Tensor product space for studying the interaction of bipartite states of light with nanostructures Phys. Rev. A **110**, 043516 (2024)

Lukas Freter, Benedikt Zerulla, Marjan Krstić, Christof Holzer, Carsten Rockstuhl, and Ivan Fernandez-Corbaton

Karlsruhe Institute of Technology

• Algebraic approach: Hilbert spaces, operators, etc ...

- Algebraic approach: Hilbert spaces, operators, etc ...
- Benefits for classical fields / single photon case

- Algebraic approach: Hilbert spaces, operators, etc ...
- Benefits for classical fields / single photon case
- Extension to (entangled) biphotons

- Algebraic approach: Hilbert spaces, operators, etc ...
- Benefits for classical fields / single photon case
- Extension to (entangled) biphotons
- Compute the interaction between entangled biphoton pulses of light and relativistically moving objects

- Algebraic approach: Hilbert spaces, operators, etc ...
- Benefits for classical fields / single photon case
- Extension to (entangled) biphotons
- Compute the interaction between entangled biphoton pulses of light and relativistically moving objects
- Published formulas and public software

• \mathbb{M} : The Hilbert space of free solutions of Maxwell equations

¹L. Gross, J. Math. Phys. 5, 687-695 (1964).

²Y. B. Zel'dovich, Doklady Akademii Nauk SSSR (USSR) English translation currently published in a number of subject-oriented journals 163 (1965).

³I. Bialynicki-Birula and Z. Bialynicka-Birula, *Quantum electrodynamics*, (Pergamon, Oxford, UK, Jan. 1975).

- ${\ensuremath{\, \bullet \,}}$ ${\ensuremath{\, M \! : \,}}$ The Hilbert space of free solutions of Maxwell equations
- $|f\rangle \in \mathbb{M}, |f\rangle \equiv \{\mathbf{E}_f(t, \mathbf{r}), \mathbf{B}_f(t, \mathbf{r})\}$

¹L. Gross, J. Math. Phys. 5, 687-695 (1964).

²Y. B. Zel'dovich, Doklady Akademii Nauk SSSR (USSR) English translation currently published in a number of subject-oriented journals 163 (1965).

³I. Bialynicki-Birula and Z. Bialynicka-Birula, *Quantum electrodynamics*, (Pergamon, Oxford, UK, Jan. 1975).

- \mathbb{M} : The Hilbert space of free solutions of Maxwell equations
- $|f\rangle \in \mathbb{M}, |f\rangle \equiv \{\mathbf{E}_f(t,\mathbf{r}), \mathbf{B}_f(t,\mathbf{r})\}$
- Scalar product¹:

$$\langle f|g\rangle = \frac{1}{2\pi^2\hbar c_0} \int_{\mathbb{R}^3} d\mathbf{r} \int_{\mathbb{R}^3} d\mathbf{\bar{r}} \frac{\epsilon_0 \mathbf{E}_f^{\dagger}(t, \mathbf{\bar{r}}) \mathbf{E}_g(t, \mathbf{r}) + \mathbf{B}_f^{\dagger}(t, \mathbf{\bar{r}}) \mathbf{B}_g(t, \mathbf{r})/\mu_0}{|\mathbf{r} - \mathbf{\bar{r}}|^2}$$

¹L. Gross, J. Math. Phys. 5, 687-695 (1964).

²Y. B. Zel'dovich, Doklady Akademii Nauk SSSR (USSR) English translation currently published in a number of subject-oriented journals 163 (1965).

³I. Bialynicki-Birula and Z. Bialynicka-Birula, Quantum electrodynamics, (Pergamon, Oxford, UK, Jan. 1975).

- \mathbb{M} : The Hilbert space of free solutions of Maxwell equations
- $|f\rangle \in \mathbb{M}, |f\rangle \equiv \{\mathbf{E}_f(t,\mathbf{r}), \mathbf{B}_f(t,\mathbf{r})\}$
- Scalar product¹:

$$\langle f|g\rangle = \frac{1}{2\pi^2\hbar c_0} \int_{\mathbb{R}^3} d\mathbf{r} \int_{\mathbb{R}^3} d\mathbf{\bar{r}} \frac{\epsilon_0 \mathbf{E}_f^{\dagger}(t, \mathbf{\bar{r}}) \mathbf{E}_g(t, \mathbf{r}) + \mathbf{B}_f^{\dagger}(t, \mathbf{\bar{r}}) \mathbf{B}_g(t, \mathbf{r})/\mu_0}{|\mathbf{r} - \mathbf{\bar{r}}|^2}$$

- Concise connection to physical quantities²,³
 - $\langle f|f \rangle$: Number of photons in $|f \rangle$

¹L. Gross, J. Math. Phys. 5, 687-695 (1964).

²Y. B. Zel'dovich, Doklady Akademii Nauk SSSR (USSR) English translation currently published in a number of subject-oriented journals 163 (1965).

³I. Bialynicki-Birula and Z. Bialynicka-Birula, *Quantum electrodynamics*, (Pergamon, Oxford, UK, Jan. 1975).

- $\bullet~\ensuremath{\mathbb{M}}$: The Hilbert space of free solutions of Maxwell equations
- $|f\rangle \in \mathbb{M}, |f\rangle \equiv \{\mathbf{E}_f(t,\mathbf{r}), \mathbf{B}_f(t,\mathbf{r})\}$
- Scalar product¹:

$$\langle f|g\rangle = \frac{1}{2\pi^2\hbar c_0} \int_{\mathbb{R}^3} d\mathbf{r} \int_{\mathbb{R}^3} d\mathbf{\bar{r}} \frac{\epsilon_0 \mathbf{E}_f^{\dagger}(t, \mathbf{\bar{r}}) \mathbf{E}_g(t, \mathbf{r}) + \mathbf{B}_f^{\dagger}(t, \mathbf{\bar{r}}) \mathbf{B}_g(t, \mathbf{r})/\mu_0}{|\mathbf{r} - \mathbf{\bar{r}}|^2}$$

• Concise connection to physical quantities²,³

¹L. Gross, J. Math. Phys. 5, 687-695 (1964).

²Y. B. Zel'dovich, Doklady Akademii Nauk SSSR (USSR) English translation currently published in a number of subject-oriented journals 163 (1965).

³I. Bialynicki-Birula and Z. Bialynicka-Birula, Quantum electrodynamics, (Pergamon, Oxford, UK, Jan. 1975).

• T: The transition matrix, or T-matrix of a material object⁴

⁴P. C. Waterman, Proc. IEEE 53, 805-812 (1965).

⁵G. Gouesbet, Journal of Quantitative Spectroscopy and Radiative Transfer 230, 247-281 (2019).

⁶M. I. Mishchenko, Journal of Quantitative Spectroscopy and Radiative Transfer 242, 106692 (2020).

⁷T. Wriedt and J. Hellmers, Journal of Quantitative Spectroscopy and Radiative Transfer, X Conference on Electromagnetic and Light Scattering by Non-Spherical Particles 109, 1536–1542 (2008).

⁸J. Hellmers and T. Wriedt, Journal of Quantitative Spectroscopy and Radiative Transfer 110, 1511–1517 (2009).

- T: The transition matrix, or T-matrix of a material object⁴
- Linear light-matter interaction between object and illumination:

⁴P. C. Waterman, Proc. IEEE 53, 805-812 (1965).

⁵G. Gouesbet, Journal of Quantitative Spectroscopy and Radiative Transfer 230, 247-281 (2019).

⁶M. I. Mishchenko, Journal of Quantitative Spectroscopy and Radiative Transfer 242, 106692 (2020).

⁷T. Wriedt and J. Hellmers, Journal of Quantitative Spectroscopy and Radiative Transfer, X Conference on Electromagnetic and Light Scattering by Non-Spherical Particles 109, 1536–1542 (2008).

⁸ J. Hellmers and T. Wriedt, Journal of Quantitative Spectroscopy and Radiative Transfer 110, 1511–1517 (2009).

- T: The transition matrix, or T-matrix of a material object⁴
- Linear light-matter interaction between object and illumination:
 - 1 Decompose the illumination into multipolar fields: a
 - 2 $\mathbf{b} = T\mathbf{a}$ are the multipolar coefficients of the scattered field
 - ③ Computation of scattering, absorption, total fields, etc ...

⁴P. C. Waterman, Proc. IEEE 53, 805-812 (1965).

⁵G. Gouesbet, Journal of Quantitative Spectroscopy and Radiative Transfer 230, 247-281 (2019).

⁶M. I. Mishchenko, Journal of Quantitative Spectroscopy and Radiative Transfer 242, 106692 (2020).

⁷T. Wriedt and J. Hellmers, Journal of Quantitative Spectroscopy and Radiative Transfer, X Conference on Electromagnetic and Light Scattering by Non-Spherical Particles 109, 1536–1542 (2008).

⁸J. Hellmers and T. Wriedt, Journal of Quantitative Spectroscopy and Radiative Transfer 110, 1511–1517 (2009).

- T: The transition matrix, or T-matrix of a material object⁴
- Linear light-matter interaction between object and illumination:
 - 1 Decompose the illumination into multipolar fields: a
 - 2 $\mathbf{b} = T\mathbf{a}$ are the multipolar coefficients of the scattered field
 - 3 Computation of scattering, absorption, total fields, etc ...
- T-matrices for different kinds of objects are differently obtained
 - Micro-particles: Generic Maxwell solvers

⁴P. C. Waterman, Proc. IEEE 53, 805-812 (1965).

⁵G. Gouesbet, Journal of Quantitative Spectroscopy and Radiative Transfer 230, 247-281 (2019).

⁶M. I. Mishchenko, Journal of Quantitative Spectroscopy and Radiative Transfer 242, 106692 (2020).

⁷T. Wriedt and J. Hellmers, Journal of Quantitative Spectroscopy and Radiative Transfer, X Conference on Electromagnetic and Light Scattering by Non-Spherical Particles 109, 1536–1542 (2008).

