Entanglement in Strongly Correlated Systems 2025

Three-dimensional Tensor-Network Renormalization Group Enhanced by Entanglement Filtering

Xinliang Lyu* and Naoki Kawashima

Institute for Solid State Phys., The University of Tokyo * Current address: Institut des Hautes Études Scientifiques (IHES), France

@ Benasque, 4 March 2025

XL and Kawashima, arXiv:2412.13758

https://github.com/brucelyu/efrg3D

The Institute for Solid State Physics The University of Tokyo

Criticality and renormalization group

Wilsonian renormalization group (RG) is a way to estimate critical exponents

Real-space RG in a statistical physics context

IF you have an well-behaved RG transformation

Real-space RG in spin language

Real-space RG using spin-based representation: uncontrolled approximation

- A single RG step entails all possible interactions
- Truncation schemes are based on the conjecture that long-range one is less important
- Decimation, majority rule, ...?

Figure 3.8. Generation of next-nearest neighbour coupling.

Here are two examples:

Wilson (1975) implemented a numerical 3x3 block-spin map by keeping 217 couplings of 2D Ising:

High accuracy—1% or even 0.1% for first two exponents
"Difficult for 3D Ising... since 3x3x3 block contains about 30 spins, corresponding to 10⁹ configurations"

Migdal-Kadanoff bond moving (1976) gives $x_{\epsilon} = 2.1$ (accept value is 1.41) for 3D Ising; the relative error is about 50%...

Real-space RG in TN language

2D classical → 1D quantum chain (radial quantization) → Entanglement-entropy area law: $S(L) \sim S_0$ [due to Levin and Nave, *PRL* **99**, 120601 (2007)]

Constant S_0 can justify the practice of keeping constant number of couplings!

Systematically	improvable 2D	real-space RG!
----------------	---------------	----------------

exact	TNR(6)	TNR(16)	TNR(24)
0.125	0.125679	0.124941	0.124997
1	1.001499	1.000071	1.000009
1.125	1.125552	1.125011	1.124991
1.125	1.127024	1.125201	1.125027
max err.	0.83%	0.046%	0.0069%

Evenbly and Vidal, *PRL* **115**, 180405 (2015)

EE and TNRG: block-tensor map

Block idea in tensor-network language: block-tensor transformation

An RG flow in tensor space: $\Psi^{(0)} \rightarrow \Psi^{(1)} \rightarrow \Psi^{(2)} \rightarrow \cdots$

EE and block-tensor map (Levin and Nave, PRL, 2007):

- Entanglement entropy *¬* indicates RG error *¬*
- Changing entanglement entropy indicates your tensor isn't fixed (but we *wish* to have a fixed-point tensor).

EE and TNRG: block-tensor in 3D

(2+1)D EE area law goes like:

UV physics Universal physics $S(L) = \alpha L - F$

Linear growth of S marks a

qualitative difference between 3D

and 2D for block-tensor RG!

XL and Kawashima, arXiv:2311.05891

4 March 2025

Slide 6 of 20

EE and TNRG: block-tensor in 3D

Estimates fail to convergence w.r.t RG step!

EE and TNRG: block-tensor in 3D

Estimates fail to convergence w.r.t RG step!

Entanglement filtering: basic idea

Area law can be circumvented in coarse-grained description if the boundary of the block is "dissolved"

Invoke the wave function interpretation

Entanglement filtering: basic idea

Area law can be circumvented in coarse-grained description if the boundary of the block is "dissolved"

Proposed filtering scheme

Demonstrated in the 2D square lattice, here is how to *integrate Entanglement Filtering into a block-tensor transformation*:

(b) Zoom-in view

XL and Kawashima, arXiv:2412.13758

Proposed filtering scheme

We adopt the graph-independence idea in Gilt + Use another way to find the filtering matrix: full environment truncation Hauru, Delcamp, and Mizera, *PRB* **97**, 045111 (2018)

Evenbly, *PRB* **98**, 085155 (2018)

Demonstrated in the 2D square lattice, we propose:

Scaling dimensions versus the bond dimension χ

X	6	8	11	14
min error	5%	4%	3%	0.4%
max error	8%	6%	6%	0.5%

X	6	8	11	14
min error	0.1%	4%	1%	2%
max error	1%	5%	6%	4%

Table 8.2: Estimation errors for x_{ϵ} versus bond dimension

For spin field x_{σ}

- ✓ Mild decay of error with increasing bond dimension
- ✓ The magic bond dimension is $\chi = 14$

For energy density field x_{ϵ}

- ✓ Decay of error isn't clear; but there is no apparent increase either.
- ✓ The magic bond dimension is $\chi = 6$

Remark: in 2D TNR, the systematical improvement is demonstrated by increasing the bond dimension $\chi = 6 \rightarrow 16 \rightarrow 24$

XL and Kawashima, arXiv:2412.13758

Slide 18 of 20

TNRG and other methods

Embedded in Wilsonian RG framework, the TNRG reveals more universal data!

Other methods: Physical observable versus parameter + finite-size scaling or fitting

- ✓ Monte Carlo simulation
- Methods that use tensor networks as ground state ansatz: MPS, PEPS,...

XL and Kawashima, arXiv:2412.13758Summaryhttps://github.com/brucelyu/efrg3D

- The Kadanoff's block idea has been upgraded to become a *reliable* 3D real space RG
- In its best scenario, the error of x_{σ} is 0.4% and that of x_{ϵ} is 0.1% $_{x_{\sigma}, x_{\epsilon}}$ $m \sim (\lambda \lambda_c)^{\beta}$

TN Methods	Proposed	HOTRG	2D MERA	iPEPS
Smallest error	0.1%, 0.4%	0.9%	1.0%	1.7%
Computional cost	$\chi^{12.5}$	χ^{11}	χ^{16}	$D^{10 \sim 14}$

- The *conformal tower structure* is unique among all well-established numerical techniques
- It is a solid step towards a systematically improvable numerical RG