

Exploring many-body physics

with arrays of Rydberg atoms (II)

Antoine Browaeys

Laboratoire Charles Fabry, Institut d'Optique, CNRS, FRANCE

Benasque Workshop, february 24-25, 2025

Interactions between Rydberg atoms and spin models

Combining arrays of atoms and Rydberg interactions

Lecture 1: Arrays of atoms & "Rydbergology" Rydberg Interactions and spin models Engineering many-body Hamiltonians

Lecture 2: Examples of quantum simulations in and out-of-equilibrium: quantum magnetism

Outline – Lecture 3

- 1. Studying the ground state of quantum magnets
 - Ising model in 2D
 - Dipolar XY model in 2D
- 2. Out-of-equilibrium dynamics
 - Quench dynamics in Ising model: thermalization or not...
 - Quench spectroscopy: measuring dispersion relation of quasi-particles
- 3. Outlook: what we did not discuss... & beyond

From van der Waals interaction to spin models...

Transverse Field Ising model:

$$H = \frac{\hbar\Omega}{2} \sum_{i} \hat{\sigma}_{x}^{i} + \frac{\hbar\delta\sum_{i} \hat{\sigma}_{z}^{i}}{i} + \frac{\sum_{i < j} \frac{C_{6}}{R_{ij}^{6}} \hat{n}_{i} \hat{n}_{j}}{B_{\parallel}}$$
 From Easer: $B_{\perp} = \frac{B_{\parallel}}{B_{\parallel}}$ spin-spin interactions

Controlled parameters:

From negligible to dominant interactions

2D Ising anti-ferromagnet on a square

Anti-ferromagnetic ground state

Ex of antiferromagnets: MnO, FeO, CoO, NiO, FeCl₂...

AFM (Néel) ordering (Z_2 phase)

2D Ising anti-ferromagnet on a square

Known by Quantum Monte-Carlo

Never implemented and measured in 2D... (approximation in material)

2D Ising anti-ferromagnet on a square

Adiabatic preparation of a 2D Ising anti-ferromagnet

Adiabatic preparation of an antiferromagnet on a square array

Scholl et al. Nature (2021)

Adiabatic preparation of an antiferromagnet on a square array

Scholl et al. Nature (2021)

10

Also: Lukin Nature 2021

Classical simulation of the preparation

 $\frac{C_6}{a^6} \sim \Omega$

10 µm

Simulation with imperfections

But we can push the atom number... by a lot...

Scholl et al. Nature (2021)

14x14

Antiferromagnetic cluster: 182 atomes

Since 2022: more elaborate numerical methods ...!!

Ising model in other geometries

Ising model in other geometries

Use failure of adiabaticity to study quantum phase transition

Adiabaticity criteria:

 $H(t) = (1 - \lambda(t))H_0 + \lambda(t)H_{\rm MB}$

$$|\langle \psi_1(t)|\frac{dH}{dt}|\psi_0(t)\rangle| \ll \frac{\Delta E(t)^2}{\hbar}$$

But...gaps close at the QPT!!

Sweeping too fast \Rightarrow create defects

1D: Keesling, Nature (2019), 2D: arXiv.2012.12281

 $R_b \sim a$ 51 atoms

 $v_{1D} = 0.50(3) (v_{MF} = 1/3)$ $v_{2D,square} = 0.62(4) (v_{MF} = 1/2)$

Studying quantum phase transition in 1D and 2D

Close to QPT (criticality): $\langle \sigma_i^z \sigma_j^z \rangle \sim |i-j|^{-\Delta}$

$$\Delta_{\rm th}^{\rm 2D} = 0.518149$$

 $\Delta_{\rm exp}^{\rm 2D} = 0.59(9)$

 Z_2

Critical Point

0 Δ/Ω

2.0[]] 8/⁹ 1

Fang et al., arXiv:2402.15376

Outline – Lecture 3

- 1. Studying the ground state of quantum magnets
 - Ising model in 2D
 - Dipolar XY model in 2D
- 2. Out-of-equilibrium dynamics
 - Quench dynamics in Ising model: thermalization or not...
 - Quench spectroscopy: measuring dispersion relation of quasi-particles
- 3. Outlook: what we did not discuss... & beyond

Petrosyan, PRA 2013

k (sites)

k (sites)

k (sites)

Thermalization of closed Many-Body systems

Question: do closed systems always reach equilibrium?

