Renormalization group using tensor networks

Slava Rychkov

Institut des Hautes Études Scientifiques, Bures-sur-Yvette

Institut des l'autes Études Scientifiques.

Renormalization Group from 1970s until today

- Perturbative RG in field theory

 $4-\epsilon$ expansion Wilson, Fisher 1972 Still a valuable tool

- Numerical RG for quantum Hamiltonians

Kondo model Wilson RMP 1975 Flawed for lattice models => DMRG/MPS White 1993

- Real-space RG for stat-phys spin models

Niemeijer, van Leeuwen 1973, Wilson RMP 1975 Nothing fundamentally wrong, but challenging to implement

- ...

Real-space RG

Niemeijer, van Leeuwen 1973

<u>Conjecture:</u> For any **fixed** {s'}, the system of {s} spins has finite correlation length even @ **T=Tc**

=> H'[{s'}] exists and is short-range (with exponential tails)

But to compute it one must perform an infinite sum over {s} :(

3 Slava Rychkov

Results for the 2D Ising critical exponents, triangular lattice

482 Th. Niemeijer and J. M. J. van Leeuwen

Domb et al, vol.6

TABLE IV. The eigenvalues and critical temperatures in the successive approximations as obtained by Niemeijer and van Leeuwen (1973). The results of the six-cell cluster have been obtained by Subbarao (1975).

CLUSTER	Υ _Τ	Ч _Н	Кc
\$.7908	2.0217	0.365
	.7394	1.6688	0.255
	.8177	1.7562	0.253
	1.0518	1.9232	0.281
	1.0518	1.9219	0.281
	1.0281	1.87375	0.27416
EXACT	1.000	1.87500	0.27465

11 couplings

Results for the 2D Ising critical exponents, square lattice Wilson RMP 1975

217 couplings fitting into this region

Fixed-point Hamiltonian:

TABLE III. Dominant spin couplings in the fixed point Hamiltonian for $K^* = 0.2817$. The spin numbering shown in Fig. 7.

Spin product	Coefficient	Spin product	Coefficient
S1S2	0.281758	S1S2S3S5	0.001762
S1S5	0.095562	51525556	-0.001615
51525455	-0.017242	52545657	-0.001045
S1S3	0.008422	51535455	-0.001023
S1S6	0.004704	51525354	0.000736
S2S4S6S8	-0.004008	51535456	-0.000612
52555657	0.001803	51555657	0.000575

Critical exponents:

<i>K</i> *	ρ*	η	ν	h_1
0.2384	1.030	0.17	0.95	0.0287
0.2618	1.041	0.23	0.984	0.0085
0.2897	1.044	0.2486	1.002	0.0013
0.2992	1.04421	0.2497	0.998	0.0012
0.3104	1.04422	0.2497	0.988	0.0021
0.3306	1.04417	0.2494	0.97	0.0059

Open problem 0

Wilson RMP 1975

Reproduce/improve Wilson's results on modern computers

"Calculations were performed on a CDC 7600 computer: one iteration of the transformation required 3.3 sec"

"The author found many ways to increase the efficiency of the program<...> Further details of simplifications like this will not be reported here."

RG using tensor networks

Levin-Nave PRL 2006 talk Levin 2007

Rewrite Z as a tensor network contraction

<u>Exercise</u>: Do this for NN Ising model, with $\chi = 2$.

At least 2 inequivalent solutions, one rotating the lattice by 45 degrees

Real space RG	Tensor network RG				
Z' = Z					
H ightarrow H'	$A \to A'$				
H becomes nonlocal => truncate	$\chi' > \chi =>$ truncate				
Measure of error of free energy					
sum of truncated couplings	change in Hilbert-Schmidt norm (?)				
$H = \sum_{X} K_{X} \prod_{x \in X} x_{x \in X}$	E= IIA'- A'trunc II				
$\ H\ = \sum_{X \ni x_0} \frac{ K_X }{ X }$					
See Griffiths in Domb et al vol. 1					

8 Slava Rychkov

Open problem 1

Conjecture: Free energy estimate for tensor networks

Under some natural conditions on A, free energy per site:

$$\lim_{L \to \infty} \frac{1}{L^2} \log Z[A, L \times L]$$

exists and varies continuously in A in Hilbert-Schmidt norm

TRG algorithm of Levin-Nave

Figs from Gu, Wen 2009

TRG illustrates features of all tensor RG algorithms:

- Perform local changes in the network structure without modifying Z
- Truncate (in numerical studies)

Hope: local truncation error small => global will also be small

- Reconnection tensors are regrouped/contracted in a different order
- The number of tensors is reduced

Free energy computation using TRG

2D NN Ising @ $\beta \implies$ transform to TN; write initial tensor as ANN(B) = efo Ao $||A_0|| = 1$ Z(efoAo, LXL) $= e^{f_{\circ} V_{ol}} Z(A_{\circ}, L \times L)$ $= e^{f_{\circ} V_{ol}} Z(A_{\circ}, L \times L)$ $= e^{f_{\circ} V_{ol}} Z(A_{\circ}, L \times L)$ $A_{p} = e^{T_{1}}$ A11=1 efo+詰)Vol Z (A1, 告×告) $f_{0} + \frac{1}{2}$

Error in free energy of TRG

Fig from Yang, Gu, Wen 2015

Is there anything deep here?

Entanglement structure of TRG talk by Levin, 2007

TRG belongs to a group of algorithms <u>without disentangling</u> (like SRG, HOTRG...) In essence, they all carry out <u>simple coarse-graining step</u>:

isometries, implementing truncation

Without truncation:

View the tensor obtained after many RG steps as a "ground state wavefunction"

$$\delta \boxed{A} \beta =: \Psi_{\alpha\beta\gamma\delta}$$

$$\gamma$$

In the gapped phase we expect to be able to decompose Ψ as

 \sim

This is called **Corner-Double-Line** (CDL) tensor:

CDL tensors are fixed points of the coarse-graining step:

At the critical point $\xi = \infty$

By conformal invariance, Corner Transfer Matrix has spectrum quantized in units of $1/\log L \rightarrow 0$ Peschl, Truong 1987

We expect after many RG steps:

$$A_n = \frac{\chi_{CDL} \to \infty}{\sqrt{2}} a_{DL} \to \infty$$

Fixed point structure (desired)

Want to use (tensor) RG fixed points to classify phases:

fig from talk Levin 2007

Instead, Fixed point structure for TRG

To resolve these issues, need disentangling (L2)

19 Slava Rychkov

fig from talk Levin 2007

Other techniques for calculating partition functions

Row-by-row:

Corner transfer matrix:

May also benefit from disentanglement