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Pushing forward the reach of quantum field theories



Pushing forward the reach of 
quantum field theories - current
• Use of chiral fermions for fine lattices

• QCD phase transition                     Goswami, Zhang, Kanamori, Nakamura, Aoki
• heavy quark physics (B mesons)     Aoki, Kanamori, Nakamura

• Beyond conventional LQCD ”measurements”
• towards nucleon properties on Big lattices - R. Tsuji (JRA), Aoki, with PACS
• coarser lattices, new scheme ‒ proton decay ‒ Aoki, et al & Aoki, Shintani, Tsuji,,
• QED and isospin breaking effects → B meson ‒ Portelli, Aoki, et al 

• Beyond conventional LQCD “simulations”
• Tensor networks, higher dim., systematic error ‒ Nakayama, Nakamura, [Lin]
• AI acceleration,    new alg. (world volume) [Tomiya], [Fukuma]
• Quantum Goswami, Nakayama, Wang

• Beyond Fugaku:
• FugakuNEXT Feasibility Study - Aoki, Kanamori, Nakamura, Nitadori

• Beyond conventional data share: Nakamura, Aoki
• JLDG (Japan Lattice Data Grid) & ILDG (International Lattice Data Grid) → ILDG 2.0

• LQCD frameworks
• QWS : Nakamura, Kanamori, Nitadori,,,
• Grid/Hadrons: Portelli; tuning: Kanamori, Nakamura;   new measurements:  Zhang,
• Bridge++: Kanamori, Goswami et al, → DWF meas., R&D for multi-grid etc
• BQCD: Nakamura et al.
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Pushing forward the reach of 
quantum field theories - current → near term
• Accelerating Simulation / Computation in LQCD

• R&D for AI acceleration for LQCD Tomiya w/ couple of Grad students

• Beyond μ=0 → μ≠0 
• seeking seeds in new methods - Fukuma et al

• Target Physics Computation of Tensor Network 
• seeking good model to study ‒ Lin, Nakayama

• Quantum Computing
• seeking seeds towards particle physics Goswami, Nakayama
• to be discussed involving Wang (concurrent)

• Beyond Fugaku:
• FugakuNEXT codesign (using Bridge++)- Kanamori, Nakamura, Nitadori
• → online ~2030-



LQCD opportunities

QCD phase

Dark
Matter

BNL/CERN

QCD phase Transition
Creation of Nucleons

QCD phase Transition
Creation of Nucleons

examples of outputs

history of universe : phase transition ?
matter formation
… 



5.2. RESEARCH ACTIVITIES 97

Figure 5.5: Renormalized susceptibility of the chiral condensate for Nt = 8 lattice (left) indicating a crossover
and Nt = 12 (right) both at � = 4.0. Use of Fugaku is indispensable to obtain these extremely high demanding
computation. Reproductions from Ref. 4 in Sec. 5.5.2.

on 243
⇥ 12 lattice.

These project involves quite a few members of the team: TL. Aoki, Goswami, Kanamori, Nakamura and
Zhang as well as the senior visiting scientists: S. Aoki and Hashimoto.

5.2.3 QCD phase structure with chiral fermions

Figure 5.4: Conventional draw of the
Columbia plot.

To discuss the possible QCD phases at finite temperature the Columbia
plot, in which the horizontal and vertical axes indicate the degenerate up-
/down and strange quark masses respectively (Fig. 5.4.) is convenient.
Recently, quite a few studies are shedding light on this plot, which is
being one of the hot topics in the finite temperature lattice QCD stud-
ies. Two regions of interest in the plot are that near the physical point
and the diagonal line near the chiral limit (origin). The aforementioned
2+1-flavor study would eventually unfold the phase structure near the
physical point. The structure along the diagonal line (so-called 3-flavor
system) is still undetermined yet.

We are trying to solve the degenerate 3-flavor phase structure using
DWF. Through a series of parameter search studies conducted on Ito
subsystem at Kyushu University through HPCI as well as on the HOKU-
SAI BigWaterfall, we have captured a signal of possibly a cross-over at
high temperature and large quark mass region using a fixed � = 4.0
and temporal lattice size Nt = 6. Getting larger resource on Fugaku
(5M NH) through HPCI program (FY2021) we accumulated the statis-
tics significantly and further extended our reach to larger volume quite
easily, where we find a clear-cut evidence of a crossover from the plaque-
tte susceptibility. Searching smaller quark mass needs to reduce the temperature. The simulations on Nt = 8
� = 4.0 system is carried out and obtained the results shown in the left panel of Fig. 5.5. The susceptibility of
the chiral condensate at fixed temperature (T ⇡ 180 MeV) developing a peak at the quark mass m ⇡ 44 MeV
in MS µ = 2 GeV. As the two volume results are consistent with each other, this mass point also exhibits a
crossover. With the same � (thus same lattice spacing) Nt = 12 simulations are being performed using Fugaku
through HPCI (FY2022B). The results shown in the right panel is a preliminary results using a single volume
thus no conclusion can be made on the existence of real phase transition. However the peak position shows the
(pseudo) critical mass is around m ⇡ 3.7 MeV, which is almost on top of the physical ud quark mass. We are
extending the simulation to larger volume as well as to the lower temperature to hunt the phase boundary.

This project involves: Aoki, Nakamura, Hashimoto, Kanamori, Zhang.

QCD phase transition

“Columbia Plot” is often used to discuss QCD phase
l for arbitrary values of u=d, s quark masses
l phase structure itself is interesting object
l help understand the physical point
l Focus: chiral regime: 𝑚 → 0

QCD phase

BNL/CERN

QCD phase Transition
Creation of Nucleons

l This is the plot many of us would have 
drawn a few years ago
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QCD phase transition

“Columbia Plot” is often used to discuss QCD phase
l for arbitrary values of u=d, s quark masses
l phase structure itself is interesting object
l help understand the physical point
l Focus: chiral regime: 𝑚 → 0

l This is the plot many of us would have 
drawn a few years ago

l Pisarski and Wilczek PRD 1984
l effective model / ε expansion
l 1st order expected near origin (Nf=3 chiral limit)

l Columbia group: Brown et al PRL 1990
l first lattice QCD computation

Nf=3 chiral limit is a hot topic

l related non-lattice studies
l G. Fejos, PRD 22
l Kousvos and Stergiou, SciPost Phys. 23
l Pisarski and Rennecke, PRL 23
l Fejos and Hatsuda PRD 24



QCD phase transition

“Columbia Plot” is often used to discuss QCD phase
l for arbitrary values of u=d, s quark masses
l phase structure itself is interesting object
l help understand the physical point
l Focus: chiral regime: 𝑚 → 0

l This is the plot many of us would have 
drawn a few years ago

Diagonal search: Fate of the chiral 1st order region

l Wilson Fermion: Kuramashi et al (2020)
l 1st order observed for 𝑎 > 0
l region shrinks towards 𝑎 → 0

Lattice Gauge Theory

• Analysis of Quantum Field Theory such as Quantum Chromo Dynamics, needs non-
perturbative calculation.

�(x), Aµ(x), x ⌅ R4: continuous infinity
quantum divergences: needs regularization and renormalization

⇥(n + µ̂)⇥(n)

Uµ(n)

a

• Discretize Euclidean space-time

• lattice spacing a ⇤ 0.1 fm
(UV cut-off |p| ⇥ ⇥/a)

• ⇤(n) : Fermion field (Grassmann number)

• Uµ(n) : Gauge field

1. Accumulate samples of vacuum, typically O(100) ⇥ O(1, 000) files o f gauge
configuration Uµ(n) on disk.

2. Then measure physical observables on the vacuum ensemble.

⇧O⌃ =
�
DUµ Prob[Uµ]�O[Uµ]

Taku Izubuchi, Wako, Mini Workshop on Lattice QCD at RIKEN, Decmber 22, 2009 7

1
𝑇 = 𝑎𝑁!

𝐿3
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(5M NH) through HPCI program (FY2021) we accumulated the statis-
tics significantly and further extended our reach to larger volume quite
easily, where we find a clear-cut evidence of a crossover from the plaque-
tte susceptibility. Searching smaller quark mass needs to reduce the temperature. The simulations on Nt = 8
� = 4.0 system is carried out and obtained the results shown in the left panel of Fig. 5.5. The susceptibility of
the chiral condensate at fixed temperature (T ⇡ 180 MeV) developing a peak at the quark mass m ⇡ 44 MeV
in MS µ = 2 GeV. As the two volume results are consistent with each other, this mass point also exhibits a
crossover. With the same � (thus same lattice spacing) Nt = 12 simulations are being performed using Fugaku
through HPCI (FY2022B). The results shown in the right panel is a preliminary results using a single volume
thus no conclusion can be made on the existence of real phase transition. However the peak position shows the
(pseudo) critical mass is around m ⇡ 3.7 MeV, which is almost on top of the physical ud quark mass. We are
extending the simulation to larger volume as well as to the lower temperature to hunt the phase boundary.

This project involves: Aoki, Nakamura, Hashimoto, Kanamori, Zhang.

Lattice Gauge Theory

• Analysis of Quantum Field Theory such as Quantum Chromo Dynamics, needs non-
perturbative calculation.

�(x), Aµ(x), x ⌅ R4: continuous infinity
quantum divergences: needs regularization and renormalization

⇥(n + µ̂)⇥(n)

Uµ(n)

a

• Discretize Euclidean space-time

• lattice spacing a ⇤ 0.1 fm
(UV cut-off |p| ⇥ ⇥/a)

• ⇤(n) : Fermion field (Grassmann number)

• Uµ(n) : Gauge field

1. Accumulate samples of vacuum, typically O(100) ⇥ O(1, 000) files o f gauge
configuration Uµ(n) on disk.

2. Then measure physical observables on the vacuum ensemble.

⇧O⌃ =
�
DUµ Prob[Uµ]�O[Uµ]
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Although the transition point is slightly out of the inter-
polation range, the monotonic behavior of data points
suggests that such a short extrapolation should be harmless.
The dimensionless combination of the hadronic quan-

tities
ffiffiffiffi
t0

p
T, mPS=T, and

ffiffiffiffi
t0

p
mPS along the transition line

projected on β are plotted in Fig. 9 for Nt ¼ 10 and 12.
The vertical red line represents the location of the critical
point determined by the kurtosis intersection method, and
the plot allows us to obtain the hadronic quantities at the
critical point. From an interpolation, one can obtain the
critical value of the dimensionless quantities for each
temporal size Nt. The actual numbers are summarized in
Table IV.
Figure 10 shows the continuum extrapolation offfiffiffiffi
t0

p
mPS;E, mPS;E=TE, and

ffiffiffiffi
t0

p
TE. As for

ffiffiffiffi
t0

p
TE (lower

right panel of Fig. 10), even though the new data point
at Nt ¼ 12 is included, a stable continuum extrapolation
is observed and we obtain

ffiffiffiffi
t0

p
TE ¼ 0.09943ð34Þ which

has no significant difference compared with the previous
one

ffiffiffiffi
t0

p
TE ¼ 0.09970ð37Þ in Ref. [34]. In terms of the

physical units the critical temperature is given by TE ¼
134ð3Þ MeV, where we have used the Wilson flow scale

FIG. 10. Continuum extrapolation of the critical endpoint. In upper panels, the left one is for
ffiffiffiffi
t0

p
mPS;E vs 1=N2

t while the right one is
for

ffiffiffiffi
t0

p
mPS;E vs 1=Nt. In the lower panel mPS;E=TE (left) and

ffiffiffiffi
t0

p
TE (right) are plotted as a function of 1=N2

t .

FIG. 11. Columbia-like plot with axes m2
π and m2

ηs in physical
units. The blue symbol denotes the upper bound obtained in this
work Nt ≤ 12 while the red one is given in our previous study
Nt ≤ 10 [34]. The physical point is also shown just for a reference.
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QCD phase transition

“Columbia Plot” is often used to discuss QCD phase
l for arbitrary values of u=d, s quark masses
l phase structure itself is interesting object
l help understand the physical point
l Focus: chiral regime: 𝑚 → 0

l This is the plot many of us would have 
drawn a few years ago

Diagonal search: Fate of the chiral 1st order region

l Wilson Fermion: Kuramashi et al (2020)
l 1st order observed for 𝑎 > 0
l region shrinks towards 𝑎 → 0

l Naive Staggered Fermion: Cuteri et al (2021)
l no 1st order region for 𝑁! = 3

l HISQ (improved staggered): Dini et al (2022)
l consistent with no 1st order (critical scaling)

l We tackle this problem with “Chiral Fermion”

Lattice Gauge Theory

• Analysis of Quantum Field Theory such as Quantum Chromo Dynamics, needs non-
perturbative calculation.

�(x), Aµ(x), x ⌅ R4: continuous infinity
quantum divergences: needs regularization and renormalization

⇥(n + µ̂)⇥(n)

Uµ(n)

a

• Discretize Euclidean space-time

• lattice spacing a ⇤ 0.1 fm
(UV cut-off |p| ⇥ ⇥/a)

• ⇤(n) : Fermion field (Grassmann number)

• Uµ(n) : Gauge field

1. Accumulate samples of vacuum, typically O(100) ⇥ O(1, 000) files o f gauge
configuration Uµ(n) on disk.

2. Then measure physical observables on the vacuum ensemble.

⇧O⌃ =
�
DUµ Prob[Uµ]�O[Uµ]
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Figure 5.5: Renormalized susceptibility of the chiral condensate for Nt = 8 lattice (left) indicating a crossover
and Nt = 12 (right) both at � = 4.0. Use of Fugaku is indispensable to obtain these extremely high demanding
computation. Reproductions from Ref. 4 in Sec. 5.5.2.

on 243
⇥ 12 lattice.

These project involves quite a few members of the team: TL. Aoki, Goswami, Kanamori, Nakamura and
Zhang as well as the senior visiting scientists: S. Aoki and Hashimoto.

5.2.3 QCD phase structure with chiral fermions

Figure 5.4: Conventional draw of the
Columbia plot.

To discuss the possible QCD phases at finite temperature the Columbia
plot, in which the horizontal and vertical axes indicate the degenerate up-
/down and strange quark masses respectively (Fig. 5.4.) is convenient.
Recently, quite a few studies are shedding light on this plot, which is
being one of the hot topics in the finite temperature lattice QCD stud-
ies. Two regions of interest in the plot are that near the physical point
and the diagonal line near the chiral limit (origin). The aforementioned
2+1-flavor study would eventually unfold the phase structure near the
physical point. The structure along the diagonal line (so-called 3-flavor
system) is still undetermined yet.