⁸J. Hellmers and T. Wriedt, Journal of Quantitative Spectroscopy and Radiative Transfer 110, 1511–1517 (2009).

- T: The transition matrix, or T-matrix of a material object⁴
- Linear light-matter interaction between object and illumination:
 - 1 Decompose the illumination into multipolar fields: a
 - (2) $\mathbf{b} = T\mathbf{a}$ are the multipolar coefficients of the scattered field
 - ③ Computation of scattering, absorption, total fields, etc ...
- T-matrices for different kinds of objects are differently obtained
 - Micro-particles: Generic Maxwell solvers
 - Molecules: Quantum-chemical calculations, such as (TD)-DFT

⁴P. C. Waterman, Proc. IEEE 53, 805-812 (1965).

⁵G. Gouesbet, Journal of Quantitative Spectroscopy and Radiative Transfer 230, 247-281 (2019).

⁶M. I. Mishchenko, Journal of Quantitative Spectroscopy and Radiative Transfer 242, 106692 (2020).

⁷T. Wriedt and J. Hellmers, Journal of Quantitative Spectroscopy and Radiative Transfer, X Conference on Electromagnetic and Light Scattering by Non-Spherical Particles 109, 1536–1542 (2008).

⁸J. Hellmers and T. Wriedt, Journal of Quantitative Spectroscopy and Radiative Transfer 110, 1511–1517 (2009).

- T: The transition matrix, or T-matrix of a material object⁴
- Linear light-matter interaction between object and illumination:
 - 1 Decompose the illumination into multipolar fields: a
 - (2) $\mathbf{b} = T\mathbf{a}$ are the multipolar coefficients of the scattered field
 - ③ Computation of scattering, absorption, total fields, etc ...
- T-matrices for different kinds of objects are differently obtained
 - Micro-particles: Generic Maxwell solvers
 - Molecules: Quantum-chemical calculations, such as (TD)-DFT
- T-matrix method very popular in engineering and physics

⁴P. C. Waterman, Proc. IEEE 53, 805-812 (1965).

⁵G. Gouesbet, Journal of Quantitative Spectroscopy and Radiative Transfer 230, 247-281 (2019).

⁶M. I. Mishchenko, Journal of Quantitative Spectroscopy and Radiative Transfer 242, 106692 (2020).

⁷T. Wriedt and J. Hellmers, Journal of Quantitative Spectroscopy and Radiative Transfer, X Conference on Electromagnetic and Light Scattering by Non-Spherical Particles 109, 1536–1542 (2008).

⁸J. Hellmers and T. Wriedt, Journal of Quantitative Spectroscopy and Radiative Transfer 110, 1511–1517 (2009).

- T: The transition matrix, or T-matrix of a material object⁴
- Linear light-matter interaction between object and illumination:
 - 1 Decompose the illumination into multipolar fields: a
 - (2) $\mathbf{b} = T\mathbf{a}$ are the multipolar coefficients of the scattered field
 - 3 Computation of scattering, absorption, total fields, etc ...
- T-matrices for different kinds of objects are differently obtained
 - Micro-particles: Generic Maxwell solvers
 - Molecules: Quantum-chemical calculations, such as (TD)-DFT
- T-matrix method very popular in engineering and physics
- Reference databases⁵⁶, software repositories⁷⁸

⁴P. C. Waterman, Proc. IEEE 53, 805-812 (1965).

⁵G. Gouesbet, Journal of Quantitative Spectroscopy and Radiative Transfer 230, 247-281 (2019).

⁶M. I. Mishchenko, Journal of Quantitative Spectroscopy and Radiative Transfer 242, 106692 (2020).

⁷T. Wriedt and J. Hellmers, Journal of Quantitative Spectroscopy and Radiative Transfer, X Conference on Electromagnetic and Light Scattering by Non-Spherical Particles 109, 1536–1542 (2008).

⁸J. Hellmers and T. Wriedt, Journal of Quantitative Spectroscopy and Radiative Transfer 110, 1511–1517 (2009).

- T: The transition matrix, or T-matrix of a material object⁴
- Linear light-matter interaction between object and illumination:
 - 1 Decompose the illumination into multipolar fields: a
 - (2) $\mathbf{b} = T\mathbf{a}$ are the multipolar coefficients of the scattered field
 - ③ Computation of scattering, absorption, total fields, etc ...
- T-matrices for different kinds of objects are differently obtained
 - Micro-particles: Generic Maxwell solvers
 - Molecules: Quantum-chemical calculations, such as (TD)-DFT
- T-matrix method very popular in engineering and physics
- Reference databases⁵⁶, software repositories⁷⁸
- Challenge: Objects invading each other's circumscribing spheres

⁴P. C. Waterman, Proc. IEEE 53, 805-812 (1965).

 $^{^5 \}text{G.}$ Gouesbet, Journal of Quantitative Spectroscopy and Radiative Transfer 230, 247–281 (2019).

⁶M. I. Mishchenko, Journal of Quantitative Spectroscopy and Radiative Transfer 242, 106692 (2020).

⁷T. Wriedt and J. Hellmers, Journal of Quantitative Spectroscopy and Radiative Transfer, X Conference on Electromagnetic and Light Scattering by Non-Spherical Particles 109, 1536–1542 (2008).

⁸J. Hellmers and T. Wriedt, Journal of Quantitative Spectroscopy and Radiative Transfer 110, 1511–1517 (2009).

 $\bullet~$ Let us combine $\mathbb M$ and $T~!~\dots$

 $\bullet\,$ Let us combine $\mathbb M$ and T ! ... not so fast

- $\bullet\,$ Let us combine $\mathbb M$ and T ! ... not so fast
- $\bullet \ T$ is a monochromatic operator ${\bm b}=T{\bm a}$
 - Multipolar decomposition of monochromatic fields

- $\bullet\,$ Let us combine $\mathbb M$ and T ! ... not so fast
- T is a monochromatic operator $\mathbf{b} = T\mathbf{a}$

• Multipolar decomposition of monochromatic fields

- ${\ensuremath{\, \bullet }}$ Monochromatic fields are not members of ${\ensuremath{\mathbb M }}$
- ${ullet}$ Their number of photons $\langle f|f\rangle$ and energy $\langle f|{\rm H}|f\rangle$ diverge ($\infty)$

- $\bullet\,$ Let us combine $\mathbb M$ and T ! ... not so fast
- T is a monochromatic operator $\mathbf{b} = T\mathbf{a}$
 - Multipolar decomposition of monochromatic fields
- ${\ensuremath{\, \bullet \,}}$ Monochromatic fields are not members of ${\ensuremath{\mathbb M}}$
- ${ullet}$ Their number of photons $\langle f|f\rangle$ and energy $\langle f|{\rm H}|f\rangle$ diverge ($\infty)$

- $\bullet\,$ Let us combine $\mathbb M$ and T ! ... not so fast
- T is a monochromatic operator $\mathbf{b} = T\mathbf{a}$
 - Multipolar decomposition of monochromatic fields
- ${\ensuremath{\, \bullet \,}}$ Monochromatic fields are not members of ${\ensuremath{\mathbb M}}$
- ${ullet}$ Their number of photons $\langle f|f\rangle$ and energy $\langle f|{\rm H}|f\rangle$ diverge ($\infty)$

• Re-base the T-matrix method to be inherently polychromatic

^aM. Vavilin and I. Fernandez-Corbaton, JQSRT 314, 108853 (2024).

- $\bullet\,$ Let us combine $\mathbb M$ and T ! ... not so fast
- T is a monochromatic operator $\mathbf{b} = T\mathbf{a}$
 - Multipolar decomposition of monochromatic fields
- ${\ensuremath{\, \bullet \,}}$ Monochromatic fields are not members of ${\ensuremath{\mathbb M}}$
- ${ullet}$ Their number of photons $\langle f|f\rangle$ and energy $\langle f|{\rm H}|f\rangle$ diverge ($\infty)$

- Re-base the T-matrix method to be inherently polychromatic
- Base: Poincaré group of transformations. Includes Lorentz boosts:
 - Changes between inertial reference frames

- $\bullet\,$ Let us combine $\mathbb M$ and T ! ... not so fast
- T is a monochromatic operator $\mathbf{b} = T\mathbf{a}$
 - Multipolar decomposition of monochromatic fields
- ${\ensuremath{\, \bullet \,}}$ Monochromatic fields are not members of ${\ensuremath{\mathbb M}}$
- Their number of photons $\langle f|f
 angle$ and energy $\langle f|\mathrm{H}|f
 angle$ diverge (∞)

- Re-base the T-matrix method to be inherently polychromatic
- Base: Poincaré group of transformations. Includes Lorentz boosts:
 - Changes between inertial reference frames
 - Frequency changes as in e.g. the doppler effect

- $\bullet\,$ Let us combine $\mathbb M$ and T ! ... not so fast
- T is a monochromatic operator $\mathbf{b} = T\mathbf{a}$
 - Multipolar decomposition of monochromatic fields
- Monochromatic fields are not members of ${\mathbb M}$
- Their number of photons $\langle f|f
 angle$ and energy $\langle f|\mathrm{H}|f
 angle$ diverge (∞)

- Re-base the T-matrix method to be inherently polychromatic
- Base: Poincaré group of transformations. Includes Lorentz boosts:
 - Changes between inertial reference frames
 - Frequency changes as in e.g. the doppler effect
- All $|f
 angle \in \mathbb{M}$ are polychromatic
- Can be expanded with frequency integrals of monochromatic fields
 - Plane waves, multipolar fields, etc ...

$${f E}(t,{f r}) = \sum_{\lambda=\pm 1} \int {d^3{f k}\over k} \, f_\lambda({f k}) \, \left| {f k} \, \lambda
ight
angle$$

