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QCD PHASE DIAGRAMTHE CHIRAL PHASE TRANSITION

1st order transition

CEP

crossover

T
in the  plane(T, μB)

Re μB

(???)

• chiral crossover at 

• explicit chiral symmetry breaking due to finite quark 
masses + axial anomaly

(T, μB) ≈ (156,0) MeV

U(3)L × U(3)R ≈ SU(3)V × SU(3)A × U(1)V × U(1)A

SU(2)V × SU(2)A × U(1)V

SU(3)V × SU(3)A × U(1)V

axial anomaly

∼ O(4)

SU(2)V × U(1)V

chubby s-quark

quark masses

[Bazavov et al., 1812.08235]
[Borsanyi et al., 2002.02821]

[Fu, Pawlowski, FR (2019)]
[Gao, Pawlowski (2020)]
[Gunkel, Fischer (2021)]

∼ (110,630) MeV



QCD PHASE DIAGRAM

• 2nd order transition for some  
at  

• depends on symmetries, i.e. masses of the different 
quark flavors and the fate of the axial anomaly

0 ≤ mq < mq, physical
μB = 0

THE CHIRAL PHASE TRANSITION

T

mu,d

TCP

2nd order transitions

1st order surface

in the  plane(T, μB, mu,d)

Re μB

reduce/remove explicit symmetry breaking

actual phase transition



THE COLUMBIA PLOT

"Classic" Pisarski-Wilczek scenario: • 2nd order transition in the light chiral limit ( ) if  
remains broken, otherwise 1st order

• 1st order transition in the chiral limit ( ), irrespective of the 
fate of the axial anomaly

mu,d = 0 U(1)A

mu,d,s = 0[Pisarski, Wilczek, PRD 29 (1984)]

Conjecture based on NLO -expansion (perturbative RG) of a linear sigma model:ϵ
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THE COLUMBIA PLOT

• classic scenario has recently been challenged by 
direct calculation [Cuteri, Philipsen, Sciarra (2021)]

Figure 13. The Columbia plot in the con-
tinuum, as predicted by our analysis.

Figure 14. Suggested phase diagram for the
chiral phase transition as a function of Nf.

simulations of the phase transition with N· † 24 cannot reproduce the correct continuum
physics despite the improvement of the action. This has repercussions for, e.g., studies of
the Up1qA-anomaly with the Wilson action [63, 64]. By contrast, unimproved staggered
fermions should reproduce the second order of the Nf “ 3 transition for N· Á 10 already.

6 Conclusions

In summary, we have conducted a comprehensive analysis of the finite temperature chiral
transitions observed in the bare parameter space t—, am, Nf, N· u of lattice QCD with un-
improved staggered fermions. In particular, we have mapped out the chiral critical surface,
which separates the first-order transition region from the crossover region. In the plane of
vanishing bare quark mass, this surface terminates in a tricritical line N

tric
· pNfq, which for

our presently available data is consistent with N
tric
· † 8 for all Nf P r2, 6s.

The necessity to take the continuum limit before the chiral limit then enforces any
appropriate series of simulations to approach the combined limits from the crossover region
of the bare phase diagram. This implies the chiral phase transition in the massless limit to
be of second order for all Nf § 6, and possibly up to the conformal window Nf § N

˚
f . As

a crosscheck for our findings, we have reanalysed already published data from simulations
with Nf “ 3 Opaq-improved Wilson fermions, which are equally consistent with tricritical
scaling and a tricritical point at a finite N

tric
· . Hence, this entirely di�erent discretisation

is consistent with the continuum chiral phase transition to be of second order as well.
Taking our results seriously, the continuum Columbia plot for Nf “ 2 ` 1 would have

to be modified to look as in figure 13, with a second-order line all along the ms-axis. Our
analysis has nothing to say about the universality class of this second-order line. However,
chiral symmetry being di�erent in the limiting Nf P t2, 3u cases, one would expect the set of
critical exponents associated with these transitions to smoothly cross from one universality

– 23 –

SU(3)L × SU(3)R
SU(3)L × SU(3)R × U(1)A if  is restored at U(1)A Tc(cf.  Aoki's and Philipsen's talks)

can we understand what's going on?