We are trying to solve the degenerate 3-flavor phase structure using
DWF. Through a series of parameter search studies conducted on Ito
subsystem at Kyushu University through HPCI as well as on the HOKU-
SAI BigWaterfall, we have captured a signal of possibly a cross-over at
high temperature and large quark mass region using a fixed � = 4.0
and temporal lattice size Nt = 6. Getting larger resource on Fugaku
(5M NH) through HPCI program (FY2021) we accumulated the statis-
tics significantly and further extended our reach to larger volume quite
easily, where we find a clear-cut evidence of a crossover from the plaque-
tte susceptibility. Searching smaller quark mass needs to reduce the temperature. The simulations on Nt = 8
� = 4.0 system is carried out and obtained the results shown in the left panel of Fig. 5.5. The susceptibility of
the chiral condensate at fixed temperature (T ⇡ 180 MeV) developing a peak at the quark mass m ⇡ 44 MeV
in MS µ = 2 GeV. As the two volume results are consistent with each other, this mass point also exhibits a
crossover. With the same � (thus same lattice spacing) Nt = 12 simulations are being performed using Fugaku
through HPCI (FY2022B). The results shown in the right panel is a preliminary results using a single volume
thus no conclusion can be made on the existence of real phase transition. However the peak position shows the
(pseudo) critical mass is around m ⇡ 3.7 MeV, which is almost on top of the physical ud quark mass. We are
extending the simulation to larger volume as well as to the lower temperature to hunt the phase boundary.

This project involves: Aoki, Nakamura, Hashimoto, Kanamori, Zhang.



LQCD fermions

Each fermion has its pros and cons
l chiral: domain wall fermion (DWF), overlap fermion
l non-chiral: Wilson fermion, staggered fermion

Flavor, chiral symmetries for 𝑵𝒇 number of flavors: 2 for u,d, 3 for u,d,s

𝑺𝑼 𝑵𝒇 𝑳
×𝑺𝑼 𝑵𝒇 𝑹

= 𝑺𝑼 𝑵𝒇 𝑽
×𝑺𝑼 𝑵𝒇 𝑨

𝑺𝑼 𝑵𝒇 𝑨
is broken at low T by QCD dynamics, but formulation should have the symmetry

how are they intact for each fermions - in very rough image:

Lattice Gauge Theory

• Analysis of Quantum Field Theory such as Quantum Chromo Dynamics, needs non-
perturbative calculation.

�(x), Aµ(x), x ⌅ R4: continuous infinity
quantum divergences: needs regularization and renormalization

⇥(n + µ̂)⇥(n)

Uµ(n)

a

• Discretize Euclidean space-time

• lattice spacing a ⇤ 0.1 fm
(UV cut-off |p| ⇥ ⇥/a)

• ⇤(n) : Fermion field (Grassmann number)

• Uµ(n) : Gauge field

1. Accumulate samples of vacuum, typically O(100) ⇥ O(1, 000) files o f gauge
configuration Uµ(n) on disk.

2. Then measure physical observables on the vacuum ensemble.

⇧O⌃ =
�
DUµ Prob[Uµ]�O[Uµ]
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QCD phase and thermodynamics
QCD phase
• fundamental understanding of QCD phase
• Simulation on (pseudo) critical temperature 

• with Domain-Wall fermions
Diagonal search
• Wilson fermion shows large discretization error
• Staggered fermion consistent with no 1st order
Ø use of chiral (Domain-wall) fermion would help

On/near physical point
• High temperature (T > Tc) overlap fermions
Ø T = Tc   using DWF with Fugaku

• QCD thermodynamics
Lattice Gauge Theory

• Analysis of Quantum Field Theory such as Quantum Chromo Dynamics, needs non-
perturbative calculation.

�(x), Aµ(x), x ⌅ R4: continuous infinity
quantum divergences: needs regularization and renormalization

⇥(n + µ̂)⇥(n)

Uµ(n)

a

• Discretize Euclidean space-time

• lattice spacing a ⇤ 0.1 fm
(UV cut-off |p| ⇥ ⇥/a)

• ⇤(n) : Fermion field (Grassmann number)

• Uµ(n) : Gauge field

1. Accumulate samples of vacuum, typically O(100) ⇥ O(1, 000) files o f gauge
configuration Uµ(n) on disk.

2. Then measure physical observables on the vacuum ensemble.

⇧O⌃ =
�
DUµ Prob[Uµ]�O[Uµ]
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l Nf=3 phase hunting

YA(1), S. Hashimoto(2)(3), I. Kanamori(1), T. Kaneko(2)(3)(4), Y. Nakamura(1), Y. Zhang(5)

l Nf=2+1 thermodynamics with line of constant physics

YA(1), H. Fukaya(6), J. Goswami(1), 

S. Hashimoto (2)(3), I. Kanamori(1), T. Kaneko (2)(3)(4), Y. Nakamura(1), Y. Zhang(5)

(1): RIKEN Center for Computational Science
(2): KEK
(3): SOKENDAI
(4): Kobayashi-Maskawa Institute, Nagoya Univ.
(5): Bielefeld University
(6): Osaka University

Current authors of projects / under JLQCD
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l T>0  QCD using fine lattice chiral fermions: domain-wall (DWF)  [JLQCD]
l Nf=3        - hunting QCD phase boundary
- Columbia plot: a long-standing problem in Lattice QCD
- 𝑚 ≃ 220𝑀𝑒𝑉 : crossover !
- 𝑚 ≃ 40𝑀𝑒𝑉 : crossover !
- 𝑚 ≃ 4𝑀𝑒𝑉 : crossover likely
- [PoS Lattice 2021, 22, 23, 24]

QCD phase hunting

5.2. RESEARCH ACTIVITIES 97

Figure 5.5: Renormalized susceptibility of the chiral condensate for Nt = 8 lattice (left) indicating a crossover
and Nt = 12 (right) both at � = 4.0. Use of Fugaku is indispensable to obtain these extremely high demanding
computation. Reproductions from Ref. 4 in Sec. 5.5.2.

on 243
⇥ 12 lattice.

These project involves quite a few members of the team: TL. Aoki, Goswami, Kanamori, Nakamura and
Zhang as well as the senior visiting scientists: S. Aoki and Hashimoto.

5.2.3 QCD phase structure with chiral fermions

Figure 5.4: Conventional draw of the
Columbia plot.

To discuss the possible QCD phases at finite temperature the Columbia
plot, in which the horizontal and vertical axes indicate the degenerate up-
/down and strange quark masses respectively (Fig. 5.4.) is convenient.
Recently, quite a few studies are shedding light on this plot, which is
being one of the hot topics in the finite temperature lattice QCD stud-
ies. Two regions of interest in the plot are that near the physical point
and the diagonal line near the chiral limit (origin). The aforementioned
2+1-flavor study would eventually unfold the phase structure near the
physical point. The structure along the diagonal line (so-called 3-flavor
system) is still undetermined yet.

We are trying to solve the degenerate 3-flavor phase structure using
DWF. Through a series of parameter search studies conducted on Ito
subsystem at Kyushu University through HPCI as well as on the HOKU-
SAI BigWaterfall, we have captured a signal of possibly a cross-over at
high temperature and large quark mass region using a fixed � = 4.0
and temporal lattice size Nt = 6. Getting larger resource on Fugaku
(5M NH) through HPCI program (FY2021) we accumulated the statis-
tics significantly and further extended our reach to larger volume quite
easily, where we find a clear-cut evidence of a crossover from the plaque-
tte susceptibility. Searching smaller quark mass needs to reduce the temperature. The simulations on Nt = 8
� = 4.0 system is carried out and obtained the results shown in the left panel of Fig. 5.5. The susceptibility of
the chiral condensate at fixed temperature (T ⇡ 180 MeV) developing a peak at the quark mass m ⇡ 44 MeV
in MS µ = 2 GeV. As the two volume results are consistent with each other, this mass point also exhibits a
crossover. With the same � (thus same lattice spacing) Nt = 12 simulations are being performed using Fugaku
through HPCI (FY2022B). The results shown in the right panel is a preliminary results using a single volume
thus no conclusion can be made on the existence of real phase transition. However the peak position shows the
(pseudo) critical mass is around m ⇡ 3.7 MeV, which is almost on top of the physical ud quark mass. We are
extending the simulation to larger volume as well as to the lower temperature to hunt the phase boundary.

This project involves: Aoki, Nakamura, Hashimoto, Kanamori, Zhang.
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Figure 5.5: Renormalized susceptibility of the chiral condensate for Nt = 8 lattice (left) indicating a crossover
and Nt = 12 (right) both at � = 4.0. Use of Fugaku is indispensable to obtain these extremely high demanding
computation. Reproductions from Ref. 4 in Sec. 5.5.2.

on 243
⇥ 12 lattice.

These project involves quite a few members of the team: TL. Aoki, Goswami, Kanamori, Nakamura and
Zhang as well as the senior visiting scientists: S. Aoki and Hashimoto.

5.2.3 QCD phase structure with chiral fermions

Figure 5.4: Conventional draw of the
Columbia plot.

To discuss the possible QCD phases at finite temperature the Columbia
plot, in which the horizontal and vertical axes indicate the degenerate up-
/down and strange quark masses respectively (Fig. 5.4.) is convenient.
Recently, quite a few studies are shedding light on this plot, which is
being one of the hot topics in the finite temperature lattice QCD stud-
ies. Two regions of interest in the plot are that near the physical point
and the diagonal line near the chiral limit (origin). The aforementioned
2+1-flavor study would eventually unfold the phase structure near the
physical point. The structure along the diagonal line (so-called 3-flavor
system) is still undetermined yet.

We are trying to solve the degenerate 3-flavor phase structure using
DWF. Through a series of parameter search studies conducted on Ito
subsystem at Kyushu University through HPCI as well as on the HOKU-
SAI BigWaterfall, we have captured a signal of possibly a cross-over at
high temperature and large quark mass region using a fixed � = 4.0
and temporal lattice size Nt = 6. Getting larger resource on Fugaku
(5M NH) through HPCI program (FY2021) we accumulated the statis-
tics significantly and further extended our reach to larger volume quite
easily, where we find a clear-cut evidence of a crossover from the plaque-
tte susceptibility. Searching smaller quark mass needs to reduce the temperature. The simulations on Nt = 8
� = 4.0 system is carried out and obtained the results shown in the left panel of Fig. 5.5. The susceptibility of
the chiral condensate at fixed temperature (T ⇡ 180 MeV) developing a peak at the quark mass m ⇡ 44 MeV
in MS µ = 2 GeV. As the two volume results are consistent with each other, this mass point also exhibits a
crossover. With the same � (thus same lattice spacing) Nt = 12 simulations are being performed using Fugaku
through HPCI (FY2022B). The results shown in the right panel is a preliminary results using a single volume
thus no conclusion can be made on the existence of real phase transition. However the peak position shows the
(pseudo) critical mass is around m ⇡ 3.7 MeV, which is almost on top of the physical ud quark mass. We are
extending the simulation to larger volume as well as to the lower temperature to hunt the phase boundary.

This project involves: Aoki, Nakamura, Hashimoto, Kanamori, Zhang.

② T=180 MeV③ T=120 MeV

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16 18 20

�MS
disc(µ = 2GeV)[GeV2]

(mq +mres)MS(µ = 2GeV) [MeV]

N3
s ⇥Nt ⇥ Ls = 483 ⇥ 12⇥ 16

N3
s ⇥Nt ⇥ Ls = 363 ⇥ 12⇥ 16

N3
s ⇥Nt ⇥ Ls = 243 ⇥ 12⇥ 16

N3
s ⇥Nt ⇥ Ls = 243 ⇥ 12⇥ 32



18

QCD phase hunting: ③ T=120 MeV
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Figure 5.5: Renormalized susceptibility of the chiral condensate for Nt = 8 lattice (left) indicating a crossover
and Nt = 12 (right) both at � = 4.0. Use of Fugaku is indispensable to obtain these extremely high demanding
computation. Reproductions from Ref. 4 in Sec. 5.5.2.

on 243
⇥ 12 lattice.

These project involves quite a few members of the team: TL. Aoki, Goswami, Kanamori, Nakamura and
Zhang as well as the senior visiting scientists: S. Aoki and Hashimoto.

5.2.3 QCD phase structure with chiral fermions

Figure 5.4: Conventional draw of the
Columbia plot.

To discuss the possible QCD phases at finite temperature the Columbia
plot, in which the horizontal and vertical axes indicate the degenerate up-
/down and strange quark masses respectively (Fig. 5.4.) is convenient.
Recently, quite a few studies are shedding light on this plot, which is
being one of the hot topics in the finite temperature lattice QCD stud-
ies. Two regions of interest in the plot are that near the physical point
and the diagonal line near the chiral limit (origin). The aforementioned
2+1-flavor study would eventually unfold the phase structure near the
physical point. The structure along the diagonal line (so-called 3-flavor
system) is still undetermined yet.

We are trying to solve the degenerate 3-flavor phase structure using
DWF. Through a series of parameter search studies conducted on Ito
subsystem at Kyushu University through HPCI as well as on the HOKU-
SAI BigWaterfall, we have captured a signal of possibly a cross-over at
high temperature and large quark mass region using a fixed � = 4.0
and temporal lattice size Nt = 6. Getting larger resource on Fugaku
(5M NH) through HPCI program (FY2021) we accumulated the statis-
tics significantly and further extended our reach to larger volume quite
easily, where we find a clear-cut evidence of a crossover from the plaque-
tte susceptibility. Searching smaller quark mass needs to reduce the temperature. The simulations on Nt = 8
� = 4.0 system is carried out and obtained the results shown in the left panel of Fig. 5.5. The susceptibility of
the chiral condensate at fixed temperature (T ⇡ 180 MeV) developing a peak at the quark mass m ⇡ 44 MeV
in MS µ = 2 GeV. As the two volume results are consistent with each other, this mass point also exhibits a
crossover. With the same � (thus same lattice spacing) Nt = 12 simulations are being performed using Fugaku
through HPCI (FY2022B). The results shown in the right panel is a preliminary results using a single volume
thus no conclusion can be made on the existence of real phase transition. However the peak position shows the
(pseudo) critical mass is around m ⇡ 3.7 MeV, which is almost on top of the physical ud quark mass. We are
extending the simulation to larger volume as well as to the lower temperature to hunt the phase boundary.

This project involves: Aoki, Nakamura, Hashimoto, Kanamori, Zhang.
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Exploring the QCD phase diagram with three flavors of Möbius domain wall fermions Yu Zhang
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Figure 2: The renormalized disconnected chiral susceptibility (left) and the multiplicatively renormalized
total chiral susceptibility (right) as a function of quark mass for #C = 12 lattices at V = 4.0.

contains a constant term due to UV power divergence, which is independent of volume and will
distort the volume scaling. Therefore, we calculated the subtracted total chiral susceptibility jMS

fsub

with the UV divergence eliminated explicitly. The subtracted total chiral susceptibility times inverse
of the scale factor for these two possibilities is depicted in Fig. 3. Here, the rescaled subtracted
total chiral susceptibility at the peak location significantly di�ers from what is expected in the
case of a first-order transition or a Z(2) second order phase trasnsition. This suggests that it’s
most likely a crossover transition. The transition mass point estimated from the disconnected
chiral susceptibility and total chiral susceptibility is around 4 MeV and 3 MeV, respectively. This
discrepancy is understandable for a corrossover, where the transiton occurs over a broad range. We
expect the transition mass point obtained from these two susceptibilities will concide at the chiral
phase transition termperature.