 $\mathbf{E}(t,\mathbf{r}) = \sum_{\lambda=\pm 1} \int \frac{d^3\mathbf{k}}{k} f_{\lambda}(\mathbf{k}) |\mathbf{k} \lambda\rangle$, simpler expressions for the scalar product

 $\mathbf{E}(t,\mathbf{r}) = \sum_{\lambda=\pm 1} \int \frac{d^3\mathbf{k}}{k} f_{\lambda}(\mathbf{k}) |\mathbf{k} \lambda\rangle$, simpler expressions for the scalar product

$$\langle f|g\rangle = \sum_{\lambda=\pm 1} \int \frac{d^3\mathbf{k}}{k} f_{\lambda}^*(\mathbf{k}) g_{\lambda}(\mathbf{k}) = \sum_{\lambda=\pm 1} \int_0^\infty dk \, k \sum_{j=1}^\infty \sum_{m=-j}^j f_{jm\lambda}^*(k) g_{jm\lambda}(k)$$

 $\mathbf{E}(t,\mathbf{r}) = \sum_{\lambda=\pm 1} \int \frac{d^3\mathbf{k}}{k} f_{\lambda}(\mathbf{k}) |\mathbf{k} \lambda\rangle$, simpler expressions for the scalar product

$$\langle f | g \rangle = \sum_{\lambda = \pm 1} \int \frac{d^3 \mathbf{k}}{k} f_{\lambda}^*(\mathbf{k}) g_{\lambda}(\mathbf{k}) = \sum_{\lambda = \pm 1} \int_0^\infty dk \, k \sum_{j=1}^\infty \sum_{m=-j}^j f_{jm\lambda}^*(k) g_{jm\lambda}(k), \text{ computationally friendly}$$

$$\mathbf{E}(t,\mathbf{r}) = \sum_{\lambda=\pm 1} \int \frac{d^3\mathbf{k}}{k} f_{\lambda}(\mathbf{k}) |\mathbf{k} \lambda\rangle, \text{ simpler expressions for the scalar product}$$

$$\langle f | g \rangle = \sum_{\lambda = \pm 1} \int \frac{d^3 \mathbf{k}}{k} f_{\lambda}^*(\mathbf{k}) g_{\lambda}(\mathbf{k}) = \sum_{\lambda = \pm 1} \int_0^\infty dk \, k \sum_{j=1}^\infty \sum_{m=-j}^j f_{jm\lambda}^*(k) g_{jm\lambda}(k), \text{ computationally friendly}$$

Light-matter interaction

$$\mathbf{E}(t,\mathbf{r}) = \sum_{\lambda=\pm 1} \int \frac{d^3\mathbf{k}}{k} f_{\lambda}(\mathbf{k}) |\mathbf{k} \lambda\rangle, \text{ simpler expressions for the scalar product}$$

$$\langle f|g\rangle = \sum_{\lambda=\pm 1} \int \frac{d^{3}\mathbf{k}}{k} f_{\lambda}^{*}(\mathbf{k})g_{\lambda}(\mathbf{k}) = \sum_{\lambda=\pm 1} \int_{0}^{\infty} dk \ k \sum_{j=1}^{\infty} \sum_{m=-j}^{j} f_{jm\lambda}^{*}(k)g_{jm\lambda}(k), \text{ computationally friendly}$$

$$\mathbf{E}(t,\mathbf{r}) = \sum_{\lambda=\pm 1} \int \frac{d^3\mathbf{k}}{k} f_{\lambda}(\mathbf{k}) |\mathbf{k} \lambda\rangle, \text{ simpler expressions for the scalar product}$$

$$\langle f | g \rangle = \sum_{\lambda = \pm 1} \int \frac{d^3 \mathbf{k}}{k} f_{\lambda}^*(\mathbf{k}) g_{\lambda}(\mathbf{k}) = \sum_{\lambda = \pm 1} \int_0^\infty d\mathbf{k} \ \mathbf{k} \sum_{j=1}^\infty \sum_{m=-j}^j f_{jm\lambda}^*(\mathbf{k}) g_{jm\lambda}(\mathbf{k}), \text{ computationally friendly}$$

$$\mathbf{E}(t,\mathbf{r}) = \sum_{\lambda=\pm 1} \int \frac{d^3\mathbf{k}}{k} f_{\lambda}(\mathbf{k}) |\mathbf{k} \lambda\rangle, \text{ simpler expressions for the scalar product}$$

$$\langle f | g \rangle = \sum_{\lambda = \pm 1} \int \frac{d^3 \mathbf{k}}{k} f_{\lambda}^*(\mathbf{k}) g_{\lambda}(\mathbf{k}) = \sum_{\lambda = \pm 1} \int_0^\infty dk \, k \sum_{j=1}^\infty \sum_{m=-j}^j f_{jm\lambda}^*(k) g_{jm\lambda}(k), \text{ computationally friendly}$$

• Number of photons: $\langle f|f \rangle - \langle g|g \rangle = \langle f|I - S^{\dagger}S|f \rangle$

- Number of photons: $\langle f|f\rangle \langle g|g\rangle = \langle f|I S^{\dagger}S|f\rangle$
- Energy: $\langle f | \mathbf{H} | f \rangle \langle g | \mathbf{H} | g \rangle = \langle f | \mathbf{H} \mathbf{S}^{\dagger} \mathbf{H} \mathbf{S} | f \rangle$, etc ...

- Number of photons: $\langle f|f\rangle \langle g|g\rangle = \langle f|I S^{\dagger}S|f\rangle$
- Energy: $\langle f | \mathbf{H} | f \rangle \langle g | \mathbf{H} | g \rangle = \langle f | \mathbf{H} \mathbf{S}^{\dagger} \mathbf{HS} | f \rangle$, etc ...

• Pulse $\Delta t \approx 10$ fs, $\lambda_0 = 380$ nm

- Number of photons: $\langle f|f\rangle \langle g|g\rangle = \langle f|I S^{\dagger}S|f\rangle$
- Energy: $\langle f | \mathbf{H} | f \rangle \langle g | \mathbf{H} | g \rangle = \langle f | \mathbf{H} \mathbf{S}^{\dagger} \mathbf{HS} | f \rangle$, etc ...

- Pulse $\Delta t \approx 10$ fs, $\lambda_0 = 380$ nm
- Pulse Energy $\langle f | {
 m H} | f
 angle = 1 imes 10^{-3} {
 m J}$
- Pulse Momentum $\langle f | \mathbf{P}_z | f \rangle = 3.3 \times 10^{-12} \,\mathrm{kg \, m \, s^{-1}}$

- Number of photons: $\langle f|f\rangle \langle g|g\rangle = \langle f|I S^{\dagger}S|f\rangle$
- Energy: $\langle f | \mathbf{H} | f \rangle \langle g | \mathbf{H} | g \rangle = \langle f | \mathbf{H} \mathbf{S}^{\dagger} \mathbf{HS} | f \rangle$, etc ...

- Pulse $\Delta t \approx 10$ fs, $\lambda_0 = 380$ nm
- Pulse Energy $\langle f | {
 m H} | f
 angle = 1 imes 10^{-3} {
 m J}$
- Pulse Momentum $\langle f | \mathbf{P}_z | f \rangle = 3.3 \times 10^{-12} \,\mathrm{kg \, m \, s^{-1}}$
- Transferred to sphere:

•
$$9.15 \times 10^{-6}$$
 J,
 6.8×10^{-14} kg m s⁻¹

- Number of photons: $\langle f|f\rangle \langle g|g\rangle = \langle f|I S^{\dagger}S|f\rangle$
- Energy: $\langle f | \mathbf{H} | f \rangle \langle g | \mathbf{H} | g \rangle = \langle f | \mathbf{H} \mathbf{S}^{\dagger} \mathbf{HS} | f \rangle$, etc ...

- Pulse $\Delta t \approx 10$ fs, $\lambda_0 = 380$ nm
- Pulse Energy $\langle f | {
 m H} | f
 angle = 1 imes 10^{-3} {
 m J}$
- Pulse Momentum $\langle f|\mathbf{P}_z|f
 angle=3.3 imes10^{-12}\,\mathrm{kg\,m\,s^{-1}}$
- Transferred to sphere:

•
$$9.15 \times 10^{-6}$$
 J,
 6.8×10^{-14} kg m s⁻¹

www.astronomy.com

Relativistic speeds^a

- Number of photons: $\langle f|f \rangle \langle g|g \rangle = \langle f|I S^{\dagger}S|f \rangle$
- Energy: $\langle f | \mathbf{H} | f \rangle \langle g | \mathbf{H} | g \rangle = \langle f | \mathbf{H} \mathbf{S}^{\dagger} \mathbf{H} \mathbf{S} | f \rangle$, etc ...

- Pulse $\Delta t \approx 10$ fs, $\lambda_0 = 380$ nm
- Pulse Energy $\langle f | {
 m H} | f
 angle = 1 imes 10^{-3} {
 m J}$
- Pulse Momentum $\langle f|\mathbf{P}_z|f
 angle=3.3 imes10^{-12}\,\mathrm{kg\,m\,s^{-1}}$
- Transferred to sphere:
 - $\hfill 9.15 \times 10^{-6}$ J, $6.8 \times 10^{-14} \, kg \, m \, s^{-1}$

www.astronomy.com

Relativistic speeds^a

^aM. Vavilin, J. D. Mazo-Vásquez, and I. Fernandez-Corbaton, Phys. Rev. Res. 7, 013132 (2025), M. R. Whittam et al., Scientific Reports 14, 16812 (2024).

- Number of photons: $\langle f|f\rangle \langle g|g\rangle = \langle f|I S^{\dagger}S|f\rangle$
- Energy: $\langle f | \mathbf{H} | f \rangle \langle g | \mathbf{H} | g \rangle = \langle f | \mathbf{H} \mathbf{S}^{\dagger} \mathbf{H} \mathbf{S} | f \rangle$, etc ...