Answer: it depends... ETH, many-body localization and Quantum Scars

Quantum scarrs in 2D (1D: Lukin Nature 2019)

Bluvstein...Lukin, Science 2021

Scarrs depends on geometry

Blockade constraint breaks ergodicity

Outline – Lecture 3

- 1. Studying the ground state of quantum magnets
 - Ising model in 2D
 - Dipolar XY model in 2D
- 2. Out-of-equilibrium dynamics
 - Quench dynamics in Ising model: thermalization or not...
 - Quench spectroscopy: measuring dispersion relation of quasi-particles

3. Outlook: what we did not discuss... & beyond

Elementary excitations of *dipolar* XY model: spin waves

Büchler *et al.*, PRL 109, 025303 (2012) Roscilde *et al.*, arXiv:2303.00380

Linear spin wave theory + Bogolubov: $\omega_{\mathbf{q}} = J_0 \sqrt{1 - J_{\mathbf{q}}/J_0} \quad \text{with} \quad J_{\mathbf{q}} = \frac{Ja^{\alpha}}{N} \sum_{i \neq j} (\underbrace{\pm 1}_{i \neq j})^{|i-j|} \frac{e^{i\mathbf{q} \cdot \mathbf{r}_{ij}}}{r_{ij}^{\alpha}}$ AFM N.N. Dipolar $\omega({f q}) \propto \sqrt{|{f q}|}$ FerroJ > 0 $\omega(\mathbf{q}) \propto |\mathbf{q}|$ Antiferro J < 0 $\omega(\mathbf{q}) \propto |\mathbf{q}|$ $\omega(\mathbf{q}) \propto |\mathbf{q}|$

Manousakis RMP 1991

"Quench spectroscopy" of dipolar XY magnets

ARPES

Usually: Excite system above ground state & measure dynamics

Neutron scattering

"Quench spectroscopy" of dipolar XY magnets

Usually: Excite system above ground state & measure dynamics

Here: Measure dynamics after quench preparing MEAN-FIELD ground state "Mean-field ground state = true ground state + spin waves"

Villa, Despres & Sanchez-Palencia, PRA 2019 Roscilde *et al.*, PRB 2018, arXiv:2303.00380

Classical FM / AFM in (xy) = MEAN-FIELD ground state = easy to prepare state (product state)

t-Structure factor:
$$S_{zz}(\mathbf{q},t) \propto \sum_{i,j} \langle \sigma_i^z \sigma_j^z \rangle(t) \ e^{i\mathbf{q} \cdot (\mathbf{r}_j - \mathbf{r}_i)}$$
 Quench \Rightarrow pairs $(q, -q)$
= $1 - \frac{J_{\mathbf{q}}}{2J_0} + \frac{J_{\mathbf{q}}}{2J_0} \cos(2\omega_{\mathbf{q}}t)$ LSW theory

Related work: ultra-cold atoms in lattices, ions, superconducting circuits...

10 x 10

15 µm

C. Cheng et al., arXiv:2311.11726

10 x 10

15 µm

C. Cheng et al., arXiv:2311.11726

10 x 10

C. Cheng et al., arXiv:2311.11726

10 x 10

C. Cheng et al., arXiv:2311.11726

10 x 10

C. Cheng et al., arXiv:2311.11726

10 x 10

C. Cheng et al., arXiv:2311.11726

-0.05

-0.10

-0.15

2.0

0.5

0.0

 $C^{zz}(t,d)$

1.0

 $t \ (\mu s)$

1.5

FM

 $C_{ij}^{zz}(t)$

5

-5

-5 0 5 -0.15

-0.30

 $\|$

d

0.0

0.5

0.5

1.0

 $(n_x, n_y) = (1, 0)$

1.5

Time (ħ/J)

2.0

2.5

3.0

2

0

0

 $\pi/2$

 $\sqrt{2}\pi$

π

 $|\mathbf{q}|$

Outline – Lecture 3

- 1. Studying the ground state of quantum magnets
 - Ising model in 2D
 - Dipolar XY model in 2D
- 2. Out-of-equilibrium dynamics
 - Quench dynamics in Ising model: thermalization or not...
 - Quench spectroscopy: measuring dispersion relation of quasi-particles
- 3. Outlook: what we did not discuss... & beyond

Outlook: what we did not discuss...

