.04109, Nat. Phys. 2022 Covey (Urbana Champaign) Thompson (Princeton) Meinert & Pfau (Stuttgart)... overhead: Rydberg trapping

High precision quantum simulation: validation of the simulation

Article Benchmarking highly entangled states on a 60-atom analogue quantum simulator

 https://doi.org/10.1038/s41586-024-07173-x
 Adam L. Shaw¹⁵²³, Zhuo Chen^{2,3,5}, Joonhee Choi^{14,5}, Daniel K. Mark^{2,5}, Pascal Scholl¹,

 Received: 18 August 2023
 Ran Finkelstein¹, Andreas Elben¹, Soonwon Chol²²³ & Manuel Endres¹⁵²

First attempt of digital quantum simulation (and hybrid analog-digital)

Variational simulation of the Lipkin-Meshkov-Glick model on a neutral atom quantum computer

R. Chinnarasu,¹ C. Poole,¹ L. Phuttitarn,¹ A. Noori,^{1, 2} T. M. Graham,¹ S. N. Coppersmith,^{3, 1} A. B. Balantekin,¹ and M. Saffman^{1, 4}

Probing topological matter and fermion dynamics on a neutral-atom quantum computer

Simon J. Evered^{1,*}, Marcin Kalinowski^{1,*}, Alexandra A. Geim¹, Tom Manovitz¹, Dolev Bluvstein¹, Sophie H. Li¹, Nishad Maskara¹, Hengyun Zhou^{1,2}, Sepehr Ebadi^{1,3}, Muqing Xu¹, Joseph Campo², Madelyn Cain¹, Stefan Ostermann¹, Susanne F. Yelin¹, Subir Sachdev¹, Markus Greiner¹, Vladan Vuletić⁴, and Mikhail D. Lukin^{1,†}

arXiv:2501.06097

arXiv:2501.18554

Digital quantum simulation: resource estimates...

Quantum Science and Techno. 7, 045025 (2022)

Number of *perfect* gates to reproduce current *imperfect* analog simulation

Gate	Gate Count	Depth		Gate	Gate	Count	Depth
CNOT	$1.7 imes 10^5$	8.4×10^{3}	M sites	CNOT	$1.6 \times$	10^{3}	5.5×10^{2}
$R_Z(heta)$	$6.8 imes 10^4$	$ 6.7 \times 10^2$		$R_Z(\theta)$	$2.1 \times$	10^{4}	$3.5 imes 10^2$

TABLE I. Gate count and depth estimates for digital quantum simulation of the Hubbard model with $J\tau = 2.7$, M = 100 and tJ = 10.

TABLE III. Gate count and depth estimates for digital quantum simulation of the nearest neighbour Ising model with $J\tau = 2.6, M = 100, tJ = 10.$

Gate	Gate Count	Depth
CNOT	$6.9 imes 10^5$	1.4×10^4
$R_Z(heta)$	$3.5 imes 10^5$	7.0×10^{3}

Numbers explode when

analog errors $\rightarrow 0$

TABLE II. Gate count and depth estimates for digital quantum simulation of the long-range Ising model with $J\tau = 2.6$, M = 100 and tJ = 10.

Many-body physics with synthetic systems or Quantum Simulation?

Experiments are imperfect... \Rightarrow Not a pristine quantum simulation of a model... Study the noisy many-body system for itself...

Use "toy many-body systems" to

- Develop intuition ("simple to complex", noise...)
- Trigger new theoretical methods
- Generate "interesting" quantum states (squeezed...)

Understand better "real" systems?

Develop applications?

How large can a quantum system be?

	۰.			
	•			•
			· · · ·	· ·
•		•		
	· · · · · · · · · · · · · · · · · · ·	10 B B B B B B B B B B B B B B B B B B B	• •	.
	· · · ·	• •		· ·
•		10 A 10 A	· ·	· · ·