- Pulse $\Delta t \approx 10$ fs, $\lambda_0 = 380$ nm
- Pulse Energy $\langle f | {
 m H} | f
 angle = 1 imes 10^{-3} {
 m J}$
- Pulse Momentum $\langle f | \mathbf{P}_z | f \rangle = 3.3 \times 10^{-12} \,\mathrm{kg \, m \, s^{-1}}$
- Transferred to sphere:
 - $\bullet~~9.15\times 10^{-6}$ J, $~~6.8\times 10^{-14}\,kg\,m\,s^{-1}$

www.astronomy.com

Relativistic speeds^a

^aM. Vavilin, J. D. Mazo-Vásquez, and I. Fernandez-Corbaton, Phys. Rev. Res. 7, 013132 (2025), M. R. Whittam et al., Scientific Reports 14, 16812 (2024)

7 / 21

- Number of photons: $\langle f|f \rangle \langle g|g \rangle = \langle f|I S^{\dagger}S|f \rangle$
- Energy: $\langle f | \mathbf{H} | f \rangle \langle g | \mathbf{H} | g \rangle = \langle f | \mathbf{H} \mathbf{S}^{\dagger} \mathbf{H} \mathbf{S} | f \rangle$, etc ...

- Pulse $\Delta t \approx 10$ fs, $\lambda_0 = 380$ nm
- Pulse Energy $\langle f | \mathrm{H} | f \rangle = 1 \times 10^{-3} \mathrm{J}$
- Pulse Momentum $\langle f | \mathbf{P}_z | f \rangle = 3.3 \times 10^{-12} \,\mathrm{kg \, m \, s^{-1}}$
- Transferred to sphere:
 - $\label{eq:second} \begin{array}{l} \bullet \ \ 9.15 \times 10^{-6} \ \text{J}, \\ 6.8 \times 10^{-14} \ \text{kg} \ \text{m} \ \text{s}^{-1} \end{array}$

^aM. Vavilin, J. D. Mazo-Vásquez, and I. Fernandez-Corbaton, Phys. Rev. Res. 7, 013132 (2025), M. R. Whittam et al., Scientific Reports 14, 16812 (2024).

 λ_0 (nm)

Let us talk about quantum.

⁹L. Freter, B. Zerulla, M. Krstic, C. Holzer, C. Rockstuhl, and I. Fernandez-Corbaton, Phys. Rev. A 110, 043516 (2024).

```
• Single photons \langle f|f \rangle = 1
```

⁹L. Freter, B. Zerulla, M. Krstic, C. Holzer, C. Rockstuhl, and I. Fernandez-Corbaton, Phys. Rev. A 110, 043516 (2024).

- Single photons $\langle f|f \rangle = 1$
- Classical fields: $N = \langle f | f \rangle$

⁹L. Freter, B. Zerulla, M. Krstic, C. Holzer, C. Rockstuhl, and I. Fernandez-Corbaton, Phys. Rev. A 110, 043516 (2024).

- Single photons $\langle f|f
 angle=1$
- Classical fields: $N = \langle f | f
 angle pprox 10^{12}$ in a femtosecond pulse

⁹L. Freter, B. Zerulla, M. Krstic, C. Holzer, C. Rockstuhl, and I. Fernandez-Corbaton, Phys. Rev. A 110, 043516 (2024).

- Single photons $\langle f|f \rangle = 1$
- ${}\circ{}$ Classical fields: ${\it N}=\langle f|f\rangle{}\approx10^{12}$ in a femtosecond pulse

• $|f\rangle = \sqrt{N} |\hat{f}\rangle$. Normalized bosonic mode $|\hat{f}\rangle$. As $(a_{\hat{f}}^{\dagger})^{N} |0\rangle$.

⁹L. Freter, B. Zerulla, M. Krstic, C. Holzer, C. Rockstuhl, and I. Fernandez-Corbaton, Phys. Rev. A 110, 043516 (2024).

- Single photons $\langle f|f
 angle=1$
- ${}\circ{}$ Classical fields: ${\it N}=\langle f|f\rangle{}\approx10^{12}$ in a femtosecond pulse
- $|f\rangle = \sqrt{N} |\hat{f}\rangle$. Normalized bosonic mode $|\hat{f}\rangle$. As $\left(a_{\hat{f}}^{\dagger}\right)^{N} |0\rangle$.
- Two entangled photons?

⁹L. Freter, B. Zerulla, M. Krstic, C. Holzer, C. Rockstuhl, and I. Fernandez-Corbaton, Phys. Rev. A 110, 043516 (2024).

- Single photons $\langle f|f
 angle=1$
- ${\scriptstyle \bullet }$ Classical fields: ${\it N}=\langle f|f\rangle {\approx 10^{12}}$ in a femtosecond pulse

•
$$|f\rangle = \sqrt{N} |\hat{f}\rangle$$
. Normalized bosonic mode $|\hat{f}\rangle$. As $\left(a_{\hat{f}}^{\dagger}\right)^{N} |0\rangle$.

• Two entangled photons? Then it does not work

⁹L. Freter, B. Zerulla, M. Krstic, C. Holzer, C. Rockstuhl, and I. Fernandez-Corbaton, Phys. Rev. A 110, 043516 (2024).

- Single photons $\langle f|f
 angle=1$
- ${}\circ{}$ Classical fields: ${\it N}=\langle f|f\rangle{}\approx10^{12}$ in a femtosecond pulse
- $|f\rangle = \sqrt{N} |\hat{f}\rangle$. Normalized bosonic mode $|\hat{f}\rangle$. As $\left(a_{\hat{f}}^{\dagger}\right)^{N} |0\rangle$.
- ${\, \bullet \,}$ Two entangled photons? Then it does not work , however $^{9} \ldots$

⁹L. Freter, B. Zerulla, M. Krstic, C. Holzer, C. Rockstuhl, and I. Fernandez-Corbaton, Phys. Rev. A 110, 043516 (2024).

- Single photons $\langle f|f
 angle=1$
- Classical fields: $N = \langle f | f \rangle \approx 10^{12}$ in a femtosecond pulse
- $|f\rangle = \sqrt{N} |\hat{f}\rangle$. Normalized bosonic mode $|\hat{f}\rangle$. As $(a_{\hat{f}}^{\dagger})^{N} |0\rangle$.
- ${\ensuremath{\, \circ }}$ Two entangled photons? Then it does not work , however $^9\ldots$

Lukas Freter

⁹L. Freter, B. Zerulla, M. Krstic, C. Holzer, C. Rockstuhl, and I. Fernandez-Corbaton, Phys. Rev. A 110, 043516 (2024).

- Single photons $\langle f|f
 angle=1$
- Classical fields: $N = \langle f | f \rangle \approx 10^{12}$ in a femtosecond pulse

• $|f\rangle = \sqrt{N} |\hat{f}\rangle$. Normalized bosonic mode $|\hat{f}\rangle$. As $(a_{\hat{f}}^{\dagger})^{N} |0\rangle$.

 ${\ensuremath{\, \circ }}$ Two entangled photons? Then it does not work , however $^9\ldots$

•
$$\mathbb{M}_2 \equiv \mathbb{M} \otimes \mathbb{M}$$

⁹L. Freter, B. Zerulla, M. Krstic, C. Holzer, C. Rockstuhl, and I. Fernandez-Corbaton, Phys. Rev. A 110, 043516 (2024).

- Single photons $\langle f|f
 angle=1$
- ${}\circ{}$ Classical fields: ${\it N}=\langle f|f\rangle{}\approx10^{12}$ in a femtosecond pulse

• $|f\rangle = \sqrt{N} |\hat{f}\rangle$. Normalized bosonic mode $|\hat{f}\rangle$. As $\left(a_{\hat{f}}^{\dagger}\right)^{N} |0\rangle$.

 ${\ensuremath{\, \circ }}$ Two entangled photons? Then it does not work , however $^9\ldots$

$$\bullet \ \mathbb{M}_2 \equiv \mathbb{M} \otimes \mathbb{M}$$

•
$$|\mathbf{k}\lambda, \bar{\mathbf{k}}\bar{\lambda}\rangle = \frac{1}{\sqrt{2}} \left(|\mathbf{k}\lambda\rangle \otimes |\bar{\mathbf{k}}\bar{\lambda}\rangle + |\bar{\mathbf{k}}\bar{\lambda}\rangle \otimes |\mathbf{k}\lambda\rangle \right)$$

Lukas Freter

⁹L. Freter, B. Zerulla, M. Krstic, C. Holzer, C. Rockstuhl, and I. Fernandez-Corbaton, Phys. Rev. A 110, 043516 (2024).

- Single photons $\langle f|f
 angle=1$
- ${}\circ{}$ Classical fields: ${\it N}=\langle f|f\rangle{}\approx10^{12}$ in a femtosecond pulse
- $|f\rangle = \sqrt{N} |\hat{f}\rangle$. Normalized bosonic mode $|\hat{f}\rangle$. As $(a_{\hat{f}}^{\dagger})^{N} |0\rangle$.
- ${\, \bullet \,}$ Two entangled photons? Then it does not work , however $^{9} \ldots$

Lukas Freter

• $\mathbb{M}_2 \equiv \mathbb{M} \otimes \mathbb{M}$

•
$$|\mathbf{k}\lambda, \bar{\mathbf{k}}\bar{\lambda}
angle = \frac{1}{\sqrt{2}} \left(|\mathbf{k}\lambda
angle \otimes |\bar{\mathbf{k}}\bar{\lambda}
angle + |\bar{\mathbf{k}}\bar{\lambda}
angle \otimes |\mathbf{k}\lambda
angle
ight)$$

 $|f
angle_2 = \sum_{\lambda\bar{\lambda}} \int \frac{\mathrm{d}^3k}{k} \int \frac{\mathrm{d}^3\bar{k}}{\bar{k}} f_{\lambda\bar{\lambda}}(\mathbf{k}, \bar{\mathbf{k}}) |\mathbf{k}\lambda, \bar{\mathbf{k}}\bar{\lambda}
angle$

⁹L. Freter, B. Zerulla, M. Krstic, C. Holzer, C. Rockstuhl, and I. Fernandez-Corbaton, Phys. Rev. A 110, 043516 (2024).