New developments: circular Rydberg states \Rightarrow lifetimes > 50 s...

Brune (Paris): arXiv:2407.04109, Nat. Phys. 2022 Covey (Urbana Champaign) Thompson (Princeton) Meinert & Pfau (Stuttgart)... overhead: Rydberg trapping

High precision quantum simulation: validation of the simulation

Article Benchmarking highly entangled states on a 60-atom analogue quantum simulator

https://doi.org/10.1038/s41586-024-07173-x Received: 18 August 2023

Adam L. Shaw $^{15 \boxplus}$, Zhuo Chen $^{2.3.5}$, Joonhee Chol $^{1,4.5}$, Daniel K. Mark $^{2.5}$, Pascal Scholl', Ran Finkelstein', Andreas Elben', Soonwon Chol $^{2 \boxplus}$ & Manuel Endres $^{1 \boxplus}$

First attempt of digital quantum simulation (and hybrid analog-digital)

Variational simulation of the Lipkin-Meshkov-Glick model on a neutral atom quantum computer

R. Chinnarasu,¹ C. Poole,¹ L. Phuttitarn,¹ A. Noori,^{1, 2} T. M. Graham,¹ S. N. Coppersmith,^{3, 1} A. B. Balantekin,¹ and M. Saffman^{1, 4}

Probing topological matter and fermion dynamics on a neutral-atom quantum computer

Simon J. Evered^{1,*}, Marcin Kalinowski^{1,*}, Alexandra A. Geim¹, Tom Manovitz¹, Dolev Bluvstein¹, Sophie H. Li¹, Nishad Maskara¹, Hengyun Zhou^{1,2}, Sepehr Ebadi^{1,3}, Muqing Xu¹, Joseph Campo², Madelyn Cain¹, Stefan Ostermann¹, Susanne F. Yelin¹, Subir Sachdev¹, Markus Greiner¹, Vladan Vuletić⁴, and Mikhail D. Lukin^{1,†}

arXiv:2501.06097

arXiv:2501.18554

Digital quantum simulation: resource estimates...

Quantum Science and Techno. 7, 045025 (2022)

Number of *perfect* gates to reproduce current *imperfect* analog simulation

Gate	Gate Count	Depth		Gate	Gate Count	Depth
CNOT	1.7×10^{5}	$8.4 imes 10^3$	M sites	CNOT	1.6×10^3	5.5×10^{2}
$R_Z(heta)$	6.8×10^{4}	$ 6.7 \times 10^2$		$R_Z(heta)$	2.1×10^4	$3.5 imes 10^2$

TABLE I. Gate count and depth estimates for digital quantum simulation of the Hubbard model with $J\tau = 2.7$, M = 100 and tJ = 10.

TABLE III. Gate count and depth estimates for digital quantum simulation of the nearest neighbour Ising model with $J\tau = 2.6$, M = 100, tJ = 10.

Gate	Gate Count	Depth
CNOT	$6.9 imes 10^5$	1.4×10^4
$R_Z(\theta)$	$3.5 imes 10^5$	$7.0 imes 10^3$

Numbers explode when

TABLE II. Gate count and depth estimates for digital quantum simulation of the long-range Ising model with $J\tau = 2.6$, M = 100 and tJ = 10.

analog errors $\rightarrow 0$

Digital quantum simulation: resource estimates...

arXiv:2211.07629v1

Many-body physics with synthetic systems or Quantum Simulation?

Experiments are imperfect... \Rightarrow Not a pristine quantum simulation of a model... Study the noisy many-body system for itself...

Use "toy many-body systems" to

- Develop intuition ("simple to complex", noise...)
- Trigger new theoretical methods
- Generate "interesting" quantum states (squeezed...)

Understand better "real" systems?

Develop applications?

How large can a quantum system be?

	۰.			
	•			•
			· · · ·	· ·
•		•		
	· · · · · · · · · · · · · · · · · · ·	10 B B B B B B B B B B B B B B B B B B B	• •	
	· · · ·	• •		· ·
•		10 A 10 A	· ·	· · ·