Figure 3: Rescaled subtracted total chiral susceptibility with the scaling factor corresponding to a first order
phase transition (left) and Z(2) second order phase transition (right) for #C = 12 lattices.

3.2 Binder cumulant

To investigate the nature of phase transition, we utilize the Binder cumulant of the chiral
condensate ⌫4(k̄k), defined by [18]

5

DWF and Overlap Fermion
l DWF: 4D + extra 1D formulation 
l DWF(Ls→∞) → Overlap
l DWF: small residual breaking 𝑚'()

l 𝑚'()~1/𝐿)
l Overlap: exact symmetry: 𝑚'() = 𝟎

Exploring the QCD phase diagram with three flavors of Möbius domain wall fermions Yu Zhang

Figure 5: Left: The residual mass as a function of bare input quark mass for zero temperature and finite
temperature ensembles with di�erent !B at V = 4.0. The dashed line denotes the linear fit to the zero
temperature result. Right: chiral condensate as a function of quark mass for 243 ⇥ 12 ⇥ !B lattices with
!B = 16 and 32.

data. The common method for defining a mass-independent <res involves an extrapolation to the
zero input quark mass limit, which is determined to be 0.00613(9) for !B = 16 and 0.00325(3) for
!B = 32. A 1/!B dependence dominates the contribution to <res. We find that the <res calculated
from both zero temperature and finite temperature ensembles are consistent and nearly independent
of the volume, see also [20].

The right panel of Fig. 5 shows the chiral condensate as a function of quark mass for 243⇥12⇥!B

lattices with !B = 16 and 32. A negative result near the chiral limit is observed for 243 ⇥ 12 ⇥ 16
lattices, attributed to the remaining UV divergence term ⇠ (G�1)<res

02 , as previously mentioned,
indicating ⇠ (G � 1) < 0. An increase of the chiral condensate is observed when increasing !B

from 16 to 32 while keeping the total quark mass the same. This can be easily understood from
hk̄ki |DWF ⇠ ⇠

� (G�1)<res
02 + <@+<res

02

�
+ hk̄ki |cont + ... ., given that <res for !B = 16 is larger than

for !B = 32, and ⇠ (G � 1) < 0. If we do a simple extrapolation, we will see the hk̄ki will have
a smaller chiral symmetry breaking e�ect for !B = 32 compared to !B = 16 in the chiral limit, as
expected.
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Figure 6: The disconnected chiral susceptibility (left) and total chiral susceptibility (right) as a function of
quark mass for 243 ⇥ 12 ⇥ !B lattices with !B = 16 and 32.

Fig. 6 shows the result of disconnected chiral susceptibility (left) and total chiral susceptibility

7

testing the effect of finite Ls
l Ls=16 (main)

l 𝑎𝑚'() = 0.00613(9)
l 𝑚'()

*+ = 7.2(1) MeV
l Ls=32

l 𝑚'()
*+ ≃ 4 MeV

l Susceptibility: consistent
l finite Ls effect properly captured

same Ls=16, different V

compare Ls=16 and 32
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QCD phase hunting: ③ T=120 MeV
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Figure 5.5: Renormalized susceptibility of the chiral condensate for Nt = 8 lattice (left) indicating a crossover
and Nt = 12 (right) both at � = 4.0. Use of Fugaku is indispensable to obtain these extremely high demanding
computation. Reproductions from Ref. 4 in Sec. 5.5.2.

on 243
⇥ 12 lattice.

These project involves quite a few members of the team: TL. Aoki, Goswami, Kanamori, Nakamura and
Zhang as well as the senior visiting scientists: S. Aoki and Hashimoto.

5.2.3 QCD phase structure with chiral fermions

Figure 5.4: Conventional draw of the
Columbia plot.

To discuss the possible QCD phases at finite temperature the Columbia
plot, in which the horizontal and vertical axes indicate the degenerate up-
/down and strange quark masses respectively (Fig. 5.4.) is convenient.
Recently, quite a few studies are shedding light on this plot, which is
being one of the hot topics in the finite temperature lattice QCD stud-
ies. Two regions of interest in the plot are that near the physical point
and the diagonal line near the chiral limit (origin). The aforementioned
2+1-flavor study would eventually unfold the phase structure near the
physical point. The structure along the diagonal line (so-called 3-flavor
system) is still undetermined yet.

We are trying to solve the degenerate 3-flavor phase structure using
DWF. Through a series of parameter search studies conducted on Ito
subsystem at Kyushu University through HPCI as well as on the HOKU-
SAI BigWaterfall, we have captured a signal of possibly a cross-over at
high temperature and large quark mass region using a fixed � = 4.0
and temporal lattice size Nt = 6. Getting larger resource on Fugaku
(5M NH) through HPCI program (FY2021) we accumulated the statis-
tics significantly and further extended our reach to larger volume quite
easily, where we find a clear-cut evidence of a crossover from the plaque-
tte susceptibility. Searching smaller quark mass needs to reduce the temperature. The simulations on Nt = 8
� = 4.0 system is carried out and obtained the results shown in the left panel of Fig. 5.5. The susceptibility of
the chiral condensate at fixed temperature (T ⇡ 180 MeV) developing a peak at the quark mass m ⇡ 44 MeV
in MS µ = 2 GeV. As the two volume results are consistent with each other, this mass point also exhibits a
crossover. With the same � (thus same lattice spacing) Nt = 12 simulations are being performed using Fugaku
through HPCI (FY2022B). The results shown in the right panel is a preliminary results using a single volume
thus no conclusion can be made on the existence of real phase transition. However the peak position shows the
(pseudo) critical mass is around m ⇡ 3.7 MeV, which is almost on top of the physical ud quark mass. We are
extending the simulation to larger volume as well as to the lower temperature to hunt the phase boundary.

This project involves: Aoki, Nakamura, Hashimoto, Kanamori, Zhang.

①
②

③

volume scaling for 1st order 
phase transition is too bad

Exploring the QCD phase diagram with three flavors of Möbius domain wall fermions Yu Zhang

⌫4(k̄k) =
⌦
(Xk̄k)4

↵
⌦
(Xk̄k)2

↵2
, Xk̄k = k̄k � hk̄ki . (7)

For the chiral critical point in # 5 = 3 QCD, ⌫4(k̄k) will approach a universal value of 1.604 [19]
on finite volumes. However, for transitions rather than critical points, ⌫4(k̄k) takes a characteristic
value in the infinite volume limit. Specifically, for a crossover, ⌫4(k̄k) = 3 in the infinite volume
limit. For a first-order transition, the Binder cumulant at infinite volume is ⌫4(k̄k) = 1.

Figure 4: Left: The histogram of chiral condensate in the vincity of the transition mass point for 363⇥12⇥16
lattice. Right: The binder cumulant as a function of quark mass for #C = 12 ensembles.

Before presenting the result of Binder cumulant, we display the distribution of the chiral
condensate near the transiton point for 363 ⇥ 12 ⇥ 16 lattice, in the left panel of Fig. 4. We observe
it behaves like a Gaussian distribution rather than a double peak structure, as expected for a first
order phase transition. This provides a further evidence for a crossover transition. The right panel
of Fig. 4 illustrates ⌫4(k̄k) as a function of quark mass for #C = 12 lattice ensembles. The results
for 363 ⇥ 12 lattice ensembles are consistent with 3 near the transition masses of 3 and 4 MeV,
as determined from the peak of total and disconnected chiral susceptibility. For 243 ⇥ 12 lattice
ensembles, the result is consistent with 3 near transition mass point 4 MeV. However, it is quite
large and not consistent with 3 in one standard deviation near transition point 3 MeV but it is much
far from 1.604 and 1. These indicate a crossover transition.

3.3 Residual chiral symmetry breaking e�ect for di�erent !B

The Möbius domain wall fermion with finite !B introduces a small but non-negligible amount
of chiral symmetry breaking. To the leading order in an expansion in lattice spacing, this residual
chiral symmetry breaking can be characterized by the residual mass <res, which acts as an additive
shift to the bare input quark mass, resulting in the total quark mass < = <@ + <res. One way of
simulating the small value of target quark mass is to keep the value of <res small, which can be
achieved by increasing !B.

The left panel of Fig. 5 displays the residual mass as a function of bare input quark mass
for zero temperature ensembles with 243 ⇥ 48 ⇥ 16 lattice and finite temperature ensembles with
!B = 16 and 32 at V = 4.0. The green dashed line represents the linear fit to the zero temperature
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FIG. 8. Finite size scaled total chiral susceptibility for the first (top )and Z(2) second order phase

transition (bottom).

develop a double peak structure at the transition point for a first order phase transition.289

Here we observe the histogram of chiral condensate behaves like the Gaussian distribution290

near the transition mass point (mq +mres)MS(2GeV) ⇠ 42 and 3.6 MeV, which are deter-291

mined from the peak of disconnected chiral susceptibility, at Nt = 8 and 12 for two di↵erent292

volumes as shown in Fig. 9. No evidence of a double peak structure would appear as volume293

increases. This provides further evidence of the crossover transition.294

FIG. 9. The histogram of chiral condensate in the vicinity of the transition mass point (mq +

mres)MS(2GeV) ⇠ 42 and 3.6 MeV for Nt = 8 (up) and 12 (down) with two di↵erent volumes.

We also measured the Binder cumulant for determining the order of phase transition at295

the transition mass point. In Fig. 10 we show the result of B4( ̄ ) calculated on 243⇥8 and296
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Light quark Σ = − 𝜓𝜓 :
no power div. in disconnected susceptibility

• χ!"#$ = 𝑢𝑢・𝑑𝑑 − 𝑢𝑢 𝑑𝑑
• power divergence in 𝜓𝜓 cancels out
• no new divergence over Σ because no new contact terms
• needs multiplicative renormalization for logarithmic divergence
• 𝑍)(β) = 1/𝑍*(β)
• we stick for now on this quantity → See next talk (Kanamori)

• χ%&%'(= 𝜓𝜓・𝜓𝜓 − 𝜓𝜓 𝜓𝜓
• has power divergence everywhere
• needs to understand the power divergence of Σ = − 𝜓𝜓 first



Nf=3, Nt=12 chiral condensate

• only multiplicative renormalization applied
• quark mass: mres shift applied to x axis
• @T=0: 𝑚+ → 0 , (𝑚, +𝑚-./) → 0
• Ls=16
• three volumes: 243, 363, 483

• Ls=32
• smaller mres, 243

• Intercept = 𝐶0
1(314)*,-.

6/ < 0
• need to be subtracted�0.01
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Light quark Σ = − 𝜓𝜓 : residual power divergence
• Σ|)*+ = 𝐶)

,! -.,"#$

'%
+ Σ|/&0%. +⋯ S. Sharpe (arXiv: 0706.0218)

𝑚-./ ≠ 𝑥𝑚-./;   𝑥 = 𝑂(1) ≠ 1
• “Since 𝑥 is not known, this term gives an uncontrolled error in the condensate. It 

can be studied and reduced only by increasing 𝐿) - a very expensive proposition.” 
‒ S. Sharpe.

• 𝑵𝒇 = 𝟑 case

• T>0 problem @ β=4.0
• T=0 exercise @ β=4.0, 4.1, 4.17
• T>0 div free Σ



Nf=3, T=0 chiral condensate

• Σ 𝑚 = 𝐶7 + 𝐶3𝑚 + 𝐶8𝑚8 fit
• 𝐶3 =

90
6/
+ 𝐶:

• 𝐶0/𝑎8: divergent, 𝐶:: regular

• Σ|0;< = 𝐶0
*1 =4*,-.

6/ + Σ|>?@A. +⋯
• 𝐶0 + 𝐶:𝑎8
• 𝐶0 =0.37(2) from linear fit
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� = 4.17, N3
s ⇥Nt ⇥ Ls = 323 ⇥ 64⇥ 16

f1(x) = a1x
2 + b1x+ c1, c1 = 0.008(1),�2/dof = 0.86

f2(x) = a2x
2 + b2x+ c2, c2 = 0.0142(6),�2/dof = 0.26

f3(x) = a3x
2 + b3x+ c3, c3 = 0.014(2),�2/dof = 2.01



Nf=3, Nt=12 chiral condensate

• 𝑚C> ≃ 4 MeV
• 𝑚 < 𝑚C> : high T “phase”
• Σ|0;< → 𝐶0

1(314)*,-.
6/ + Σ|>?@A.;			

(𝑚D → −𝑚-./)

• Σ|>?@A.=0 : renormalization cond.
• applied to determine 𝑥
• 𝑥=-0.6(1)  from 243x12x16
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Nf=3, Nt=12 chiral condensate

• 𝑚C> ≃ 4 MeV
• 𝑚 < 𝑚C> : high T “phase”
• Σ|0;< → 𝐶0

1(314)*,-.
6/ + Σ|>?@A.;									

(𝑚D → −𝑚-./)
• Σ|>?@A.=0 : renormalization cond.
• applied to determine 𝑥
• 𝑥=-0.6(1)  from 243x12x16

• subtraction using these to all sets
• note: consistency Ls=16 <-> 32
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Renormalized chiral condensate

 T ≃ 181(3) MeV
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QCD phase and thermodynamics
QCD phase
• fundamental understanding of QCD phase
• Simulation on (pseudo) critical temperature 

• with Domain-Wall fermions
Diagonal search
• Wilson fermion shows large discretization error
• Staggered fermion consistent with no 1st order
Ø use of chiral (Domain-wall) fermion would help

On/near physical point
• High temperature (T > Tc) overlap fermions
Ø T = Tc   using DWF with Fugaku

• QCD thermodynamics
Lattice Gauge Theory

• Analysis of Quantum Field Theory such as Quantum Chromo Dynamics, needs non-
perturbative calculation.

�(x), Aµ(x), x ⌅ R4: continuous infinity
quantum divergences: needs regularization and renormalization

⇥(n + µ̂)⇥(n)

Uµ(n)

a

• Discretize Euclidean space-time

• lattice spacing a ⇤ 0.1 fm
(UV cut-off |p| ⇥ ⇥/a)

• ⇤(n) : Fermion field (Grassmann number)

• Uµ(n) : Gauge field

1. Accumulate samples of vacuum, typically O(100) ⇥ O(1, 000) files o f gauge
configuration Uµ(n) on disk.

2. Then measure physical observables on the vacuum ensemble.

⇧O⌃ =
�
DUµ Prob[Uµ]�O[Uµ]

Taku Izubuchi, Wako, Mini Workshop on Lattice QCD at RIKEN, Decmber 22, 2009 7

1
𝑇 = 𝑎𝑁!