- Single photons $\langle f|f
 angle=1$
- Classical fields: $N = \langle f | f \rangle \approx 10^{12}$ in a femtosecond pulse
- $|f\rangle = \sqrt{N} |\hat{f}\rangle$. Normalized bosonic mode $|\hat{f}\rangle$. As $(a_{\hat{f}}^{\dagger})^{N} |0\rangle$.
- ${\, \bullet \,}$ Two entangled photons? Then it does not work , however $^{9} \ldots$

• $\mathbb{M}_2 \equiv \mathbb{M} \otimes \mathbb{M}$

•
$$|\mathbf{k}\lambda, \bar{\mathbf{k}}\bar{\lambda}\rangle = \frac{1}{\sqrt{2}} \left(|\mathbf{k}\lambda\rangle \otimes |\bar{\mathbf{k}}\bar{\lambda}\rangle + |\bar{\mathbf{k}}\bar{\lambda}\rangle \otimes |\mathbf{k}\lambda\rangle \right)$$

$$|f\rangle_2 = \sum_{\lambda \bar{\lambda}} \int \frac{\mathrm{d}^3 k}{k} \int \frac{\mathrm{d}^3 \bar{k}}{\bar{k}} \mathsf{f}_{\lambda \bar{\lambda}}(\mathbf{k}, \bar{\mathbf{k}}) |\mathbf{k}\lambda, \bar{\mathbf{k}} \bar{\lambda}
angle$$

Lukas Freter

$${}_{2}\langle f|g\rangle_{2} = \sum_{\lambda\bar{\lambda}} \int \frac{\mathrm{d}^{3}k}{k} \int \frac{\mathrm{d}^{3}\bar{k}}{\bar{k}} \left[\frac{f_{\lambda\bar{\lambda}}(\mathbf{k},\bar{\mathbf{k}}) + f_{\bar{\lambda}\lambda}(\bar{\mathbf{k}},\mathbf{k})}{\sqrt{2}} \right]^{*} \left[\frac{g_{\lambda\bar{\lambda}}(\mathbf{k},\bar{\mathbf{k}}) + g_{\bar{\lambda}\lambda}(\bar{\mathbf{k}},\mathbf{k})}{\sqrt{2}} \right]$$

⁹L. Freter, B. Zerulla, M. Krstic, C. Holzer, C. Rockstuhl, and I. Fernandez-Corbaton, Phys. Rev. A 110, 043516 (2024).

$$|f
angle_2 = \sum_{\lambdaar{\lambda}} \int rac{\mathrm{d}^3k}{k} \int rac{\mathrm{d}^3ar{k}}{ar{k}} \mathsf{f}_{\lambdaar{\lambda}}(\mathbf{k},ar{\mathbf{k}})|\mathbf{k}\lambda,ar{\mathbf{k}}ar{\lambda}
angle$$

$$|f\rangle_2 = \sum_{\lambda\bar{\lambda}} \int \frac{\mathrm{d}^3 k}{k} \int \frac{\mathrm{d}^3 \bar{k}}{\bar{k}} \mathsf{f}_{\lambda\bar{\lambda}}(\mathbf{k},\bar{\mathbf{k}}) |\mathbf{k}\lambda,\bar{\mathbf{k}}\bar{\lambda}\rangle$$

$$|f\rangle_{2} = \sum_{\lambda\bar{\lambda}} \int \frac{\mathrm{d}^{3}k}{k} \int \frac{\mathrm{d}^{3}\bar{k}}{\bar{k}} \mathsf{f}_{\lambda\bar{\lambda}}(\mathbf{k},\bar{\mathbf{k}}) |\mathbf{k}\lambda,\bar{\mathbf{k}}\bar{\lambda}\rangle$$

 $\text{Separable: } f_{\lambda\bar{\lambda}}(\boldsymbol{k},\bar{\boldsymbol{k}}) = \mathsf{a}_{\lambda}(\boldsymbol{k})\mathsf{b}_{\bar{\lambda}}(\bar{\boldsymbol{k}})$

$$|f\rangle_{2} = \sum_{\lambda\bar{\lambda}} \int \frac{\mathrm{d}^{3}k}{k} \int \frac{\mathrm{d}^{3}\bar{k}}{\bar{k}} \mathsf{f}_{\lambda\bar{\lambda}}(\mathbf{k},\bar{\mathbf{k}})|\mathbf{k}\lambda,\bar{\mathbf{k}}\bar{\lambda}\rangle$$

 $\label{eq:separable:f_{\lambda\bar{\lambda}}(\bm{k},\bar{\bm{k}})=a_{\lambda}(\bm{k})b_{\bar{\lambda}}(\bar{\bm{k}}) \ | \ \text{Entangled:} \ f_{\lambda\bar{\lambda}}(\bm{k},\bar{\bm{k}})\neq a_{\lambda}(\bm{k})b_{\bar{\lambda}}(\bar{\bm{k}})$

$$|f\rangle_{2} = \sum_{\lambda\bar{\lambda}} \int \frac{\mathrm{d}^{3}k}{k} \int \frac{\mathrm{d}^{3}\bar{k}}{\bar{k}} \mathsf{f}_{\lambda\bar{\lambda}}(\mathbf{k},\bar{\mathbf{k}})|\mathbf{k}\lambda,\bar{\mathbf{k}}\bar{\lambda}\rangle$$

 $\label{eq:separable: f_{\lambda\bar{\lambda}}(\bm{k},\bar{\bm{k}}) = a_{\lambda}(\bm{k}) b_{\bar{\lambda}}(\bar{\bm{k}}) \ | \ \text{Entangled: } f_{\lambda\bar{\lambda}}(\bm{k},\bar{\bm{k}}) \neq a_{\lambda}(\bm{k}) b_{\bar{\lambda}}(\bar{\bm{k}})$

$$|f\rangle_{2} = \sum_{\lambda\bar{\lambda}} \int \frac{\mathrm{d}^{3}k}{k} \int \frac{\mathrm{d}^{3}\bar{k}}{\bar{k}} \mathsf{f}_{\lambda\bar{\lambda}}(\mathbf{k},\bar{\mathbf{k}})|\mathbf{k}\lambda,\bar{\mathbf{k}}\bar{\lambda}\rangle$$

 $\text{Separable: } \mathsf{f}_{\lambda\bar{\lambda}}(\boldsymbol{k},\bar{\boldsymbol{k}}) = \mathsf{a}_{\lambda}(\boldsymbol{k})\mathsf{b}_{\bar{\lambda}}(\bar{\boldsymbol{k}}) \mid \text{Entangled: } \mathsf{f}_{\lambda\bar{\lambda}}(\boldsymbol{k},\bar{\boldsymbol{k}}) \neq \mathsf{a}_{\lambda}(\boldsymbol{k})\mathsf{b}_{\bar{\lambda}}(\bar{\boldsymbol{k}})$

$$\mathrm{S}_2 = \mathrm{S} \otimes \mathrm{S} + \mathrm{N}_2$$

$$S_2 = S \otimes S + N_2$$

- $\bullet~$ Separable response $S\otimes S$
- Response to one part of the state independent of the other part

$$S_2 = S \otimes S + N_2$$

- ${\ensuremath{\, \bullet \,}}$ Separable response $S\otimes S$
- Response to one part of the state independent of the other part
- Non-separable N₂: $N_{2,\lambda\bar{\lambda}\sigma\bar{\sigma}}(\mathbf{k},\bar{\mathbf{k}},\mathbf{q},\bar{\mathbf{q}}) \neq A_{\lambda\bar{\lambda}}(\mathbf{k},\bar{\mathbf{k}})B_{\sigma\bar{\sigma}}(\mathbf{q},\bar{\mathbf{q}})$
- Response to one part of the state depends on the other part

$$S_2 = S \otimes S + N_2$$

- ${\ensuremath{\, \circ }}$ Separable response $S\otimes S$
- Response to one part of the state independent of the other part
- Non-separable N₂: $N_{2,\lambda\bar{\lambda}\sigma\bar{\sigma}}(\mathbf{k},\bar{\mathbf{k}},\mathbf{q},\bar{\mathbf{q}}) \neq A_{\lambda\bar{\lambda}}(\mathbf{k},\bar{\mathbf{k}})B_{\sigma\bar{\sigma}}(\mathbf{q},\bar{\mathbf{q}})$
- Response to one part of the state depends on the other part
- E.g: Second harmonic generation, and other non-linear effects

$$S_2 = S \otimes S + N_2$$

- Separable response $S \otimes S$
- Response to one part of the state independent of the other part
- Non-separable N₂: $N_{2,\lambda\bar{\lambda}\sigma\bar{\sigma}}(\mathbf{k},\bar{\mathbf{k}},\mathbf{q},\bar{\mathbf{q}}) \neq A_{\lambda\bar{\lambda}}(\mathbf{k},\bar{\mathbf{k}})B_{\sigma\bar{\sigma}}(\mathbf{q},\bar{\mathbf{q}})$
- Response to one part of the state depends on the other part
- E.g: Second harmonic generation, and other non-linear effects
- $\bullet\,$ High intensity typically needed to observe ${\rm N}_2$ effects

• For low intensities, such as a source of entangled biphoton states

$$\mathrm{S}_2 = \mathrm{S} \otimes \mathrm{S} + \mathrm{N}_2 \approx \mathrm{S} \otimes \mathrm{S}$$