No evidence of 1st order transition in bottom left corner from lattice QCD. Maybe a very small region? Maybe 
no 1st order at all?

• fixed point analysis has been improved significantly 
since 1984 

upper bound/"small" region:
[Bazavov et al., 1701.03548]

[Kuramashi et al., 2001.04398]
[Dini et al., 2111.12599]

no 1st order transition
[Cuteri, Philipsen, Sciarra, 2107.12739]

[Bernhardt, Fischer, 2309.06737]



HOW TO UNDERSTAND THE CHIRAL PHASE TRANSITION?

(1) What are relevant symmetries?

role of the axial anomaly at Tc

(2) Does the underlying critical theory have stable fixed points?

(3) Are the fixed points reached with physical parameters 

ψ1,R

ψNfQ,R

ψ̄1,L

ψ̄NfQ,L

… …Q ∼ ∫x
tr FF̃

what do we know from critical phenomena?

can the system be tuned to criticality with 
available control parameters?



NECESSARY CONDITIONS FOR 2ND ORDER TRANSITIONS

necessary ingredient from QCD

symmetry at transition

• If  remains broken at , possibilities are 
,  and 

• If  is restored at , possibilities are 
 for  and  

U(1)A Tc
SU(3)L × SU(3)R O(4) Z(2)

U(1)A Tc
SU(N)L × SU(N)R × U(1)A N = 2, 3 Z(2)

we must be able to tune the system to the fixed point

• CEP: tune  and  

• Columbia plot: tune  and 

T μ
T m

stable fixed point for us: two relevant directions

necessary ingredients from critical physics

relevant critical theory must have a stable fixed point 
(no more relevant parameters than we can control)

• all -  theories have fixed points with two 
relevant directions (  and )

• no evidence for stable fixed point for 
 [Butti, Pelissetto, Vicari (2003); Fejos 

(2022)]

• evidence for stable fixed points for 
 for  [Pelissetto,  

Vicari (2013); Nakayama, Ohtsuki (2014); Fejos (2022); 
Kousvos, Stergiou (2022)]

3d O(N)
t h

SU(3)L × SU(3)R

SU(N)L × SU(N)R × U(1)A N = 2, 3

not all relevant systems seem to allow for 
2nd-order transitions, 1st-oder expected then

Note: these are not sufficient conditions!



STABLE FIXED POINT  2ND ORDER TRANSITION≠
Even if there is a stable critical point, the physical transition can still be 1st order 

Example: functional RG (nonperturbative RG, LO derivative expansion) analysis of quark-meson model

• fixed point analysis: stable fixed point for  for SU(N)L × SU(N)R × U(1)A N = 2,3 [Fejos, 2201.07909]
[Fejos, Hatsuda, 2404.00554]

• direct computation of phase diagram (QM model): 1st order 
transition for "physical" parameters in same universality class 
in (light) chiral limit

[Resch, FR, Schaefer, 1712.07961]
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UNIVERSALITY AND THE CHIRAL TRANSITION
Critical theory is, in general, given by a matrix model, Φ ∼ q̄LqR

SU(Nf )L×SU(Nf )R×U(1)A eiθA UR Φ U†
L

Universal effective Lagrangian can be constructed systematically from (chiral) invariants,

•  - invariants:     (  - terms)

•  - invariant:     ('t Hooft determinant,  - term)

SU(Nf )L × SU(Nf )R × U(1)A tr (Φ†Φ)1,…,Nf ϕ2,…,2Nf

SU(Nf )L × SU(Nf )R det Φ ϕNf

E.g., for  the  phase transition is described by Nf = 3 SU(3)L × SU(3)R

ℒeff = tr (∂μΦ†)(∂μΦ) + m2 tr Φ†Φ − ξ(eff)
1 ( det Φ + det Φ†) + λ1(tr Φ†Φ)2 + λ2 tr (Φ†Φ)2 + 𝒪(ϕ6)
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 :m2 ≤ 0  :m2 > 0

1st order transition seems inevitable for any  (broken )ξ(eff)
1 > 0 U(1)A

(consistent with apparent absence of stable fixed point for )SU(Nf )L × SU(Nf )R



AXIAL ANOMALY
How could 1st-order transition be avoided?