𝐿= 𝑎𝑁%



Modes of Simulations
to locate phase transition
• tune parameters near transition
Ø T: fixed, change m
Ø m: fixed, change T 
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Modes of Simulations
to locate phase transition
• tune parameters near transition
Ø T: fixed, change m
Ø m: fixed, change T 

Fixing / changing the controlling parameter
• 𝑇: controled by

• 𝑎(β) : controlled by β
• 𝑁! : discrete

• 𝑚: controlled by
• input quark mass
• 𝑚 β ← matching with hadronic scale: 𝑀&(β,𝑚)
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For the Line of Constant Physics: 𝒂𝒎𝒔(𝜷) with 𝒂(𝜷)
• Step 1: determine 𝒂(𝜷) [fm] with 𝑡# (BMW) input

• at 𝛽 = 𝟒. 𝟎, 4.1∗, 4.17, 4.35, 4.47
* 𝛽=4.0 new data, to add support at small β
* 𝛽=4.1 old pilot study data, removed - small volume and statistics

• Step 2: determine 𝑍%(𝛽) using Non-Perturbative Renormalization results     
• at 𝛽 = 4.17, 4.35, 4.47;    𝑍% with 𝑀𝑆 2 GeV are available
• NNNLO running: µ = 2 𝐺𝑒𝑉 → 1/𝑎 & β polynomial fit & running back 
• use 𝑍%(𝛽) so obtained for 𝛽 ≥ 4.0 : 𝛽 < 4.17 region is extrapolation 
• 1/𝑍% 𝛽 will be used to renormalize scalar operator, chiral condensate 

• Step 3: solve 𝒂𝒎𝒔(𝜷) with input (quark mass input): 
• 𝑚&

' = 𝑍% ⋅ 𝑎𝑚&
()**⋅ 𝑎+, = 92 MeV

• %!
%"#

= 27.4 (See for example FLAG 2019)

• See for details in Lattice 2021 proc by S.Aoki et al.
Do simulation
• Step 4: proper tuning of input mass: correct mres

Do simulation 2nd round / correction with reweighting + valence meas. 4 4.1 4.2 4.3 4.4 4.5
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Simulation plan: 2nd round
w/ treatment of 𝑚!"# effect

• T2-(c)
• 𝑁C = 16
• 𝑚D = 0.1𝑚E
• 𝑚FGE shift by reweighting
• 𝑉E = 32H

• T2-(q)
• 𝑁C = 16
• 𝑚D = 𝑚IJ

• 𝑚K
LMNIC = 𝑚K

OPQ −𝑚FGE
• 𝑉E = 48H

• T1-(d)
• 𝑁C = 12
• 𝑚D = 0.1𝑚E

• 𝑚K
LMNIC = 𝑚K

OPQ −𝑚FGE
• 𝑉E = 24H, 36H

𝐿/ = 12 fixed throughout this study
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• T1-(p)
• 𝑁C = 12
• 𝑚D = 𝑚IJ

• 𝑚K
LMNIC = 𝑚K
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• 𝑉E = 36H, 48H
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Features
• Fine lattice: use of existing results (0.04 ≤ 𝑎 ≤ 0.08 fm)

• Granted preciseness towards continuum limit
• Coarse lattice parametrization is an extrapolation

• Preciseness might be deteriorated
• Newly computing 𝑍2 e.g. at 𝛽 = 4.0	(lower edge) might improve, but not done so far

• NPR of 𝑍% at 𝑎+, ≃1.4 GeV may have sizable error (window problem) anyway
• Smooth connection from fine to coarse should not alter leading 𝑂 𝑎S

• Difference should be higher order
• Error estimated from Kaon mass (at physical point)

• Δ𝑚3 ~ 10 % at 𝛽 = 4.0	 (𝑎 ≃ 0.14 fm)  → Δ𝑚3 ~ a few %
• Δ𝑚3 ~ a few % at 𝛽 = 4.17	(𝑎 ≃ 0.08 fm)
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• Möbius DWF → OVF by reweighting
• Successful (w/ error growth) at 𝛽 = 4.17 (𝑎 ≃ 0.08 fm)

• See Lattice 2021 JLQCD (presenter: K.Suzuki)
• Questionable for

• Coarser lattice: rough gauge, DWF chiral symmetry breaking
• Finer lattice:     larger V (# sites)

• Chiral fermion with continuum limit
• A practical choice is to stick on DWF

• Controlling chiral symmetry breaking with DWF
• WTI residual mass 𝑚-.&: 𝑚/

0 ∝ 𝑚1 +𝑚-.& (1 + ℎ. 𝑜. )
• Understanding  𝑚-.& 𝛽 with fixed 𝐿& (5-th dim size)

• 𝑚*+)[𝑀𝑒𝑉] ∼ 𝑎,,  where 𝑋 ∼ 5
• Vanishes quickly as 𝑎 → 0
• 1st (dumb) approximation: forget about 𝑚-.&

• Better : 𝑚1234* ↔ 𝑚1 +𝑚-.& but, this is not always enough
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l Nf=2+1, 2 fine lattice DWF simulation and reweighting to overlap  [PRD(2021), PTEP(2022)]
- Profound relation among: chiral symmetry, axial anomaly and topological susceptibility

l R & D for the Nf=2+1 thermodynamics with Line of Constant Physics (LCP) 
- Codes: Grid, Hadrons, Bridge++
- LCP / Reweighting
- Chiral order parameter and renormalization
- Quark number susceptibility

l Nf=2+1    - thermodynamics with LCP (mass = ms/10 = about 3 x physical ud quark mass)
- 2 step renormalization for chiral condensate (power and log divergence) with an 𝑥𝑚!"# correction
- 2 lattice spacings Nt=12, 16
- 3 volumes Ns/Nt=2, 3, 4
- No phase transition !
- Tpc determined 𝑇$% = 165(2) MeV
- PPR-Fugaku FY2020-2022
- [PoS Lattice 2021, 2022] 

l Physical point study
- PPR-Fugaku 2023- preliminary results →

QCD phase transition near and on the physical point
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Chiral susceptibility (disconnected)

• no subtraction needed in addition to vacuum subtraction

• peak position : mild volume dependence → infinite volume limit

• observing no dependence for Nt=12 and 16 (LT=2)

• 𝑻𝒑𝒄 = 𝟏𝟔𝟓 𝟐 MeV from the disconnected chiral condensate

𝑚I = 0.1𝑚/ (about 3 time larger than physics u,d mass)



Disconnected chiral susceptibility at average 
physical u and d quark mass

𝑚: = 𝑚)/10
• d1,d2,d3 : 𝑁* = 12, LT=2,3,4

• almost no volume dependence → cross over

• c1           : 𝑁* = 16, LT=2
• good scaling 𝑁$ = 12 -16 observed for LT=2

𝑚' = 𝑚()

• p2,p3: Nt=12, aspect ratio LT = 3, 4
• Statistics is ~20,000 MDTU for LT=3, sampled every 10 MDTU

• LT=4 very preliminary, currently running to get to planned satat.

• 𝑻𝒑𝒄 = 𝟏𝟓𝟏 𝟑 MeV (preliminary) on 𝟑𝟔𝟑×𝟏𝟐, compared with
• 𝑻𝒑𝒄 = 𝟏𝟓𝟓 𝟏 𝟖 w/ DWF (Nt=8) by HotQCD (2014)

• 𝑻𝒑𝒄 = 𝟏𝟓𝟔. 𝟓 𝟏. 𝟓 w/ HISQ by HotQCD (2019) (≃disconnected)

• 𝑻𝒑𝒄 = 𝟏𝟓𝟖. 𝟎 𝟎. 𝟔 w/ stout staggered, Budapest-Wuppertal (2020)

Likely NO phase transition at physical point
with chiral fermions.
No surprise happened so far..
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Light quark Σ = − 𝜓𝜓 :
conventional and residual power divergence

• Σ|0;<~𝐶0
*1 =4*,-.

6/
+ Σ|>?@A. +⋯ S. Sharpe (arXiv: 0706.0218)

• 𝑚-./ ≠ 𝑥𝑚-./;   𝑥 = 𝑂(1) ≠ 1
• “Since 𝑥 is not known, this term gives an uncontrolled error in the condensate. It 

can be studied and reduced only by increasing 𝐿) - a very expensive proposition.” 
‒ S. Sharpe.

• cf:	𝑚+
8 ∝ 𝑚D +𝑚-./ [1+h.o.]

• Σ|0;< → 𝐶0
4*,-.
6/ + Σ|>?@A. + ⋯ ;	(𝑚D → 0)

• Σ|0;< → 𝐶0
1(314)*,-.

6/
+ Σ|>?@A.;			(𝑚D → −𝑚-./)

“Forget about 𝑚-.%”     
is dumber for Σ, but… 
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Light quark Σ = − 𝜓𝜓 : residual power divergence
• Σ|>?@ = 𝐶>

A5 BCA678

D9
+ Σ|EFGH. +⋯ S. Sharpe (arXiv: 0706.0218)

𝑚-.& ≠ 𝑥𝑚-.&;   𝑥 = 𝑂(1) ≠ 1
• “Since 𝑥 is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only 

by increasing 𝐿% - a very expensive proposition.” ‒ S. Sharpe.

• (we proposed another way to utilize 𝑚′*+), which end up mixing T=0 𝐶I into high 𝑇)
• Yet another way of subtraction including 𝑥𝑚*+) using 𝑵𝒇 = 𝟑, 𝑻 = 𝟎 & 𝑻 > 𝑻𝒄 information

→see the talk by Yu Zhang
1. Prepare several different lattice spacing for 𝑻 = 𝟎
2. Compute coefficient linear in 𝑚1 : Σ|:;<~𝑐𝑜𝑛𝑠𝑡. +(

=&
)'
+ 𝐶')𝑚1 +⋯

3. Separate divergent term :               linear fit in 𝑎0 of: 𝐶: + 𝑎0𝐶' → 𝑪𝑫 = 𝟎. 𝟑𝟕(𝟐)
4. Estimate 𝑥 using 𝑻 > 𝑻𝒄 through Σ|:;< →

+=&(,+A)%()!
)'

= 0 (𝑚1 → −𝑚-.&) [ren.cond. Σ|234*. = 0]
→ 𝑵𝒇 = 𝟑; 𝜷 = 𝟒. 𝟎 estimate: 𝒙 = −𝟎. 𝟔 𝟏

• In general, 𝒙 may depend on 𝜷, for now use this value as a reference for all 𝜷
• We also use 𝐶: (single flavor normalization) of 𝑁1 = 3 for 𝑁1 = 2 + 1



test on 𝑁! = 2 + 1, 𝑇 = 0 measurements
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test on 𝑁! = 2 + 1, 𝑇 = 0 measurements
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Seemingly, both conventional and residual divergence are controlled, but
• need to check if 𝑥 does not depend much on β
• refinement of precision and check applicability range of 𝐶0 necessary  
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Disconnected chiral susceptibility and chiral 
condensate

𝑚! = 𝑚"#

• p2,p3: Nt=12, aspect ratio LT = 3, 4

• Statistics is ~20,000 MDTU for LT=3, sampled every 10 MDTU

• LT=4 very preliminary, currently running to get to planned satat.

• 𝑻𝒑𝒄 = 𝟏𝟓𝟏 𝟑 MeV (preliminary) on 𝟑𝟔𝟑×𝟏𝟐

Likely NO phase transition at physical point
with chiral fermions.
No surprise happened so far..
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QCD phase hunting: outcome so far

5.2. RESEARCH ACTIVITIES 97

Figure 5.5: Renormalized susceptibility of the chiral condensate for Nt = 8 lattice (left) indicating a crossover
and Nt = 12 (right) both at � = 4.0. Use of Fugaku is indispensable to obtain these extremely high demanding
computation. Reproductions from Ref. 4 in Sec. 5.5.2.

on 243
⇥ 12 lattice.

These project involves quite a few members of the team: TL. Aoki, Goswami, Kanamori, Nakamura and
Zhang as well as the senior visiting scientists: S. Aoki and Hashimoto.

5.2.3 QCD phase structure with chiral fermions

Figure 5.4: Conventional draw of the
Columbia plot.

To discuss the possible QCD phases at finite temperature the Columbia
plot, in which the horizontal and vertical axes indicate the degenerate up-
/down and strange quark masses respectively (Fig. 5.4.) is convenient.
Recently, quite a few studies are shedding light on this plot, which is
being one of the hot topics in the finite temperature lattice QCD stud-
ies. Two regions of interest in the plot are that near the physical point
and the diagonal line near the chiral limit (origin). The aforementioned
2+1-flavor study would eventually unfold the phase structure near the
physical point. The structure along the diagonal line (so-called 3-flavor
system) is still undetermined yet.

We are trying to solve the degenerate 3-flavor phase structure using
DWF. Through a series of parameter search studies conducted on Ito
subsystem at Kyushu University through HPCI as well as on the HOKU-
SAI BigWaterfall, we have captured a signal of possibly a cross-over at
high temperature and large quark mass region using a fixed � = 4.0
and temporal lattice size Nt = 6. Getting larger resource on Fugaku
(5M NH) through HPCI program (FY2021) we accumulated the statis-
tics significantly and further extended our reach to larger volume quite
easily, where we find a clear-cut evidence of a crossover from the plaque-
tte susceptibility. Searching smaller quark mass needs to reduce the temperature. The simulations on Nt = 8
� = 4.0 system is carried out and obtained the results shown in the left panel of Fig. 5.5. The susceptibility of
the chiral condensate at fixed temperature (T ⇡ 180 MeV) developing a peak at the quark mass m ⇡ 44 MeV
in MS µ = 2 GeV. As the two volume results are consistent with each other, this mass point also exhibits a
crossover. With the same � (thus same lattice spacing) Nt = 12 simulations are being performed using Fugaku
through HPCI (FY2022B). The results shown in the right panel is a preliminary results using a single volume
thus no conclusion can be made on the existence of real phase transition. However the peak position shows the
(pseudo) critical mass is around m ⇡ 3.7 MeV, which is almost on top of the physical ud quark mass. We are
extending the simulation to larger volume as well as to the lower temperature to hunt the phase boundary.