• For low intensities, such as a source of entangled biphoton states

$$S_2 = S \otimes S + N_2 \approx S \otimes S$$

• Then, this leads to the definition of T_2 as:

$$\mathsf{S}_2 = \mathsf{S} \otimes \mathsf{S} = (\mathsf{I} + \mathsf{T}) \otimes (\mathsf{I} + \mathsf{T}) = \mathsf{I} \otimes \mathsf{I} + \underbrace{\mathsf{T} \otimes \mathsf{I} + \mathsf{I} \otimes \mathsf{T} + \mathsf{T} \otimes \mathsf{T}}_{\mathsf{T}_2}$$
$$\mathrm{S}_2 = \mathrm{S} \otimes \mathrm{S} + \mathrm{N}_2 \approx \mathrm{S} \otimes \mathrm{S}$$

• Then, this leads to the definition of T_2 as:

$$\mathsf{S}_2 = \mathsf{S} \otimes \mathsf{S} = (\mathsf{I} + \mathsf{T}) \otimes (\mathsf{I} + \mathsf{T}) = \mathsf{I} \otimes \mathsf{I} + \underbrace{\mathsf{T} \otimes \mathsf{I} + \mathsf{I} \otimes \mathsf{T} + \mathsf{T} \otimes \mathsf{T}}_{\mathsf{T}_2}$$

Sanity checks

$$\mathrm{S}_2 = \mathrm{S} \otimes \mathrm{S} + \mathrm{N}_2 \approx \mathrm{S} \otimes \mathrm{S}$$

• Then, this leads to the definition of T_2 as:

$$\mathsf{S}_2 = \mathsf{S} \otimes \mathsf{S} = (\mathsf{I} + \mathsf{T}) \otimes (\mathsf{I} + \mathsf{T}) = \mathsf{I} \otimes \mathsf{I} + \underbrace{\mathsf{T} \otimes \mathsf{I} + \mathsf{I} \otimes \mathsf{T} + \mathsf{T} \otimes \mathsf{T}}_{\mathsf{T}_2}$$

- Sanity checks
- $\bullet \ \ \text{If S is unitary} \ \Longrightarrow \ \ \text{S}_2 \ \text{is unitary}$

$$\mathrm{S}_2 = \mathrm{S} \otimes \mathrm{S} + \mathrm{N}_2 \approx \mathrm{S} \otimes \mathrm{S}$$

• Then, this leads to the definition of T_2 as:

$$\mathsf{S}_2 = \mathsf{S} \otimes \mathsf{S} = (\mathsf{I} + \mathsf{T}) \otimes (\mathsf{I} + \mathsf{T}) = \mathsf{I} \otimes \mathsf{I} + \underbrace{\mathsf{T} \otimes \mathsf{I} + \mathsf{I} \otimes \mathsf{T} + \mathsf{T} \otimes \mathsf{T}}_{\mathsf{T}_2}$$

- Sanity checks
- $\bullet \ \ \text{If S is unitary} \ \Longrightarrow \ \ \text{S}_2 \ \text{is unitary}$
- One obtains the Hong-Ou-Mandel effect
 - Thanks Gabriel! (Molina-Terriza)

When $\textbf{S}_2 \approx \textbf{S} \otimes \textbf{S}$ is a good approximation

• Knowledge of T in \mathbb{M} is sufficient to obtain $S_2 = (I + T) \otimes (I + T)$

¹⁰D. Beutel, I. Fernandez-Corbaton, and C. Rockstuhl, Computer Physics Communications 297, 109076 (2024).

¹¹N. Asadova et al., Journal of Quantitative Spectroscopy and Radiative Transfer 333, 109310 (2025).

- Knowledge of T in \mathbb{M} is sufficient to obtain $S_2 = (I + T) \otimes (I + T)$
- Interaction of entangled biphoton states with nanostructures

¹⁰D. Beutel, I. Fernandez-Corbaton, and C. Rockstuhl, Computer Physics Communications 297, 109076 (2024).

¹¹N. Asadova et al., Journal of Quantitative Spectroscopy and Radiative Transfer 333, 109310 (2025).

- Knowledge of ${\rm T}$ in ${\mathbb M}$ is sufficient to obtain ${\sf S}_2=({\rm I}+{\sf T})\otimes({\rm I}+{\sf T})$
- Interaction of entangled biphoton states with nanostructures
 - Study entanglement evolution

¹⁰D. Beutel, I. Fernandez-Corbaton, and C. Rockstuhl, Computer Physics Communications 297, 109076 (2024).

¹¹N. Asadova et al., Journal of Quantitative Spectroscopy and Radiative Transfer 333, 109310 (2025).

- $\circ\,$ Knowledge of ${\rm T}$ in $\mathbb M$ is sufficient to obtain ${\sf S}_2=(I+{\sf T})\otimes(I+{\sf T})$
- Interaction of entangled biphoton states with nanostructures
 - Study entanglement evolution
- Lorentz boosts for \mathbb{M}_2 readily obtained from those for \mathbb{M}

¹⁰D. Beutel, I. Fernandez-Corbaton, and C. Rockstuhl, Computer Physics Communications 297, 109076 (2024).

¹¹N. Asadova et al., Journal of Quantitative Spectroscopy and Radiative Transfer 333, 109310 (2025).

- $\circ\,$ Knowledge of ${\rm T}$ in $\mathbb M$ is sufficient to obtain ${\sf S}_2=(I+{\sf T})\otimes(I+{\sf T})$
- Interaction of entangled biphoton states with nanostructures
 - Study entanglement evolution
- Lorentz boosts for \mathbb{M}_2 readily obtained from those for \mathbb{M}
- Satellite quantum communication with entangled biphoton pulses

¹⁰D. Beutel, I. Fernandez-Corbaton, and C. Rockstuhl, Computer Physics Communications 297, 109076 (2024).

¹¹N. Asadova et al., Journal of Quantitative Spectroscopy and Radiative Transfer 333, 109310 (2025).

- $\circ\,$ Knowledge of ${\rm T}$ in $\mathbb M$ is sufficient to obtain ${\sf S}_2=(I+{\sf T})\otimes(I+{\sf T})$
- Interaction of entangled biphoton states with nanostructures
 - Study entanglement evolution
- ${\scriptstyle \bullet}$ Lorentz boosts for \mathbb{M}_2 readily obtained from those for \mathbb{M}
- Satellite quantum communication with entangled biphoton pulses
- (1) Obtain the T-matrix of your system. Check software repositories.

¹⁰D. Beutel, I. Fernandez-Corbaton, and C. Rockstuhl, Computer Physics Communications 297, 109076 (2024).

¹¹N. Asadova et al., Journal of Quantitative Spectroscopy and Radiative Transfer 333, 109310 (2025).

- Knowledge of ${\rm T}$ in ${\mathbb M}$ is sufficient to obtain ${\sf S}_2=({\rm I}+{\sf T})\otimes({\rm I}+{\sf T})$
- Interaction of entangled biphoton states with nanostructures
 - Study entanglement evolution
- Lorentz boosts for \mathbb{M}_2 readily obtained from those for \mathbb{M}
- Satellite quantum communication with entangled biphoton pulses
- (1) Obtain the T-matrix of your system. Check software repositories.
- 2 Specify your (entangled) illumination $|f\rangle_2 \equiv f_{jm\lambda, \bar{j}\bar{m}\bar{\lambda}}(k, \bar{k})$

¹⁰D. Beutel, I. Fernandez-Corbaton, and C. Rockstuhl, Computer Physics Communications 297, 109076 (2024).

¹¹N. Asadova et al., Journal of Quantitative Spectroscopy and Radiative Transfer 333, 109310 (2025).

- $\circ\,$ Knowledge of ${\rm T}$ in $\mathbb M$ is sufficient to obtain ${\sf S}_2=({\rm I}+{\sf T})\otimes({\rm I}+{\sf T})$
- Interaction of entangled biphoton states with nanostructures
 - Study entanglement evolution
- Lorentz boosts for \mathbb{M}_2 readily obtained from those for \mathbb{M}
- Satellite quantum communication with entangled biphoton pulses
- (1) Obtain the T-matrix of your system. Check software repositories.
- 2 Specify your (entangled) illumination $|f\rangle_2 \equiv f_{jm\lambda, \bar{j}\bar{m}\bar{\lambda}}(k, \bar{k})$
- (3) Apply $S_2 |f\rangle_2$, and study light-matter interaction effects

¹⁰D. Beutel, I. Fernandez-Corbaton, and C. Rockstuhl, Computer Physics Communications 297, 109076 (2024).

¹¹N. Asadova et al., Journal of Quantitative Spectroscopy and Radiative Transfer 333, 109310 (2025).

- $\circ\,$ Knowledge of ${\rm T}$ in $\mathbb M$ is sufficient to obtain ${\sf S}_2=({\rm I}+{\sf T})\otimes({\rm I}+{\sf T})$
- Interaction of entangled biphoton states with nanostructures
 - Study entanglement evolution
- Lorentz boosts for \mathbb{M}_2 readily obtained from those for \mathbb{M}
- Satellite quantum communication with entangled biphoton pulses
- (1) Obtain the T-matrix of your system. Check software repositories.
- 2 Specify your (entangled) illumination $|f\rangle_2 \equiv f_{jm\lambda, \bar{j}\bar{m}\bar{\lambda}}(k, \bar{k})$
- (3) Apply $S_2 |f\rangle_2$, and study light-matter interaction effects
- treams T-matrix code¹⁰: https://github.com/tfp-photonics/treams
 Native support for clusters of spheres

¹⁰D. Beutel, I. Fernandez-Corbaton, and C. Rockstuhl, Computer Physics Communications 297, 109076 (2024).

¹¹N. Asadova et al., Journal of Quantitative Spectroscopy and Radiative Transfer 333, 109310 (2025).