Revisit microscopic origin of the anomaly, at weak coupling:

ABJ anomaly

Q = −
1

16π2 ∫ d4x tr FF̃

jμ5

jμ jμ

[Adler, Bell & Jackiw (1969)]

∂μ jμ5 =
iNf

8π2
tr FF̃

topological gluons
instantons [BPST (1975)]

axial charge changes
+ quark zero modes

ΔQ5 = 2Nf Q

nL − nR = Nf Q

[Atiyah, Singer (1963)]
['t Hooft (1976)]

Functional determinant of quark zero 
modes accounts for change in axial charge:
(otherwise partition function is zero) 

ψ̄1,L

ψ1,R

ψ̄2,L

ψ2,R

ψ̄NfQ,L

ψNfQ,R

.. .

..
.

Q



ANOMALOUS CORRELATIONS
Dilute gas of  instantons: -breaking effective interactionQ = ± 1 U(1)A

ψ1,R

ψNf ,R

ψ̄1,L

ψ̄Nf ,L

… …Q = 1

det
f

ψ̄LψR + det
f

ψ̄RψL ∼ det Φ + det Φ†

['t Hooft (1976)]

anomalous  - quark (  - meson) correlation2Nf Nf

• dilute approximation reasonable at large  due to thermal screening of instantons:T ρ̄ ≪
1

πT
[Pisarski, Yaffe (1980)]
[Gross, Pisarski, Yaffe (1981)]

average instanton size

• larger-  instantons are suppressed in the semi-classical weak-coupling limit, Q ∼ exp( − 8π2 |Q | /g2)



ANOMALOUS CORRELATIONS

Dilute gas of instantons with multi-instanton ( ) corrections: more -breaking effective interactions|Q | > 1 U(1)A

ψ1,R

ψNfQ,R

ψ̄1,L

ψ̄NfQ,L

… …Q

( det
f

ψ̄LψR)|Q| + ( det
f

ψ̄RψL)|Q| ∼ ( det Φ)|Q| + ( det Φ†)|Q|

Lower /larger : corrections to the dilute gas become relevant.T g

[Pisarski, FR, 1910.14052]
[FR, 2003.13876]

anomalous  - quark (  - meson) correlations2Nf Q Nf Q



ANOMALOUS CORRELATIONS & THE CHIRAL TRANSITION
Topological quark zero modes give rise to tower of fundamental anomalous interactions,

ξ1 [ det Φ + det Φ†] + ξ2 [(det Φ)2 + (det Φ†)2] + ξ3 [(det Φ)3 + (det Φ†)3] + …

Explain small/no 1st-order region in lower-left corner of the Columbia plot by:

They feed into anomalous effective couplings at  ,T ≲ Tc

ℒanom = ξ(eff)
1 [ det Φ + det Φ†] + ξ(eff)

2 [(det Φ)2 + (det Φ†)2] + ξ(eff)
3 [(det Φ)3 + (det Φ†)3] + …

ξ(eff)
n = ξn + σNf

0 ξn+1 + σ2Nf
0 ξn+2 + … : chiral condensateσ0 ∼ ⟨q̄q⟩

2nd order transition in the chiral limit:  ξ1(T = Tc) = 0 ⇒ ξ(eff)
1 (T = Tc) = 0

[Pisarski, FR, 2401.06130]
conjecture: 

higher  effects dominate for  , e.g., Q T ≲ Tc ⟨Q ≥ 0⟩T≲Tc
> 1



EXTENDED LINEAR SIGMA MODEL
Test consistency with vacuum phenomenology using a low-energy model in mean-field approximation   

• LSM containing all possible relevant and marginal terms in  involving mesons 
in the scalar, pseudoscalar, vector and axialvector nonets