This project involves: Aoki, Nakamura, Hashimoto, Kanamori, Zhang.
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topological susceptibility @ physical point

• Crucial input to axion dark matter scenarios

• Large difference: blue (latest) <-> Red / Green

tree-level improved Symanzik gauge action and the stout
improved staggered fermion action. The continuum limit of
χ1=4was obtained by extrapolationwith three lattice spacings
a ¼ ð0.0572; 0.0707; 0.0824Þ fm.The topological charge of
each configuration was measured by the clover charge after
cooling.
The results of Petreczky et al. [20] were obtained from

simulations of Nf ¼ 2þ 1 lattice QCD with mπ ¼
160 MeV and ms=mud ¼ 20 (physical ms), using the
tree-level improved gauge action and the highly improved
staggered quark action (HISQ). The continuum limit of χ1=4t
is obtained by extrapolation with three lattice spacings with
Nt ¼ ð8; 10; 12Þ. They used two methods to measure the
topological susceptibility: 1) the clover charge in the
Symanzik flow and 2) the chiral susceptibilities χπ and
χδ and the relation χt ¼ m2

udχdisc for T > Tc. Both methods
gave compatible results. In Fig. 6, only the data points
obtained with the clover charge are plotted.
The topological susceptibility of Borsanyi et al. [21] was

measured by the clover charge in the Wilson flow, and the
data points in Fig. 6 are based on the numerical results in
Table S9 of the Supplementary Information of Ref. [21],
which are supposed to be the continuum extrapolated
topological susceptibility of Nf ¼ 2þ 1þ 1 QCD at the
physical point, plus the theoretically estimated contribution
of the b quark and the correction for the mass difference
between u and d quarks. However, only seven data points in
the range of T ¼ 130–300 MeV were based on direct
simulations of Nf ¼ 2þ 1þ 1 lattice QCD at the physical
point, using the tree-level Symanzik gauge action and the
staggered quark action with four levels of stout smearing.
For other data points, they were obtained by the fixed sector
integral and the eigenvalue reweighting techniques from
three sets of unphysical simulations:
(a) Nf ¼ 3þ 1 (three flavors of physical ms and one

flavor of physical mc) for T ¼ 150–500 MeV;
(b) same as (a) but at fixed topology for T ¼

300–3000 MeV;

(c) Nf ¼ 2þ 1 overlap fermions at fixed topology for
three temperatures, T ¼ ð300; 450; 650Þ MeV, and
each for six mud quark masses between physical ms

and physical mphys
ud .

Thus, for comparison with other lattice results, we focus on
their data points in the range of T ¼ 150–300 MeV, which
were obtained by direct simulations at the physical point,
corrected by the eigenvalue reweighting, and extrapolated
to the continuum limit.
First, we compare the results of Bonati et al. [19],

Petreczky et al. [20], and Borsanyi et al. [21]. Evidently,
the discrepancies between Petreczky et al. and Borsanyi
et al. are much smaller than those between Bonati et al. and
Borsanyi et al. Moreover, after the results of Petreczky
et al. [20] are transformed from mπ ¼ 160 MeV to the
physical point by the relation χ1=4t ∝ mπ , they seem to be in
good agreement with the results of Borsanyi et al. [21].
In a more recent study by Bonati et al. [49] in Nf ¼

2þ 1 lattice QCD at the physical point with tree-level
improved Symanzik gauge action and the stout improved
staggered fermion action, using the multicanonical algo-
rithm (to enhance the topological fluctuations), they
obtained the continuum extrapolated χ1=4t ¼ ð3% 3%
2Þ MeV at T ≃ 430 MeV, which is ∼9σ different from
their previous result ∼38ð2Þ MeV in Ref. [19]. The
topological charge of each configuration is measured by
the clover charge after cooling. Then, in the most recent
study of the same group [50], using the same set of
ensembles at T ≃ 430 MeV [49], they obtained the con-
tinuum extrapolated χ1=4t ∼ 20ð3Þ MeV (read off from
Fig. 2 of Ref. [50]), which is ∼5σ different from their
2018 result [49] and ∼3σ different from 9(1) MeV of
Borsanyi et al. [21]. Note that in Ref. [50] two methods had
been used to measure the χt: 1) the index of the staggered
spectral projector and 2) the clover charge after cooling.
Both methods gave compatible results.
In Table VI, we compile all results of continuum

extrapolated χ1=4t at T ≃ 430 MeV, together with their
lattice actions, simulation methods and techniques, and
methods (gluonic and fermionic ones) for χt measurement.
We note that there are ongoing studies of χtðTÞ in Nf ¼

2þ 1þ 1 lattice QCD with Wilson twisted mass fermions
[22,51]. Using the relation χt ¼ m2

udχdisc to measure χt via
the noise estimation of the disconnected chiral susceptibil-
ity of u=d quarks, they obtained χ1=4t ∼ 10ð2Þ MeV at
T ≃ 430 MeV, with mπ ¼ 210 MeV and a ∼ 0.065 fm
[22]. Their recent results at the physical point with mπ ¼
139ð1Þ MeV and a ∼ 0.080 fm were presented in Ref. [51]
and at T ≃ 430 MeV, χ1=4t ∼ 4ð1Þ MeV (read off from
Fig. 2 of Ref. [51]). This implies that the continuum
extrapolated χ1=4 at T ≃ 430 MeV would be less than
4(1) MeV. This is added to Table VI for comparison with
other continuum extrapolated χ1=4t at the same temperature.

FIG. 6. Comparison of the continuum extrapolated fourth-root
topological susceptibility χ1=4t ðTÞ for four lattice studies.

TOPOLOGICAL SUSCEPTIBILITY IN FINITE TEMPERATURE … PHYS. REV. D 106, 074501 (2022)

074501-15

for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-

tibility χ1=4t ða; TÞ (in units of fm−1) of 15 gauge ensembles
are listed in the last column of Table III, where the error
combines the statistical and the systematic ones. Here, the
systematic error is estimated from the difference of
χ1=4t ða; TÞ using two definitions Qt, i.e., Qclover and its
nearest integer round½Qclover%. The statistical error is esti-
mated using the jackknife method with the bin size of which
the statistical error saturates. The results of χ1=4t ða; TÞ of 15
gauge ensembles are plotted in Fig. 2. They are denoted by
blue circles (for a ∼ 0.075 fm), red inverted triangles (for
a ∼ 0.068 fm), and green squares (for a ∼ 0.064 fm).
First, we observe that the five data points of χ1=4t ða; TÞ at

high temperature T > 350 MeV can be fitted by the power
law χ1=4t ðTÞ ∼ T−p, independent of the lattice spacing a.
However, the power law cannot fit all 15 data points. To
construct an analytic formula which can fit all data points of
χtðTÞ for all temperatures, one considers a function which
behaves like the power law ∼ðTc=TÞp for T ≫ Tc, but in
general, it incorporates all higher-order corrections, i.e.,

χ1=4t ðTÞ ¼ c0ðTc=TÞp
X

n¼0

bnðTc=TÞn: ð24Þ

In practice, it is vital to recast (24) into a formula with fewer
parameters, e.g.,

χ1=4t ðTÞ ¼ c0
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
: ð25Þ

It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð26Þ

Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major

FIG. 2. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T. The 15 data points with three different
lattice spacings are denoted by blue circles (a ∼ 0.075 fm), red
inverted triangles (a ∼ 0.068 fm), and green squares
(a ∼ 0.064 fm). The continuum limit resulting from fitting the
15 data points to the ansatz (26) is denoted by the black line, with
the error bars as the enveloping blue lines.

TABLE III. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of the 15 gauge ensembles in this
work, as a function of the lattice spacing a and the temperature T.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t (fm−1)

6.20 0.0636 64 20 155 545 0.420(8)
6.18 0.0685 64 16 180 650 0.418(7)
6.20 0.0636 64 16 193 1577 0.417(5)
6.15 0.0748 64 12 219 566 0.425(9)
6.18 0.0685 64 12 240 500 0.403(7)
6.20 0.0636 64 12 258 1470 0.392(6)
6.15 0.0748 64 10 263 690 0.402(7)
6.18 0.0685 64 10 288 665 0.374(9)
6.20 0.0636 64 10 310 2547 0.358(4)
6.15 0.0748 64 8 329 1581 0.353(7)
6.18 0.0685 64 8 360 1822 0.320(5)
6.20 0.0636 64 8 387 2665 0.294(6)
6.15 0.0748 64 6 438 1714 0.254(6)
6.18 0.0685 64 6 479 1983 0.226(6)
6.20 0.0636 64 6 516 3038 0.202(7)
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for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-

tibility χ1=4t ða; TÞ (in units of fm−1) of 15 gauge ensembles
are listed in the last column of Table III, where the error
combines the statistical and the systematic ones. Here, the
systematic error is estimated from the difference of
χ1=4t ða; TÞ using two definitions Qt, i.e., Qclover and its
nearest integer round½Qclover%. The statistical error is esti-
mated using the jackknife method with the bin size of which
the statistical error saturates. The results of χ1=4t ða; TÞ of 15
gauge ensembles are plotted in Fig. 2. They are denoted by
blue circles (for a ∼ 0.075 fm), red inverted triangles (for
a ∼ 0.068 fm), and green squares (for a ∼ 0.064 fm).
First, we observe that the five data points of χ1=4t ða; TÞ at

high temperature T > 350 MeV can be fitted by the power
law χ1=4t ðTÞ ∼ T−p, independent of the lattice spacing a.
However, the power law cannot fit all 15 data points. To
construct an analytic formula which can fit all data points of
χtðTÞ for all temperatures, one considers a function which
behaves like the power law ∼ðTc=TÞp for T ≫ Tc, but in
general, it incorporates all higher-order corrections, i.e.,

χ1=4t ðTÞ ¼ c0ðTc=TÞp
X

n¼0

bnðTc=TÞn: ð24Þ

In practice, it is vital to recast (24) into a formula with fewer
parameters, e.g.,

χ1=4t ðTÞ ¼ c0
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
: ð25Þ

It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð26Þ

Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major

FIG. 2. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T. The 15 data points with three different
lattice spacings are denoted by blue circles (a ∼ 0.075 fm), red
inverted triangles (a ∼ 0.068 fm), and green squares
(a ∼ 0.064 fm). The continuum limit resulting from fitting the
15 data points to the ansatz (26) is denoted by the black line, with
the error bars as the enveloping blue lines.

TABLE III. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of the 15 gauge ensembles in this
work, as a function of the lattice spacing a and the temperature T.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t (fm−1)

6.20 0.0636 64 20 155 545 0.420(8)
6.18 0.0685 64 16 180 650 0.418(7)
6.20 0.0636 64 16 193 1577 0.417(5)
6.15 0.0748 64 12 219 566 0.425(9)
6.18 0.0685 64 12 240 500 0.403(7)
6.20 0.0636 64 12 258 1470 0.392(6)
6.15 0.0748 64 10 263 690 0.402(7)
6.18 0.0685 64 10 288 665 0.374(9)
6.20 0.0636 64 10 310 2547 0.358(4)
6.15 0.0748 64 8 329 1581 0.353(7)
6.18 0.0685 64 8 360 1822 0.320(5)
6.20 0.0636 64 8 387 2665 0.294(6)
6.15 0.0748 64 6 438 1714 0.254(6)
6.18 0.0685 64 6 479 1983 0.226(6)
6.20 0.0636 64 6 516 3038 0.202(7)
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Recent Summary by Chen et al (TWQCD)

Chen et al: optimal DWF Nf=2+1+1
(yet another DWF)
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tree-level improved Symanzik gauge action and the stout
improved staggered fermion action. The continuum limit of
χ1=4was obtained by extrapolationwith three lattice spacings
a ¼ ð0.0572; 0.0707; 0.0824Þ fm.The topological charge of
each configuration was measured by the clover charge after
cooling.
The results of Petreczky et al. [20] were obtained from

simulations of Nf ¼ 2þ 1 lattice QCD with mπ ¼
160 MeV and ms=mud ¼ 20 (physical ms), using the
tree-level improved gauge action and the highly improved
staggered quark action (HISQ). The continuum limit of χ1=4t
is obtained by extrapolation with three lattice spacings with
Nt ¼ ð8; 10; 12Þ. They used two methods to measure the
topological susceptibility: 1) the clover charge in the
Symanzik flow and 2) the chiral susceptibilities χπ and
χδ and the relation χt ¼ m2

udχdisc for T > Tc. Both methods
gave compatible results. In Fig. 6, only the data points
obtained with the clover charge are plotted.
The topological susceptibility of Borsanyi et al. [21] was

measured by the clover charge in the Wilson flow, and the
data points in Fig. 6 are based on the numerical results in
Table S9 of the Supplementary Information of Ref. [21],
which are supposed to be the continuum extrapolated
topological susceptibility of Nf ¼ 2þ 1þ 1 QCD at the
physical point, plus the theoretically estimated contribution
of the b quark and the correction for the mass difference
between u and d quarks. However, only seven data points in
the range of T ¼ 130–300 MeV were based on direct
simulations of Nf ¼ 2þ 1þ 1 lattice QCD at the physical
point, using the tree-level Symanzik gauge action and the
staggered quark action with four levels of stout smearing.
For other data points, they were obtained by the fixed sector
integral and the eigenvalue reweighting techniques from
three sets of unphysical simulations:
(a) Nf ¼ 3þ 1 (three flavors of physical ms and one

flavor of physical mc) for T ¼ 150–500 MeV;
(b) same as (a) but at fixed topology for T ¼

300–3000 MeV;

(c) Nf ¼ 2þ 1 overlap fermions at fixed topology for
three temperatures, T ¼ ð300; 450; 650Þ MeV, and
each for six mud quark masses between physical ms

and physical mphys
ud .

Thus, for comparison with other lattice results, we focus on
their data points in the range of T ¼ 150–300 MeV, which
were obtained by direct simulations at the physical point,
corrected by the eigenvalue reweighting, and extrapolated
to the continuum limit.
First, we compare the results of Bonati et al. [19],

Petreczky et al. [20], and Borsanyi et al. [21]. Evidently,
the discrepancies between Petreczky et al. and Borsanyi
et al. are much smaller than those between Bonati et al. and
Borsanyi et al. Moreover, after the results of Petreczky
et al. [20] are transformed from mπ ¼ 160 MeV to the
physical point by the relation χ1=4t ∝ mπ , they seem to be in
good agreement with the results of Borsanyi et al. [21].
In a more recent study by Bonati et al. [49] in Nf ¼

2þ 1 lattice QCD at the physical point with tree-level
improved Symanzik gauge action and the stout improved
staggered fermion action, using the multicanonical algo-
rithm (to enhance the topological fluctuations), they
obtained the continuum extrapolated χ1=4t ¼ ð3% 3%
2Þ MeV at T ≃ 430 MeV, which is ∼9σ different from
their previous result ∼38ð2Þ MeV in Ref. [19]. The
topological charge of each configuration is measured by
the clover charge after cooling. Then, in the most recent
study of the same group [50], using the same set of
ensembles at T ≃ 430 MeV [49], they obtained the con-
tinuum extrapolated χ1=4t ∼ 20ð3Þ MeV (read off from
Fig. 2 of Ref. [50]), which is ∼5σ different from their
2018 result [49] and ∼3σ different from 9(1) MeV of
Borsanyi et al. [21]. Note that in Ref. [50] two methods had
been used to measure the χt: 1) the index of the staggered
spectral projector and 2) the clover charge after cooling.
Both methods gave compatible results.
In Table VI, we compile all results of continuum

extrapolated χ1=4t at T ≃ 430 MeV, together with their
lattice actions, simulation methods and techniques, and
methods (gluonic and fermionic ones) for χt measurement.
We note that there are ongoing studies of χtðTÞ in Nf ¼

2þ 1þ 1 lattice QCD with Wilson twisted mass fermions
[22,51]. Using the relation χt ¼ m2

udχdisc to measure χt via
the noise estimation of the disconnected chiral susceptibil-
ity of u=d quarks, they obtained χ1=4t ∼ 10ð2Þ MeV at
T ≃ 430 MeV, with mπ ¼ 210 MeV and a ∼ 0.065 fm
[22]. Their recent results at the physical point with mπ ¼
139ð1Þ MeV and a ∼ 0.080 fm were presented in Ref. [51]
and at T ≃ 430 MeV, χ1=4t ∼ 4ð1Þ MeV (read off from
Fig. 2 of Ref. [51]). This implies that the continuum
extrapolated χ1=4 at T ≃ 430 MeV would be less than
4(1) MeV. This is added to Table VI for comparison with
other continuum extrapolated χ1=4t at the same temperature.