- $\circ~$ Knowledge of ${\rm T}$ in ${\mathbb M}$ is sufficient to obtain ${\sf S}_2=({\rm I}+{\sf T})\otimes({\rm I}+{\sf T})$
- Interaction of entangled biphoton states with nanostructures
 - Study entanglement evolution
- Lorentz boosts for \mathbb{M}_2 readily obtained from those for \mathbb{M}
- Satellite quantum communication with entangled biphoton pulses
- Obtain the T-matrix of your system. Check software repositories.
- 2 Specify your (entangled) illumination $|f\rangle_2 \equiv f_{jm\lambda,\bar{j}\bar{m}\bar{\lambda}}(k,\bar{k})$
- 3 Apply $S_2 |f\rangle_2$, and study light-matter interaction effects
- treams T-matrix code¹⁰: https://github.com/tfp-photonics/treams
 - Native support for clusters of spheres
- **T-matrix database**¹¹: https://tmatrix.scc.kit.edu/
 - Access through any github account.
 - Pre-computed T-matrices. Number should grow with time.

¹⁰D. Beutel, I. Fernandez-Corbaton, and C. Rockstuhl, Computer Physics Communications 297, 109076 (2024).

¹¹N. Asadova et al., Journal of Quantitative Spectroscopy and Radiative Transfer 333, 109310 (2025).

- $\circ~$ Knowledge of ${\rm T}$ in ${\mathbb M}$ is sufficient to obtain ${\sf S}_2=({\rm I}+{\sf T})\otimes({\rm I}+{\sf T})$
- Interaction of entangled biphoton states with nanostructures
 - Study entanglement evolution
- ${\scriptstyle \bullet}$ Lorentz boosts for \mathbb{M}_2 readily obtained from those for \mathbb{M}
- Satellite quantum communication with entangled biphoton pulses
- (1) Obtain the T-matrix of your system. Check software repositories.
- 2 Specify your (entangled) illumination $|f\rangle_2 \equiv f_{jm\lambda,\bar{j}\bar{m}\bar{\lambda}}(k,\bar{k})$
- (3) Apply $S_2 |f\rangle_2$, and study light-matter interaction effects
- treams T-matrix code¹⁰: https://github.com/tfp-photonics/treams
 - Native support for clusters of spheres
- T-matrix database¹¹: https://tmatrix.scc.kit.edu/
 - Access through any github account.
 - Pre-computed T-matrices. Number should grow with time.

Thank you for your time!

¹⁰D. Beutel, I. Fernandez-Corbaton, and C. Rockstuhl, Computer Physics Communications 297, 109076 (2024).

¹¹N. Asadova et al., Journal of Quantitative Spectroscopy and Radiative Transfer 333, 109310 (2025).

One benefit of $\mathbb{M}_2:$ Selection rules derived from symmetries, as in \mathbb{M}

One benefit of \mathbb{M}_2 : Selection rules derived from symmetries, as in \mathbb{M} If the scatterer is symmetric under $X \implies \langle h|\mathsf{S}|I\rangle = \langle h|XSX^{-1}|I\rangle$ One benefit of \mathbb{M}_2 : Selection rules derived from symmetries, as in \mathbb{M} If the scatterer is symmetric under $X \implies \langle h|S|I \rangle = \langle h|XSX^{-1}|I \rangle$ which can force $\langle h|S|I \rangle = 0$, e.g. $\langle h|S|I \rangle = -\langle h|S|I \rangle$ One benefit of \mathbb{M}_2 : Selection rules derived from symmetries, as in \mathbb{M}

If the scatterer is symmetric under $X \implies \langle h|\mathsf{S}|I\rangle = \langle h|XSX^{-1}|I\rangle$

which can force $\langle h|S|I\rangle = 0$, e.g. $\langle h|S|I\rangle = -\langle h|S|I\rangle$

One benefit of \mathbb{M}_2 : Selection rules derived from symmetries, as in \mathbb{M}

If the scatterer is symmetric under $X \implies \langle h|\mathsf{S}|I\rangle = \langle h|XSX^{-1}|I
angle$

which can force $\langle h|S|I \rangle = 0$, e.g. $\langle h|S|I \rangle = -\langle h|S|I \rangle$

$$\mathrm{S}_2 = \mathrm{S} \otimes \mathrm{S} + \mathrm{N}_2 \approx \mathrm{S} \otimes \mathrm{S}$$

¹²J. C. Schotland, A. Cazé, and T. B. Norris, Opt. Lett. 41, 444-447 (2016).

$$S_2 = S \otimes S + N_2 \approx S \otimes S$$

• Then, this leads to the definition of T₂ as:

$$\mathsf{S}_2 = \mathsf{S} \otimes \mathsf{S} = (\mathsf{I} + \mathsf{T}) \otimes (\mathsf{I} + \mathsf{T}) = \mathsf{I} \otimes \mathsf{I} + \underbrace{\mathsf{T} \otimes \mathsf{I} + \mathsf{I} \otimes \mathsf{T} + \mathsf{T} \otimes \mathsf{T}}_{\mathsf{T}_2}$$

¹²J. C. Schotland, A. Cazé, and T. B. Norris, Opt. Lett. 41, 444–447 (2016).

$$S_2 = S \otimes S + N_2 \approx S \otimes S$$

• Then, this leads to the definition of T₂ as:

$$S_2 = S \otimes S = (I + T) \otimes (I + T) = I \otimes I + \underbrace{T \otimes I + I \otimes T + T \otimes T}_{T_2}$$

• $\hat{S}_2 = I \otimes I + \mathsf{T} \otimes \mathsf{T}$ can be found in literature^{12}

¹²J. C. Schotland, A. Cazé, and T. B. Norris, Opt. Lett. 41, 444-447 (2016).

$$S_2 = S \otimes S + N_2 \approx S \otimes S$$

• Then, this leads to the definition of T₂ as:

$$\mathsf{S}_2 = \mathsf{S} \otimes \mathsf{S} = (\mathsf{I} + \mathsf{T}) \otimes (\mathsf{I} + \mathsf{T}) = \mathsf{I} \otimes \mathsf{I} + \underbrace{\mathsf{T} \otimes \mathsf{I} + \mathsf{I} \otimes \mathsf{T} + \mathsf{T} \otimes \mathsf{T}}_{\mathsf{T}_2}$$

- $\hat{S}_2 = I \otimes I + T \otimes T$ can be found in literature^{12}
- \hat{S}_2 shown to be incorrect

¹²J. C. Schotland, A. Cazé, and T. B. Norris, Opt. Lett. 41, 444–447 (2016).

$$\mathrm{S}_2 = \mathrm{S} \otimes \mathrm{S} + \mathrm{N}_2 \approx \mathrm{S} \otimes \mathrm{S}$$

• Then, this leads to the definition of T₂ as:

$$\mathsf{S}_2 = \mathsf{S} \otimes \mathsf{S} = (\mathsf{I} + \mathsf{T}) \otimes (\mathsf{I} + \mathsf{T}) = \mathsf{I} \otimes \mathsf{I} + \underbrace{\mathsf{T} \otimes \mathsf{I} + \mathsf{I} \otimes \mathsf{T} + \mathsf{T} \otimes \mathsf{T}}_{\mathsf{T}_2}$$

- $\hat{S}_2 = \mathrm{I} \otimes \mathrm{I} + \mathsf{T} \otimes \mathsf{T}$ can be found in literature^{12}
- \hat{S}_2 shown to be incorrect
- Assuming unitarity of S

 ${\scriptstyle \bullet}$ implies unitarity of S_2, but not of \hat{S}_2

¹²J. C. Schotland, A. Cazé, and T. B. Norris, Opt. Lett. 41, 444-447 (2016).

$$\mathrm{S}_2 = \mathrm{S} \otimes \mathrm{S} + \mathrm{N}_2 \approx \mathrm{S} \otimes \mathrm{S}$$

• Then, this leads to the definition of T₂ as:

$$\mathsf{S}_2 = \mathsf{S} \otimes \mathsf{S} = (\mathsf{I} + \mathsf{T}) \otimes (\mathsf{I} + \mathsf{T}) = \mathsf{I} \otimes \mathsf{I} + \underbrace{\mathsf{T} \otimes \mathsf{I} + \mathsf{I} \otimes \mathsf{T} + \mathsf{T} \otimes \mathsf{T}}_{\mathsf{T}_2}$$

• $\hat{S}_2 = \mathrm{I} \otimes \mathrm{I} + \mathsf{T} \otimes \mathsf{T}$ can be found in literature^{12}

- \hat{S}_2 shown to be incorrect
- Assuming unitarity of S

 ${\scriptstyle \bullet}$ implies unitarity of S_2, but not of \hat{S}_2

 ${\scriptstyle \bullet}$ One obtains the Hong-Ou-Mandel effect with S2, but not with \hat{S}_2

• Thanks Gabriel! (Molina-Terriza)

¹²J. C. Schotland, A. Cazé, and T. B. Norris, Opt. Lett. 41, 444-447 (2016).