• coupled to quarks,  background field + Polyakov loop potential (lattice input)

d = 4

A0

ℒ = ℒU(3)×U(3) + ℒanom

ℒU(3)×U(3) =

ℒanom = ξ(eff)
1 ( det Φ + det Φ†) + ξ1,(eff)

1 tr (Φ†Φ)( det Φ + det Φ†) + ξ(eff)
2 [(det Φ)2 + (det Φ†)2]

•  fit to 29 physical quantities (meson masses, decay constants, 
decay widths,  at the physical point; 14-16 free parameters)

• test viability of different realizations of the anomaly (average 
over steepest descent minimizations from  random starting points)

χ2

Tc

106

[Giacosa, G. Kovacs, P. Kovacs, Pisarski, FR, 2410.08185]

 consistent with vacuum phenomenology; 
in fact, any realization of the anomaly is
ξ(eff)

1 = 0

4

nonzero
params.

�̄
2

�̄
2
red ⇠̄e↵ [GeV]

⇠1 31.31 2.09 1.507
⇠
1
1 29.70 1.98 1.537
⇠2 33.50 2.23 1.589
⇠1, ⇠

1
1 29.51 2.11 1.506

⇠1, ⇠2 30.90 2.21 1.505
⇠1, ⇠

1
1 , ⇠2 30.81 2.37 1.532

Table I. The averaged �
2 and �

2
red values of the best 100 fits

with 106 random starting points for di↵erent implementations
of the U(1)A anomaly and the averaged e↵ective anomaly
coupling ⇠e↵ for each case.

parameter sets are preferred due to the broad resonance
of f0(500).

In the present work, we extended the parameter set
with ⇠1, ⇠11 , and ⇠2, and performed several parameter-
izations including at least one of these couplings with
106 random starting points in the parameter space. To
show the qualitatively di↵erent scenarios, the average �

2

and �
2
red values of the 100 best fits for each case except

⇠X = {⇠
1
1 , ⇠2} are shown in Tab. I. It was found that the

lower dimensional anomaly terms give a slightly better
�
2
red value when only one of them is considered, but the

di↵erence is not large enough to exclude the higher dimen-
sional contributions. Furthermore, we have found that
when multiple terms are included, the parameterization
usually favors solutions where there is only one dominant
coupling and the rest are subleading, with only a few
exceptional cases that show comparable �

2
red. It is also

interesting to note that allowing some of the couplings for
the anomaly terms to be negative would further reduce
the �2 of the fit, but also give rise to non-physical thermal
behavior such as negative meson mass squares near T� or
the absence of the phase transition. Therefore, not only
for conceptual but also for physical reasons, we restrict
the parameter space to ⇠1, ⇠

1
1 , ⇠2 > 0.

The last column of Tab. I shows the average value of
the e↵ective anomaly coupling, which is defined as

⇠e↵ ⌘ ⇠1 + ⇠
1
1

�
�
2
N
+ �

2
S

�
/2 + ⇠2�

2
N
�S/

p
2 , (4)

which results from the di↵erence of m2
⇡
and m

2
⌘N

(explic-
itly shown in App. A), distinguished in the model only by
the axial anomaly. Alternatively, one could use the form
of the e↵ective potential, which would di↵er only in the
term with ⇠2 by a multiplicative factor of four. However,
since the meson masses are used in the parameterization
of the model, they better reflect the relationship between
the di↵erent couplings. Finally, since the mixed term has
a qualitatively similar analytical structure to the Q = 1
term, we will concentrate on the cases with ⇠

1
1 = 0 for

simplicity.

IV. THE COLUMBIA PLOT

With viable sets of parameters regarding vacuum phe-
nomenology at hand we can explore the resulting phase
transition. To this end, we determine the light and strange
chiral condensates from the solution of the equations of
motion at finite temperature and read-o↵ the order of
phase transition for various values of the explicit symme-
try breaking parameters hN and hS , cf. Eq. (A5). Since
these parameters can be related to current masses of light
and strange quarks, hN ⇠ mn and hS ⇠ ms, this gives us
direct access to the Columbia plot.