FIG. 6. Comparison of the continuum extrapolated fourth-root
topological susceptibility χ1=4t ðTÞ for four lattice studies.
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for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-

tibility χ1=4t ða; TÞ (in units of fm−1) of 15 gauge ensembles
are listed in the last column of Table III, where the error
combines the statistical and the systematic ones. Here, the
systematic error is estimated from the difference of
χ1=4t ða; TÞ using two definitions Qt, i.e., Qclover and its
nearest integer round½Qclover%. The statistical error is esti-
mated using the jackknife method with the bin size of which
the statistical error saturates. The results of χ1=4t ða; TÞ of 15
gauge ensembles are plotted in Fig. 2. They are denoted by
blue circles (for a ∼ 0.075 fm), red inverted triangles (for
a ∼ 0.068 fm), and green squares (for a ∼ 0.064 fm).
First, we observe that the five data points of χ1=4t ða; TÞ at

high temperature T > 350 MeV can be fitted by the power
law χ1=4t ðTÞ ∼ T−p, independent of the lattice spacing a.
However, the power law cannot fit all 15 data points. To
construct an analytic formula which can fit all data points of
χtðTÞ for all temperatures, one considers a function which
behaves like the power law ∼ðTc=TÞp for T ≫ Tc, but in
general, it incorporates all higher-order corrections, i.e.,

χ1=4t ðTÞ ¼ c0ðTc=TÞp
X

n¼0

bnðTc=TÞn: ð24Þ

In practice, it is vital to recast (24) into a formula with fewer
parameters, e.g.,

χ1=4t ðTÞ ¼ c0
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
: ð25Þ

It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð26Þ

Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major

FIG. 2. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T. The 15 data points with three different
lattice spacings are denoted by blue circles (a ∼ 0.075 fm), red
inverted triangles (a ∼ 0.068 fm), and green squares
(a ∼ 0.064 fm). The continuum limit resulting from fitting the
15 data points to the ansatz (26) is denoted by the black line, with
the error bars as the enveloping blue lines.

TABLE III. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of the 15 gauge ensembles in this
work, as a function of the lattice spacing a and the temperature T.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t (fm−1)

6.20 0.0636 64 20 155 545 0.420(8)
6.18 0.0685 64 16 180 650 0.418(7)
6.20 0.0636 64 16 193 1577 0.417(5)
6.15 0.0748 64 12 219 566 0.425(9)
6.18 0.0685 64 12 240 500 0.403(7)
6.20 0.0636 64 12 258 1470 0.392(6)
6.15 0.0748 64 10 263 690 0.402(7)
6.18 0.0685 64 10 288 665 0.374(9)
6.20 0.0636 64 10 310 2547 0.358(4)
6.15 0.0748 64 8 329 1581 0.353(7)
6.18 0.0685 64 8 360 1822 0.320(5)
6.20 0.0636 64 8 387 2665 0.294(6)
6.15 0.0748 64 6 438 1714 0.254(6)
6.18 0.0685 64 6 479 1983 0.226(6)
6.20 0.0636 64 6 516 3038 0.202(7)
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for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-

tibility χ1=4t ða; TÞ (in units of fm−1) of 15 gauge ensembles
are listed in the last column of Table III, where the error
combines the statistical and the systematic ones. Here, the
systematic error is estimated from the difference of
χ1=4t ða; TÞ using two definitions Qt, i.e., Qclover and its
nearest integer round½Qclover%. The statistical error is esti-
mated using the jackknife method with the bin size of which
the statistical error saturates. The results of χ1=4t ða; TÞ of 15
gauge ensembles are plotted in Fig. 2. They are denoted by
blue circles (for a ∼ 0.075 fm), red inverted triangles (for
a ∼ 0.068 fm), and green squares (for a ∼ 0.064 fm).
First, we observe that the five data points of χ1=4t ða; TÞ at

high temperature T > 350 MeV can be fitted by the power
law χ1=4t ðTÞ ∼ T−p, independent of the lattice spacing a.
However, the power law cannot fit all 15 data points. To
construct an analytic formula which can fit all data points of
χtðTÞ for all temperatures, one considers a function which
behaves like the power law ∼ðTc=TÞp for T ≫ Tc, but in
general, it incorporates all higher-order corrections, i.e.,

χ1=4t ðTÞ ¼ c0ðTc=TÞp
X

n¼0

bnðTc=TÞn: ð24Þ

In practice, it is vital to recast (24) into a formula with fewer
parameters, e.g.,

χ1=4t ðTÞ ¼ c0
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
: ð25Þ

It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð26Þ

Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major

FIG. 2. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T. The 15 data points with three different
lattice spacings are denoted by blue circles (a ∼ 0.075 fm), red
inverted triangles (a ∼ 0.068 fm), and green squares
(a ∼ 0.064 fm). The continuum limit resulting from fitting the
15 data points to the ansatz (26) is denoted by the black line, with
the error bars as the enveloping blue lines.

TABLE III. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of the 15 gauge ensembles in this
work, as a function of the lattice spacing a and the temperature T.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t (fm−1)

6.20 0.0636 64 20 155 545 0.420(8)
6.18 0.0685 64 16 180 650 0.418(7)
6.20 0.0636 64 16 193 1577 0.417(5)
6.15 0.0748 64 12 219 566 0.425(9)
6.18 0.0685 64 12 240 500 0.403(7)
6.20 0.0636 64 12 258 1470 0.392(6)
6.15 0.0748 64 10 263 690 0.402(7)
6.18 0.0685 64 10 288 665 0.374(9)
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6.15 0.0748 64 8 329 1581 0.353(7)
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• Nt=16 already ~continuum or even undershoot ?

• more detailed study needed

tree-level improved Symanzik gauge action and the stout
improved staggered fermion action. The continuum limit of
χ1=4was obtained by extrapolationwith three lattice spacings
a ¼ ð0.0572; 0.0707; 0.0824Þ fm.The topological charge of
each configuration was measured by the clover charge after
cooling.
The results of Petreczky et al. [20] were obtained from

simulations of Nf ¼ 2þ 1 lattice QCD with mπ ¼
160 MeV and ms=mud ¼ 20 (physical ms), using the
tree-level improved gauge action and the highly improved
staggered quark action (HISQ). The continuum limit of χ1=4t
is obtained by extrapolation with three lattice spacings with
Nt ¼ ð8; 10; 12Þ. They used two methods to measure the
topological susceptibility: 1) the clover charge in the
Symanzik flow and 2) the chiral susceptibilities χπ and
χδ and the relation χt ¼ m2

udχdisc for T > Tc. Both methods
gave compatible results. In Fig. 6, only the data points
obtained with the clover charge are plotted.
The topological susceptibility of Borsanyi et al. [21] was

measured by the clover charge in the Wilson flow, and the
data points in Fig. 6 are based on the numerical results in
Table S9 of the Supplementary Information of Ref. [21],
which are supposed to be the continuum extrapolated
topological susceptibility of Nf ¼ 2þ 1þ 1 QCD at the
physical point, plus the theoretically estimated contribution
of the b quark and the correction for the mass difference
between u and d quarks. However, only seven data points in
the range of T ¼ 130–300 MeV were based on direct
simulations of Nf ¼ 2þ 1þ 1 lattice QCD at the physical
point, using the tree-level Symanzik gauge action and the
staggered quark action with four levels of stout smearing.
For other data points, they were obtained by the fixed sector
integral and the eigenvalue reweighting techniques from
three sets of unphysical simulations:
(a) Nf ¼ 3þ 1 (three flavors of physical ms and one

flavor of physical mc) for T ¼ 150–500 MeV;
(b) same as (a) but at fixed topology for T ¼

300–3000 MeV;

(c) Nf ¼ 2þ 1 overlap fermions at fixed topology for
three temperatures, T ¼ ð300; 450; 650Þ MeV, and
each for six mud quark masses between physical ms

and physical mphys
ud .

Thus, for comparison with other lattice results, we focus on
their data points in the range of T ¼ 150–300 MeV, which
were obtained by direct simulations at the physical point,
corrected by the eigenvalue reweighting, and extrapolated
to the continuum limit.
First, we compare the results of Bonati et al. [19],

Petreczky et al. [20], and Borsanyi et al. [21]. Evidently,
the discrepancies between Petreczky et al. and Borsanyi
et al. are much smaller than those between Bonati et al. and
Borsanyi et al. Moreover, after the results of Petreczky
et al. [20] are transformed from mπ ¼ 160 MeV to the
physical point by the relation χ1=4t ∝ mπ , they seem to be in
good agreement with the results of Borsanyi et al. [21].
In a more recent study by Bonati et al. [49] in Nf ¼

2þ 1 lattice QCD at the physical point with tree-level
improved Symanzik gauge action and the stout improved
staggered fermion action, using the multicanonical algo-
rithm (to enhance the topological fluctuations), they
obtained the continuum extrapolated χ1=4t ¼ ð3% 3%
2Þ MeV at T ≃ 430 MeV, which is ∼9σ different from
their previous result ∼38ð2Þ MeV in Ref. [19]. The
topological charge of each configuration is measured by
the clover charge after cooling. Then, in the most recent
study of the same group [50], using the same set of
ensembles at T ≃ 430 MeV [49], they obtained the con-
tinuum extrapolated χ1=4t ∼ 20ð3Þ MeV (read off from
Fig. 2 of Ref. [50]), which is ∼5σ different from their
2018 result [49] and ∼3σ different from 9(1) MeV of
Borsanyi et al. [21]. Note that in Ref. [50] two methods had
been used to measure the χt: 1) the index of the staggered
spectral projector and 2) the clover charge after cooling.
Both methods gave compatible results.
In Table VI, we compile all results of continuum

extrapolated χ1=4t at T ≃ 430 MeV, together with their
lattice actions, simulation methods and techniques, and
methods (gluonic and fermionic ones) for χt measurement.
We note that there are ongoing studies of χtðTÞ in Nf ¼

2þ 1þ 1 lattice QCD with Wilson twisted mass fermions
[22,51]. Using the relation χt ¼ m2

udχdisc to measure χt via
the noise estimation of the disconnected chiral susceptibil-
ity of u=d quarks, they obtained χ1=4t ∼ 10ð2Þ MeV at
T ≃ 430 MeV, with mπ ¼ 210 MeV and a ∼ 0.065 fm
[22]. Their recent results at the physical point with mπ ¼
139ð1Þ MeV and a ∼ 0.080 fm were presented in Ref. [51]
and at T ≃ 430 MeV, χ1=4t ∼ 4ð1Þ MeV (read off from
Fig. 2 of Ref. [51]). This implies that the continuum
extrapolated χ1=4 at T ≃ 430 MeV would be less than
4(1) MeV. This is added to Table VI for comparison with
other continuum extrapolated χ1=4t at the same temperature.

FIG. 6. Comparison of the continuum extrapolated fourth-root
topological susceptibility χ1=4t ðTÞ for four lattice studies.
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for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-

tibility χ1=4t ða; TÞ (in units of fm−1) of 15 gauge ensembles
are listed in the last column of Table III, where the error
combines the statistical and the systematic ones. Here, the
systematic error is estimated from the difference of
χ1=4t ða; TÞ using two definitions Qt, i.e., Qclover and its
nearest integer round½Qclover%. The statistical error is esti-
mated using the jackknife method with the bin size of which
the statistical error saturates. The results of χ1=4t ða; TÞ of 15
gauge ensembles are plotted in Fig. 2. They are denoted by
blue circles (for a ∼ 0.075 fm), red inverted triangles (for
a ∼ 0.068 fm), and green squares (for a ∼ 0.064 fm).
First, we observe that the five data points of χ1=4t ða; TÞ at

high temperature T > 350 MeV can be fitted by the power
law χ1=4t ðTÞ ∼ T−p, independent of the lattice spacing a.
However, the power law cannot fit all 15 data points. To
construct an analytic formula which can fit all data points of
χtðTÞ for all temperatures, one considers a function which
behaves like the power law ∼ðTc=TÞp for T ≫ Tc, but in
general, it incorporates all higher-order corrections, i.e.,

χ1=4t ðTÞ ¼ c0ðTc=TÞp
X

n¼0

bnðTc=TÞn: ð24Þ

In practice, it is vital to recast (24) into a formula with fewer
parameters, e.g.,

χ1=4t ðTÞ ¼ c0
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
: ð25Þ

It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð26Þ

Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major

FIG. 2. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T. The 15 data points with three different
lattice spacings are denoted by blue circles (a ∼ 0.075 fm), red
inverted triangles (a ∼ 0.068 fm), and green squares
(a ∼ 0.064 fm). The continuum limit resulting from fitting the
15 data points to the ansatz (26) is denoted by the black line, with
the error bars as the enveloping blue lines.