$$\mathrm{S}_2 = \mathrm{S} \otimes \mathrm{S} + \mathrm{N}_2$$

$$\mathrm{S}_2 = \mathrm{S} \otimes \mathrm{S} + \mathrm{N}_2$$

- $\bullet \ \ \text{Separable response } S \otimes S$
- Response to one part of the state independent of the other part

$$\mathrm{S}_2 = \mathrm{S} \otimes \mathrm{S} + \mathrm{N}_2$$

- Separable response $\mathbf{S}\otimes\mathbf{S}$
- Response to one part of the state independent of the other part
- Non-separable N₂: $N_{2,\lambda\bar{\lambda}\sigma\bar{\sigma}}(\mathbf{k},\bar{\mathbf{k}},\mathbf{q},\bar{\mathbf{q}}) \neq A_{\lambda\bar{\lambda}}(\mathbf{k},\bar{\mathbf{k}})B_{\sigma\bar{\sigma}}(\mathbf{q},\bar{\mathbf{q}})$
- Response to one part of the state depends on the other part

$$\mathrm{S}_2 = \mathrm{S} \otimes \mathrm{S} + \mathrm{N}_2$$

- Separable response $\mathbf{S}\otimes\mathbf{S}$
- Response to one part of the state independent of the other part
- Non-separable N₂: $N_{2,\lambda\bar{\lambda}\sigma\bar{\sigma}}(\mathbf{k},\bar{\mathbf{k}},\mathbf{q},\bar{\mathbf{q}}) \neq A_{\lambda\bar{\lambda}}(\mathbf{k},\bar{\mathbf{k}})B_{\sigma\bar{\sigma}}(\mathbf{q},\bar{\mathbf{q}})$
- Response to one part of the state depends on the other part
- E.g: Second harmonic generation, and other non-linear effects

$$\mathrm{S}_2 = \mathrm{S} \otimes \mathrm{S} + \mathrm{N}_2$$

- Separable response $\mathbf{S}\otimes\mathbf{S}$
- Response to one part of the state independent of the other part
- Non-separable N₂: $N_{2,\lambda\bar{\lambda}\sigma\bar{\sigma}}(\mathbf{k},\bar{\mathbf{k}},\mathbf{q},\bar{\mathbf{q}}) \neq A_{\lambda\bar{\lambda}}(\mathbf{k},\bar{\mathbf{k}})B_{\sigma\bar{\sigma}}(\mathbf{q},\bar{\mathbf{q}})$
- Response to one part of the state depends on the other part
- E.g: Second harmonic generation, and other non-linear effects

$$S_2: \mathbb{M}_2 \to \mathbb{M}_2$$
 is linear $S_2(\alpha | f \rangle_2 + \beta | g \rangle_2) = \alpha S | f \rangle_2 + \beta S | g \rangle_2$

$$\mathrm{S}_2 = \mathrm{S} \otimes \mathrm{S} + \mathrm{N}_2$$

- Separable response $\mathbf{S}\otimes\mathbf{S}$
- Response to one part of the state independent of the other part
- Non-separable N₂: $N_{2,\lambda\bar{\lambda}\sigma\bar{\sigma}}(\mathbf{k},\bar{\mathbf{k}},\mathbf{q},\bar{\mathbf{q}}) \neq A_{\lambda\bar{\lambda}}(\mathbf{k},\bar{\mathbf{k}})B_{\sigma\bar{\sigma}}(\mathbf{q},\bar{\mathbf{q}})$
- Response to one part of the state depends on the other part
- E.g: Second harmonic generation, and other non-linear effects

$$S_2 : \mathbb{M}_2 \to \mathbb{M}_2$$
 is linear $S_2(\alpha | f \rangle_2 + \beta | g \rangle_2) = \alpha S | f \rangle_2 + \beta S | g \rangle_2$

Nonlinearities? Can e.g SHG fit ?

$$\mathrm{S}_2 = \mathrm{S} \otimes \mathrm{S} + \mathrm{N}_2$$

- Separable response $\mathbf{S}\otimes\mathbf{S}$
- Response to one part of the state independent of the other part
- Non-separable N₂: $N_{2,\lambda\bar{\lambda}\sigma\bar{\sigma}}(\mathbf{k},\bar{\mathbf{k}},\mathbf{q},\bar{\mathbf{q}}) \neq A_{\lambda\bar{\lambda}}(\mathbf{k},\bar{\mathbf{k}})B_{\sigma\bar{\sigma}}(\mathbf{q},\bar{\mathbf{q}})$
- Response to one part of the state depends on the other part
- E.g: Second harmonic generation, and other non-linear effects

$$S_2 : \mathbb{M}_2 \to \mathbb{M}_2$$
 is linear $S_2(\alpha | f \rangle_2 + \beta | g \rangle_2) = \alpha S | f \rangle_2 + \beta S | g \rangle_2$

Nonlinearities? Can e.g SHG fit ?

For simplicity, assume $f_{jm\lambda\bar{j}\bar{m}\bar{\lambda}}(k,\bar{k}) = a_{jm\lambda}(k)a_{\bar{j}\bar{m}\bar{\lambda}}(\bar{k})$

$$\mathrm{S}_2 = \mathrm{S} \otimes \mathrm{S} + \mathrm{N}_2$$

- Separable response $\mathbf{S}\otimes\mathbf{S}$
- Response to one part of the state independent of the other part
- Non-separable N₂: $N_{2,\lambda\bar{\lambda}\sigma\bar{\sigma}}(\mathbf{k},\bar{\mathbf{k}},\mathbf{q},\bar{\mathbf{q}}) \neq A_{\lambda\bar{\lambda}}(\mathbf{k},\bar{\mathbf{k}})B_{\sigma\bar{\sigma}}(\mathbf{q},\bar{\mathbf{q}})$
- Response to one part of the state depends on the other part
- E.g: Second harmonic generation, and other non-linear effects

$$S_2 : \mathbb{M}_2 \to \mathbb{M}_2$$
 is linear $S_2(\alpha | f \rangle_2 + \beta | g \rangle_2) = \alpha S | f \rangle_2 + \beta S | g \rangle_2$

Nonlinearities? Can e.g SHG fit ?

For simplicity, assume $f_{jm\lambda\bar{j}\bar{m}\bar{\lambda}}(k,\bar{k}) = a_{jm\lambda}(k)a_{\bar{j}\bar{m}\bar{\lambda}}(\bar{k})$

- $g_{jm\lambda\bar{j}\bar{m}\bar{\lambda}}(k,\bar{k})$ is linear with respect to $f_{jm\lambda\bar{j}\bar{m}\bar{\lambda}}(k,\bar{k})$, but
- nonlinear w.r.t the single photon $a_{jm\lambda}(k)$

Circular polarizations

SFG with C _n symmetry				
n	Incident	Tr.	Re.	
1		+, -	+, -	
2	++	х	х	
3		—	+	
\geq 4		х	х	
1		+, -	+, -	
2	+-	х	х	
\geq 3		х	х	

Circular polarizations

SFG with C _n symmetry				
n	Incident	Tr.	Re.	
1	++	+, -	+, -	
2		x	х	
3		_	+	
\geq 4		x	х	
1	+-	+, -	+, -	
2		x	х	
\geq 3		x	х	

Linear polarizations: $\mathsf{TE}(\boldsymbol{\hat{y}}) \; / \; \mathsf{TM}(\boldsymbol{\hat{x}})$

SFG with XZ mirror symmetry		
	Incident	Tr./ Re.
	TE-TE	ТМ
SFG	TM-TM	ТМ
	TE–TM	TE

Linear polarizations: $\mathsf{TE}(\boldsymbol{\hat{y}}) \; / \; \mathsf{TM}(\boldsymbol{\hat{x}})$

SFG with XZ mirror symmetry		
	Incident	Tr./ Re.
	TE-TE	ТМ
SFG	TM-TM	ТМ
	TE–TM	TE

Linear polarizations: $\mathsf{TE}(\boldsymbol{\hat{y}}) \; / \; \mathsf{TM}(\boldsymbol{\hat{x}})$

SFG with XZ mirror symmetry				
Incident Tr./ Re.				
	TE-TE	TM		
SFG	TM-TM	ТМ		
	TE–TM	TE		

Rhomboid b)

Incident	Transmission (a.u.)		Reflection (a.u.)	
	TE	ТМ	TE	ТМ
TE-TE	9.11e-10	0.498	9.11e-10	0.498
TM-TM	1.42e-09	1	1.42e-09	1
TE–TM	0.383	2.44e-09	0.383	2.44e-09

SFG with C _n symmetry				
n	Incident	Tr.	Re.	
1		+, -	+, -	
2	++	х	х	
3		_	+	
\geq 4		х	х	
1		+, -	+, -	
2	+-	х	х	
≥ 3		х	х	

SFG with C _n symmetry				
n	Incident	Tr.	Re.	
1		+, -	+, -	
2	++	х	х	
3		_	+	
\geq 4		х	х	
1		+, -	+, -	
2	+-	х	х	
≥ 3		х	х	

Rhomboid b)

Incident	Transmission (a.u.)		Reflection (a.u.)	
meident	+	—	+	_
++	0.160	0.254	0.254	0.160
+-	0.359	0.359	0.359	0.359

SFG with C _n symmetry				
n	Incident	Tr.	Re.	
1		+, -	+, -	
2	++	х	х	
3		_	+	
≥ 4		х	х	
1		+, -	+, -	
2	+-	х	х	
≥ 3		х	х	

SFG with C _n symmetry				
n	Incident	Tr.	Re.	
1		+, -	+, -	
2	++	х	х	
3		_	+	
≥ 4		х	х	
1		+, -	+, -	
2	+-	х	х	
≥ 3		х	х	

"Hexagonal" with C_3 symmetry a)

Incident	Transmission (a.u.)		Reflection (a.u.)	
	+	_	+	_
++	4.29e-06	0.139	0.139	4.29e-06
+-	3.67e-05	3.64e-05	3.64e-05	3.67e-05

SHG and THG in mirror symmetric object

• TE/TM basis: $|\tau\rangle = \frac{|+\rangle + \tau |-\rangle}{\sqrt{2}}$ $|\tau = +1\rangle \equiv |\updownarrow\rangle$ $|\tau = -1\rangle \equiv |\leftrightarrow\rangle$

 $\bullet \text{ Transformation under } \hat{M}_y: y \mapsto -y \qquad \hat{M}_y \left| \tau \right\rangle = \tau \left| \tau \right\rangle$

Second harmonic generation

Third harmonic generation

18 / 24 01.07.2023 Lukas Freter - Defense Talk

 $\blacksquare \Rightarrow uuuu \Rightarrow \leftrightarrow \downarrow$

Institute of Theoretical Solid State Physics, AG Rockstuhl

SHG in mirror symmetric scatterer

Optics Express 15, 5238-5247 (2007)

Institute of Theoretical Solid State Physics, AG Rockstuhl