We emphasize that we only vary hN and hS and keep all
other parameters fixed. Since we are working with a low-
energy model, this is not directly equivalent to varying the
current quark masses in QCD. From a microscopic point
of view, these masses should be fixed at some high-energy
scale ⇤UV � 1GeV in the perturbative regime of QCD.
The parameters of our low-energy model could then be
extracted by integrating-out fluctuations between ⇤UV

and ⇤eLSM . 1GeV, which is the upper scale of validity of
the model, see, e.g., Refs. [54–56]. Di↵erent quark masses
at ⇤UV would then not only lead to di↵erent hN,S , but
other model parameters would change as well at ⇤eLSM.
At the physical point we can, as in the present work, rely
on experimentally measured properties of hadrons. Away
from the physical point, the need for fundamental QCD
input towards the chiral limit can, at least to some extent,
be circumvented by using results from chiral perturbation
theory, as in Refs. [20, 57, 58]. However, this concerns
quantitative e↵ects which are not the scope of the present
work.

The explicit symmetry breaking parameters directly
determine the pion and kaon masses through the following
expressions (the first is the realization of the Goldstone
theorem in eLSM),

f⇡ m
2
⇡
= Z⇡hN ,

fK m
2
K

= ZK

✓
1

2
hN +

1
p
2
hS

◆
,

(5)

where f⇡ = �N/Z⇡ and fK = (�N +
p
2�S)/(2ZK) are

the pion and kaon decay constants. The wave function
renormalizations Z⇡,K arise from meson mixing and are
defined in Eqs. (A14) and (A15). We will express the
Columbia plot in terms of these masses. Note that the
kaon mass is always non-zero when hN > 0, so non-zero
pion masses always imply nonzero kaon masses. While
we do not implement direct information from chiral per-
turbation theory away from the physical point, we only
choose parameter sets that give reasonable values for the
pion decay constant in the chiral limit f⇡ & 65 MeV.
This way, we use parameter sets that are at least roughly
compatible with chiral perturbation theory. This is non
trivial, since naive parameter fixing at the physical point
can lead to a much too small and even vanishing f⇡ in
the three-flavor chiral limit [20].
In Fig. 1 we show the resulting Columbia plots for



EXTENDED LINEAR SIGMA MODEL
Once good parameters for vacuum phenomena are identified, we compute the Columbia plot:

[Giacosa, G. Kovacs, P. Kovacs, Pisarski, FR, 2410.08185]
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• in all these cases  remains broken, 

• gray region can only be reached for , so like  : we find spontaneous  violation (  condensate) 
 Dashen's phenomenon [Dashen (1971), Witten (1980)] (to be investigated further)

U(1)A ξ(eff)
n = const .

ms < 0 θ = π CP η′￼

→

the smaller , the smaller the first order region; vanishes for ξ(eff)
1 ξ(eff)

1 = 0

Note: mean-field analysis cannot be the final answer



SUMMARY/OUTLOOK

The order of the chiral phase transition remains an open question. 
It is related to various subtle phenomena.

• no evidence for 1st order transition from the lattice: either small region or not there at all

• critical phenomena suggest that  needs to be restored at  for a second order 
transition in the chiral limit, but existing calculations may still have large systematic errors

• axial anomaly is encoded in a tower of anomalous correlations, are directly linked to higher 
topological charges in the semi-classical limit 

• conjecture: small/no 1st order region because of dominance of higher topological 
charge effects at  

• 2nd order transition for vanishing  contribution, . But why would only one 
coupling vanish? Maybe all of them do,    restoration right at 

• how to test this? One suggestion: look for actual phase transition in  QCD

U(1)A Tc

T ≲ Tc

Q = 1 ξ1 = 0
ξn = 0 ∀n → U(1)A Tc

Nf = 1



BACKUP



BEYOND MEAN-FIELD [Resch, FR, Schaefer, 1712.07961]

Columbia plot of quark-meson model - mean-field vs FRG-LPA
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