TABLE III. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of the 15 gauge ensembles in this
work, as a function of the lattice spacing a and the temperature T.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t (fm−1)

6.20 0.0636 64 20 155 545 0.420(8)
6.18 0.0685 64 16 180 650 0.418(7)
6.20 0.0636 64 16 193 1577 0.417(5)
6.15 0.0748 64 12 219 566 0.425(9)
6.18 0.0685 64 12 240 500 0.403(7)
6.20 0.0636 64 12 258 1470 0.392(6)
6.15 0.0748 64 10 263 690 0.402(7)
6.18 0.0685 64 10 288 665 0.374(9)
6.20 0.0636 64 10 310 2547 0.358(4)
6.15 0.0748 64 8 329 1581 0.353(7)
6.18 0.0685 64 8 360 1822 0.320(5)
6.20 0.0636 64 8 387 2665 0.294(6)
6.15 0.0748 64 6 438 1714 0.254(6)
6.18 0.0685 64 6 479 1983 0.226(6)
6.20 0.0636 64 6 516 3038 0.202(7)
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construct an analytic formula which can fit all data points of
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It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp
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;
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Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major
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the error bars as the enveloping blue lines.
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Summary
l Chiral fermion simulation using domain wall fermions on Fugaku underway
l Finite temperature QCD studies are on-going

l Nf=2+1 near physical point using LCP
l Nf=3 phase hunting
l Nf=2, 2+1: fate of U(1)A and relation with topology with DWF→Overlap Fermion

l led by Hidenori Fukaya (Osaka)
l Nf=2, 2+1: hadron correlation and extended symmetry at high T

l Hidenori Fukaya (Osaka), David Ward (Osaka / R-CCS), et al
l These activities are done mostly with JLQCD collaboration
l controlling the residual symmetry violation ‒ promising recent progress
l With deep chiral simulations, no signal of 1st order transition so far

Outlook
l Nf=2+1 physical point → continuum limit project underway → FY2025
l thermodynamics observables : charge fluctuations are to be investigated (J. Goswami)

l direct relevance to Heavy Ion Collision experiments
l Utilize “physical” ensemble for various physics directions

l topology → dark matter → may eventually shed light on the current confusing status

Summary and Outlook
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FIG. 5: The same figure as Fig. 4 but the temperature is normalized by Tc = 165 MeV. and the

screening mass is normalized by 2⇡T . For a comparison, the results by HotQCD collaboration [19]

which simulated Nf = 2 + 1 HISQ quarks are shown by the shadows. Except for the S channels

at the lowest two simulated temperatures, the two results look consistent with each other.

simulated quark mass m = 0.001 at T = 0.9Tc are consistent with the experimental values

at T = 0. This may indicate that the chiral symmetry is strongly broken, even for high

temperatures below the psuedocritical point. Second, the scalar S, axial vector A and axial

tensor Xt masses all reduce above T ⇠ Tc to values similar to their SU(2)L ⇥ SU(2)R or

U(1)A partners PS, V and Tt. Then above Tc, all the channels monotonically increase and

appear to converge to twice the ground state Matsubara mass 2⇡T .

Taking the di↵erence of the screening masses between the aforementioned channel part-

ners, we have examined various symmetries of QCD at high temperatures. The standard

chiral SU(2)L ⇥ SU(2)R is restored at the critical temperature Tc ⇠ 165MeV (observable

from the degeneracy of the V and A channels), consistent with the critical temperature es-

timated from the chiral susceptibility in previous work. The axial U(1)A symmetry behaves

similarly, with degeneracy between the Tt and Xt as well as PS and S at or close to Tc

although the signals are noisier. The mass di↵erence between these three channel pairs at

T ⇠ 2Tc is consistent with zero with quite small uncertainty less than 1 MeV, or 1% of the
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𝑁! = 2 screening mass
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Chiral condensate of DWF

5.2. RESEARCH ACTIVITIES 97

Figure 5.5: Renormalized susceptibility of the chiral condensate for Nt = 8 lattice (left) indicating a crossover
and Nt = 12 (right) both at � = 4.0. Use of Fugaku is indispensable to obtain these extremely high demanding
computation. Reproductions from Ref. 4 in Sec. 5.5.2.

on 243
⇥ 12 lattice.

These project involves quite a few members of the team: TL. Aoki, Goswami, Kanamori, Nakamura and
Zhang as well as the senior visiting scientists: S. Aoki and Hashimoto.

5.2.3 QCD phase structure with chiral fermions

Figure 5.4: Conventional draw of the
Columbia plot.

To discuss the possible QCD phases at finite temperature the Columbia
plot, in which the horizontal and vertical axes indicate the degenerate up-
/down and strange quark masses respectively (Fig. 5.4.) is convenient.
Recently, quite a few studies are shedding light on this plot, which is
being one of the hot topics in the finite temperature lattice QCD stud-
ies. Two regions of interest in the plot are that near the physical point
and the diagonal line near the chiral limit (origin). The aforementioned
2+1-flavor study would eventually unfold the phase structure near the
physical point. The structure along the diagonal line (so-called 3-flavor
system) is still undetermined yet.

We are trying to solve the degenerate 3-flavor phase structure using
DWF. Through a series of parameter search studies conducted on Ito
subsystem at Kyushu University through HPCI as well as on the HOKU-
SAI BigWaterfall, we have captured a signal of possibly a cross-over at
high temperature and large quark mass region using a fixed � = 4.0
and temporal lattice size Nt = 6. Getting larger resource on Fugaku
(5M NH) through HPCI program (FY2021) we accumulated the statis-
tics significantly and further extended our reach to larger volume quite
easily, where we find a clear-cut evidence of a crossover from the plaque-
tte susceptibility. Searching smaller quark mass needs to reduce the temperature. The simulations on Nt = 8
� = 4.0 system is carried out and obtained the results shown in the left panel of Fig. 5.5. The susceptibility of
the chiral condensate at fixed temperature (T ⇡ 180 MeV) developing a peak at the quark mass m ⇡ 44 MeV
in MS µ = 2 GeV. As the two volume results are consistent with each other, this mass point also exhibits a
crossover. With the same � (thus same lattice spacing) Nt = 12 simulations are being performed using Fugaku
through HPCI (FY2022B). The results shown in the right panel is a preliminary results using a single volume
thus no conclusion can be made on the existence of real phase transition. However the peak position shows the
(pseudo) critical mass is around m ⇡ 3.7 MeV, which is almost on top of the physical ud quark mass. We are
extending the simulation to larger volume as well as to the lower temperature to hunt the phase boundary.

This project involves: Aoki, Nakamura, Hashimoto, Kanamori, Zhang.

①
②

③
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③ T=120 MeV

T=0 T=0

before 𝑥𝑚-.% subtraction

This is what we expected, then the choice of our initial parameters for Ls = 32 is what we324

aiming for. From Fig. 12, we can see that the values of mres for Ls = 16 computed at fixed325

� = 4.0 for both zero temperature and finite temperature ensembles are consistent.326
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FIG. 13. Chiral condensate (Top) and subtracted chiral condensate (bottom) as a function of

renormalized quark mass for Ls = 16 and Ls = 32 lattices.

From the top panel of Fig. 13, we observe that close to the chiral limit, the chiral con-327

densate is negative for 243 ⇥ 12 ⇥ 16 ensembles, and this is due to the lack of exact chi-328

ral symmetry even after taking chiral limit as shown as limmq+mres!0 limV!0 h ̄ i|DWF ⇠329

C
(x�1)mres

a2 + h ̄ i|cont, it indicates C(x � 1) < 0. We also see that increasing Ls from330

16 to 32 while keeping the total quark masses roughly the same causes an increase of331

the chiral condensate. This is easy to understand, we can rewrite Eq. 3 as h ̄ i|DWF ⇠332

C
� (x�1)mres

a2 + mq+mres

a2

�
+ h ̄ i|cont + ... . Since mres is smaller for Ls = 32 than Ls = 16 and333

C(x � 1) < 0, for the similar total quark mass, the chiral condensate result for Ls = 32 is334

always larger than Ls = 16. We expect that with Ls = 32, the residual chiral symmetry335

breaking e↵ect will become smaller, and this can be seen if we do the extrapolation to the336

chiral limit.337

The unwanted UV divergence part Cmq+xmres

a2 which appears in the chiral condensate can338

be subtracted if we know the value of C/a2 and x. Since this divergence term is temperature339

independent, we can obtain C/a
2 from the fit for the zero temperature result as shown by340

the green dashed line on the top panel of Fig. 5. C/a2 is equal to the coe�cient (b1) of the341

linear term in the quadratic fit and the result is 4.4(1)[GeV2]. At temperatures larger than342

the critical temperature and chiral limit, we assume h ̄ i|cont is zero. Then by performing343

a linear fit using the three smallest finite temperature chiral condensate results near the344
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for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-

tibility χ1=4t ða; TÞ (in units of fm−1) of 15 gauge ensembles
are listed in the last column of Table III, where the error
combines the statistical and the systematic ones. Here, the
systematic error is estimated from the difference of
χ1=4t ða; TÞ using two definitions Qt, i.e., Qclover and its
nearest integer round½Qclover%. The statistical error is esti-
mated using the jackknife method with the bin size of which
the statistical error saturates. The results of χ1=4t ða; TÞ of 15
gauge ensembles are plotted in Fig. 2. They are denoted by
blue circles (for a ∼ 0.075 fm), red inverted triangles (for
a ∼ 0.068 fm), and green squares (for a ∼ 0.064 fm).
First, we observe that the five data points of χ1=4t ða; TÞ at

high temperature T > 350 MeV can be fitted by the power
law χ1=4t ðTÞ ∼ T−p, independent of the lattice spacing a.
However, the power law cannot fit all 15 data points. To
construct an analytic formula which can fit all data points of
χtðTÞ for all temperatures, one considers a function which
behaves like the power law ∼ðTc=TÞp for T ≫ Tc, but in
general, it incorporates all higher-order corrections, i.e.,

χ1=4t ðTÞ ¼ c0ðTc=TÞp
X

n¼0

bnðTc=TÞn: ð24Þ

In practice, it is vital to recast (24) into a formula with fewer
parameters, e.g.,

χ1=4t ðTÞ ¼ c0
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
: ð25Þ

It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð26Þ

Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major

FIG. 2. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T. The 15 data points with three different
lattice spacings are denoted by blue circles (a ∼ 0.075 fm), red
inverted triangles (a ∼ 0.068 fm), and green squares
(a ∼ 0.064 fm). The continuum limit resulting from fitting the
15 data points to the ansatz (26) is denoted by the black line, with
the error bars as the enveloping blue lines.

TABLE III. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of the 15 gauge ensembles in this
work, as a function of the lattice spacing a and the temperature T.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t (fm−1)

6.20 0.0636 64 20 155 545 0.420(8)
6.18 0.0685 64 16 180 650 0.418(7)
6.20 0.0636 64 16 193 1577 0.417(5)
6.15 0.0748 64 12 219 566 0.425(9)
6.18 0.0685 64 12 240 500 0.403(7)
6.20 0.0636 64 12 258 1470 0.392(6)
6.15 0.0748 64 10 263 690 0.402(7)
6.18 0.0685 64 10 288 665 0.374(9)
6.20 0.0636 64 10 310 2547 0.358(4)
6.15 0.0748 64 8 329 1581 0.353(7)
6.18 0.0685 64 8 360 1822 0.320(5)
6.20 0.0636 64 8 387 2665 0.294(6)
6.15 0.0748 64 6 438 1714 0.254(6)
6.18 0.0685 64 6 479 1983 0.226(6)
6.20 0.0636 64 6 516 3038 0.202(7)
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for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-

tibility χ1=4t ða; TÞ (in units of fm−1) of 15 gauge ensembles
are listed in the last column of Table III, where the error
combines the statistical and the systematic ones. Here, the
systematic error is estimated from the difference of
χ1=4t ða; TÞ using two definitions Qt, i.e., Qclover and its
nearest integer round½Qclover%. The statistical error is esti-
mated using the jackknife method with the bin size of which
the statistical error saturates. The results of χ1=4t ða; TÞ of 15
gauge ensembles are plotted in Fig. 2. They are denoted by
blue circles (for a ∼ 0.075 fm), red inverted triangles (for
a ∼ 0.068 fm), and green squares (for a ∼ 0.064 fm).
First, we observe that the five data points of χ1=4t ða; TÞ at

high temperature T > 350 MeV can be fitted by the power
law χ1=4t ðTÞ ∼ T−p, independent of the lattice spacing a.
However, the power law cannot fit all 15 data points. To
construct an analytic formula which can fit all data points of
χtðTÞ for all temperatures, one considers a function which
behaves like the power law ∼ðTc=TÞp for T ≫ Tc, but in
general, it incorporates all higher-order corrections, i.e.,

χ1=4t ðTÞ ¼ c0ðTc=TÞp
X

n¼0

bnðTc=TÞn: ð24Þ

In practice, it is vital to recast (24) into a formula with fewer
parameters, e.g.,

χ1=4t ðTÞ ¼ c0
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
: ð25Þ

It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð26Þ

Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major

FIG. 2. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T. The 15 data points with three different
lattice spacings are denoted by blue circles (a ∼ 0.075 fm), red
inverted triangles (a ∼ 0.068 fm), and green squares
(a ∼ 0.064 fm). The continuum limit resulting from fitting the
15 data points to the ansatz (26) is denoted by the black line, with
the error bars as the enveloping blue lines.

TABLE III. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of the 15 gauge ensembles in this
work, as a function of the lattice spacing a and the temperature T.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t (fm−1)

6.20 0.0636 64 20 155 545 0.420(8)
6.18 0.0685 64 16 180 650 0.418(7)
6.20 0.0636 64 16 193 1577 0.417(5)
6.15 0.0748 64 12 219 566 0.425(9)
6.18 0.0685 64 12 240 500 0.403(7)
6.20 0.0636 64 12 258 1470 0.392(6)
6.15 0.0748 64 10 263 690 0.402(7)
6.18 0.0685 64 10 288 665 0.374(9)
6.20 0.0636 64 10 310 2547 0.358(4)
6.15 0.0748 64 8 329 1581 0.353(7)
6.18 0.0685 64 8 360 1822 0.320(5)
6.20 0.0636 64 8 387 2665 0.294(6)
6.15 0.0748 64 6 438 1714 0.254(6)
6.18 0.0685 64 6 479 1983 0.226(6)
6.20 0.0636 64 6 516 3038 0.202(7)
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for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-

tibility χ1=4t ða; TÞ (in units of fm−1) of 15 gauge ensembles
are listed in the last column of Table III, where the error
combines the statistical and the systematic ones. Here, the
systematic error is estimated from the difference of
χ1=4t ða; TÞ using two definitions Qt, i.e., Qclover and its
nearest integer round½Qclover%. The statistical error is esti-
mated using the jackknife method with the bin size of which
the statistical error saturates. The results of χ1=4t ða; TÞ of 15
gauge ensembles are plotted in Fig. 2. They are denoted by
blue circles (for a ∼ 0.075 fm), red inverted triangles (for
a ∼ 0.068 fm), and green squares (for a ∼ 0.064 fm).
First, we observe that the five data points of χ1=4t ða; TÞ at

high temperature T > 350 MeV can be fitted by the power
law χ1=4t ðTÞ ∼ T−p, independent of the lattice spacing a.
However, the power law cannot fit all 15 data points. To
construct an analytic formula which can fit all data points of
χtðTÞ for all temperatures, one considers a function which
behaves like the power law ∼ðTc=TÞp for T ≫ Tc, but in
general, it incorporates all higher-order corrections, i.e.,

χ1=4t ðTÞ ¼ c0ðTc=TÞp
X

n¼0

bnðTc=TÞn: ð24Þ

In practice, it is vital to recast (24) into a formula with fewer
parameters, e.g.,

χ1=4t ðTÞ ¼ c0
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
: ð25Þ

It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð26Þ

Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major

FIG. 2. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T. The 15 data points with three different
lattice spacings are denoted by blue circles (a ∼ 0.075 fm), red
inverted triangles (a ∼ 0.068 fm), and green squares
(a ∼ 0.064 fm). The continuum limit resulting from fitting the
15 data points to the ansatz (26) is denoted by the black line, with
the error bars as the enveloping blue lines.

TABLE III. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of the 15 gauge ensembles in this
work, as a function of the lattice spacing a and the temperature T.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t (fm−1)

6.20 0.0636 64 20 155 545 0.420(8)
6.18 0.0685 64 16 180 650 0.418(7)
6.20 0.0636 64 16 193 1577 0.417(5)
6.15 0.0748 64 12 219 566 0.425(9)
6.18 0.0685 64 12 240 500 0.403(7)
6.20 0.0636 64 12 258 1470 0.392(6)
6.15 0.0748 64 10 263 690 0.402(7)
6.18 0.0685 64 10 288 665 0.374(9)
6.20 0.0636 64 10 310 2547 0.358(4)
6.15 0.0748 64 8 329 1581 0.353(7)
6.18 0.0685 64 8 360 1822 0.320(5)
6.20 0.0636 64 8 387 2665 0.294(6)
6.15 0.0748 64 6 438 1714 0.254(6)
6.18 0.0685 64 6 479 1983 0.226(6)
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optimal DWF
Nf=2+1+1

MDWF
Nf=2+1

physical point 
L=48 - Nt=12 and 16 are 
very preliminary (low statistics)

tree-level improved Symanzik gauge action and the stout
improved staggered fermion action. The continuum limit of
χ1=4was obtained by extrapolationwith three lattice spacings
a ¼ ð0.0572; 0.0707; 0.0824Þ fm.The topological charge of
each configuration was measured by the clover charge after
cooling.
The results of Petreczky et al. [20] were obtained from

simulations of Nf ¼ 2þ 1 lattice QCD with mπ ¼
160 MeV and ms=mud ¼ 20 (physical ms), using the
tree-level improved gauge action and the highly improved
staggered quark action (HISQ). The continuum limit of χ1=4t
is obtained by extrapolation with three lattice spacings with
Nt ¼ ð8; 10; 12Þ. They used two methods to measure the
topological susceptibility: 1) the clover charge in the
Symanzik flow and 2) the chiral susceptibilities χπ and
χδ and the relation χt ¼ m2

udχdisc for T > Tc. Both methods
gave compatible results. In Fig. 6, only the data points
obtained with the clover charge are plotted.
The topological susceptibility of Borsanyi et al. [21] was

measured by the clover charge in the Wilson flow, and the
data points in Fig. 6 are based on the numerical results in
Table S9 of the Supplementary Information of Ref. [21],
which are supposed to be the continuum extrapolated
topological susceptibility of Nf ¼ 2þ 1þ 1 QCD at the
physical point, plus the theoretically estimated contribution
of the b quark and the correction for the mass difference
between u and d quarks. However, only seven data points in
the range of T ¼ 130–300 MeV were based on direct
simulations of Nf ¼ 2þ 1þ 1 lattice QCD at the physical
point, using the tree-level Symanzik gauge action and the
staggered quark action with four levels of stout smearing.
For other data points, they were obtained by the fixed sector
integral and the eigenvalue reweighting techniques from
three sets of unphysical simulations:
(a) Nf ¼ 3þ 1 (three flavors of physical ms and one

flavor of physical mc) for T ¼ 150–500 MeV;
(b) same as (a) but at fixed topology for T ¼

300–3000 MeV;

(c) Nf ¼ 2þ 1 overlap fermions at fixed topology for
three temperatures, T ¼ ð300; 450; 650Þ MeV, and
each for six mud quark masses between physical ms

and physical mphys
ud .

Thus, for comparison with other lattice results, we focus on
their data points in the range of T ¼ 150–300 MeV, which
were obtained by direct simulations at the physical point,
corrected by the eigenvalue reweighting, and extrapolated
to the continuum limit.
First, we compare the results of Bonati et al. [19],

Petreczky et al. [20], and Borsanyi et al. [21]. Evidently,
the discrepancies between Petreczky et al. and Borsanyi
et al. are much smaller than those between Bonati et al. and
Borsanyi et al. Moreover, after the results of Petreczky
et al. [20] are transformed from mπ ¼ 160 MeV to the
physical point by the relation χ1=4t ∝ mπ , they seem to be in
good agreement with the results of Borsanyi et al. [21].
In a more recent study by Bonati et al. [49] in Nf ¼

2þ 1 lattice QCD at the physical point with tree-level
improved Symanzik gauge action and the stout improved
staggered fermion action, using the multicanonical algo-
rithm (to enhance the topological fluctuations), they
obtained the continuum extrapolated χ1=4t ¼ ð3% 3%
2Þ MeV at T ≃ 430 MeV, which is ∼9σ different from
their previous result ∼38ð2Þ MeV in Ref. [19]. The
topological charge of each configuration is measured by
the clover charge after cooling. Then, in the most recent
study of the same group [50], using the same set of
ensembles at T ≃ 430 MeV [49], they obtained the con-
tinuum extrapolated χ1=4t ∼ 20ð3Þ MeV (read off from
Fig. 2 of Ref. [50]), which is ∼5σ different from their
2018 result [49] and ∼3σ different from 9(1) MeV of
Borsanyi et al. [21]. Note that in Ref. [50] two methods had
been used to measure the χt: 1) the index of the staggered
spectral projector and 2) the clover charge after cooling.
Both methods gave compatible results.
In Table VI, we compile all results of continuum

extrapolated χ1=4t at T ≃ 430 MeV, together with their
lattice actions, simulation methods and techniques, and
methods (gluonic and fermionic ones) for χt measurement.
We note that there are ongoing studies of χtðTÞ in Nf ¼

2þ 1þ 1 lattice QCD with Wilson twisted mass fermions
[22,51]. Using the relation χt ¼ m2

udχdisc to measure χt via
the noise estimation of the disconnected chiral susceptibil-
ity of u=d quarks, they obtained χ1=4t ∼ 10ð2Þ MeV at
T ≃ 430 MeV, with mπ ¼ 210 MeV and a ∼ 0.065 fm
[22]. Their recent results at the physical point with mπ ¼
139ð1Þ MeV and a ∼ 0.080 fm were presented in Ref. [51]
and at T ≃ 430 MeV, χ1=4t ∼ 4ð1Þ MeV (read off from
Fig. 2 of Ref. [51]). This implies that the continuum
extrapolated χ1=4 at T ≃ 430 MeV would be less than
4(1) MeV. This is added to Table VI for comparison with
other continuum extrapolated χ1=4t at the same temperature.

FIG. 6. Comparison of the continuum extrapolated fourth-root
topological susceptibility χ1=4t ðTÞ for four lattice studies.
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for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-

tibility χ1=4t ða; TÞ (in units of fm−1) of 15 gauge ensembles
are listed in the last column of Table III, where the error
combines the statistical and the systematic ones. Here, the
systematic error is estimated from the difference of
χ1=4t ða; TÞ using two definitions Qt, i.e., Qclover and its
nearest integer round½Qclover%. The statistical error is esti-
mated using the jackknife method with the bin size of which
the statistical error saturates. The results of χ1=4t ða; TÞ of 15
gauge ensembles are plotted in Fig. 2. They are denoted by
blue circles (for a ∼ 0.075 fm), red inverted triangles (for
a ∼ 0.068 fm), and green squares (for a ∼ 0.064 fm).
First, we observe that the five data points of χ1=4t ða; TÞ at

high temperature T > 350 MeV can be fitted by the power
law χ1=4t ðTÞ ∼ T−p, independent of the lattice spacing a.
However, the power law cannot fit all 15 data points. To
construct an analytic formula which can fit all data points of
χtðTÞ for all temperatures, one considers a function which
behaves like the power law ∼ðTc=TÞp for T ≫ Tc, but in
general, it incorporates all higher-order corrections, i.e.,

χ1=4t ðTÞ ¼ c0ðTc=TÞp
X

n¼0

bnðTc=TÞn: ð24Þ

In practice, it is vital to recast (24) into a formula with fewer
parameters, e.g.,

χ1=4t ðTÞ ¼ c0
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
: ð25Þ

It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð26Þ

Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major

FIG. 2. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T. The 15 data points with three different
lattice spacings are denoted by blue circles (a ∼ 0.075 fm), red
inverted triangles (a ∼ 0.068 fm), and green squares
(a ∼ 0.064 fm). The continuum limit resulting from fitting the
15 data points to the ansatz (26) is denoted by the black line, with
the error bars as the enveloping blue lines.

TABLE III. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of the 15 gauge ensembles in this
work, as a function of the lattice spacing a and the temperature T.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t (fm−1)

6.20 0.0636 64 20 155 545 0.420(8)
6.18 0.0685 64 16 180 650 0.418(7)
6.20 0.0636 64 16 193 1577 0.417(5)
6.15 0.0748 64 12 219 566 0.425(9)
6.18 0.0685 64 12 240 500 0.403(7)
6.20 0.0636 64 12 258 1470 0.392(6)
6.15 0.0748 64 10 263 690 0.402(7)
6.18 0.0685 64 10 288 665 0.374(9)
6.20 0.0636 64 10 310 2547 0.358(4)
6.15 0.0748 64 8 329 1581 0.353(7)
6.18 0.0685 64 8 360 1822 0.320(5)
6.20 0.0636 64 8 387 2665 0.294(6)
6.15 0.0748 64 6 438 1714 0.254(6)
6.18 0.0685 64 6 479 1983 0.226(6)
6.20 0.0636 64 6 516 3038 0.202(7)
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for T ∼ 155 MeV (in the upper panel) and T ∼ 516 MeV
(in the lower panel). Evidently, as the temperature gets
higher, χtða; TÞ attains its plateau value at a larger
flow time.
To extrapolate the topological susceptibility χt ¼

hQ2
t i=V to the continuum limit, Qt is required to be

measured at the same physical flow time for all lattice
spacings, which is chosen to be 0.8192 fm2 such that χt
attains its plateau for all gauge ensembles in this study.
The results of the fourth root of the topological suscep-

tibility χ1=4t ða; TÞ (in units of fm−1) of 15 gauge ensembles
are listed in the last column of Table III, where the error
combines the statistical and the systematic ones. Here, the
systematic error is estimated from the difference of
χ1=4t ða; TÞ using two definitions Qt, i.e., Qclover and its
nearest integer round½Qclover%. The statistical error is esti-
mated using the jackknife method with the bin size of which
the statistical error saturates. The results of χ1=4t ða; TÞ of 15
gauge ensembles are plotted in Fig. 2. They are denoted by
blue circles (for a ∼ 0.075 fm), red inverted triangles (for
a ∼ 0.068 fm), and green squares (for a ∼ 0.064 fm).
First, we observe that the five data points of χ1=4t ða; TÞ at

high temperature T > 350 MeV can be fitted by the power
law χ1=4t ðTÞ ∼ T−p, independent of the lattice spacing a.
However, the power law cannot fit all 15 data points. To
construct an analytic formula which can fit all data points of
χtðTÞ for all temperatures, one considers a function which
behaves like the power law ∼ðTc=TÞp for T ≫ Tc, but in
general, it incorporates all higher-order corrections, i.e.,

χ1=4t ðTÞ ¼ c0ðTc=TÞp
X

n¼0

bnðTc=TÞn: ð24Þ

In practice, it is vital to recast (24) into a formula with fewer
parameters, e.g.,

χ1=4t ðTÞ ¼ c0
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
: ð25Þ

It turns out that the six data points of χ1=4t at a ∼
0.064 fm (β ¼ 6.20) are well fitted by (25). Thus, for the
global fitting of all χ1=4t ða; TÞ with different a and T, the
simplest extension of (25) is to replace c0 with (c0 þ c1a2).
This leads to our ansatz

χ1=4t ða; TÞ ¼ ðc0 þ c1a2Þ
ðTc=TÞp

1þ b1ðTc=TÞ þ b2ðTc=TÞ2
;

Tc ¼ 150 MeV: ð26Þ

Fitting the 15 data points of χ1=4t in Table III to (26), it
gives c0 ¼ 1.89ð3Þ, c1 ¼ 32.2ð6.8Þ, p ¼ 2.03ð5Þ, b1 ¼
−2.42ð19Þ, and b2 ¼ 6.25ð14Þ with χ2=d:o:f: ¼ 0.21.
Note that the fitted value of the exponent p is rather
insensitive to the choice of Tc ¼ 150 MeV; i.e., any value
of Tc in the range of 145–155 MeV gives almost the same
value of p. Then, χ1=4t ðTÞ in the continuum limit can be
obtained by setting a2 ¼ 0 in (26), which is plotted as the
solid black line in Fig. 2, with the error bars denoted by the
enveloping blue solid lines. In the limit T ≫ Tc, it becomes
χ1=4t ðTÞ ¼ c0ðTc=TÞ2.03ð5Þ, i.e., χtðTÞ ¼ c40ðTc=TÞ8.1ð2Þ,
which agrees with the temperature dependence of χtðTÞ
in the DIGA [15], i.e., χtðTÞ ∼ T−8.3 for Nf ¼ 4. This also
implies that our data points of χtða; TÞ for T > 350 MeV
are valid, up to an overall constant factor.
It is interesting to note that our 15 data points of χtða; TÞ

are only up to the temperature T ∼ 515 MeV. Nevertheless,
they are sufficient to fix the coefficients of (26), which in
turn can give χtðTÞ for any T > Tc. This is the major

FIG. 2. The fourth root of topological susceptibility χ1=4t ða; TÞ
vs the temperature T. The 15 data points with three different
lattice spacings are denoted by blue circles (a ∼ 0.075 fm), red
inverted triangles (a ∼ 0.068 fm), and green squares
(a ∼ 0.064 fm). The continuum limit resulting from fitting the
15 data points to the ansatz (26) is denoted by the black line, with
the error bars as the enveloping blue lines.

TABLE III. The fourth root of the topological susceptibility
χ1=4t ða; TÞ (in units of fm−1) of the 15 gauge ensembles in this
work, as a function of the lattice spacing a and the temperature T.

β a (fm) Nx Nt T (MeV) Nconfs χ1=4t (fm−1)

6.20 0.0636 64 20 155 545 0.420(8)
6.18 0.0685 64 16 180 650 0.418(7)
6.20 0.0636 64 16 193 1577 0.417(5)
6.15 0.0748 64 12 219 566 0.425(9)
6.18 0.0685 64 12 240 500 0.403(7)
6.20 0.0636 64 12 258 1470 0.392(6)
6.15 0.0748 64 10 263 690 0.402(7)
6.18 0.0685 64 10 288 665 0.374(9)
6.20 0.0636 64 10 310 2547 0.358(4)
6.15 0.0748 64 8 329 1581 0.353(7)
6.18 0.0685 64 8 360 1822 0.320(5)
6.20 0.0636 64 8 387 2665 0.294(6)
6.15 0.0748 64 6 438 1714 0.254(6)
6.18 0.0685 64 6 479 1983 0.226(6)
6.20 0.0636 64 6 516 3038 0.202(7)
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