

Compact binaries and gravitational-wave astronomy

Irina Dvorkin

Institut d'Astrophysique de Paris

Sorbonne Université

Institut Universitaire de France

Benasque, March 2025

Lecture plan

- Evolution of massive stars and formation of compact objects
- Evolution of <u>binary</u> massive stars and formation of <u>binary</u> compact objects
- Gravitational-wave astronomy
- Gravitational-wave observations of binary compact objects

Lecture plan

- Evolution of massive stars and formation of compact objects
 - Evolution up to core collapse
 - Core collapse
 - Remnant neutron star of black hole?

Massive stars

Nuclear burning cycles

Nuclear burning cycles

- $4^1 H \rightarrow 4^4 He$ Main sequence: hydrogen fusion into helium Θ $3^4 \text{He} \rightarrow {}^{12} \text{C}^* \rightarrow {}^{12} \text{C}$ Triple alpha: helium fusion into carbon \bigcirc $^{12}C + ^{4}He \rightarrow ^{16}O$ Carbon and oxygen fusion $^{16}\text{O} + ^{4}\text{He} \rightarrow ^{20}\text{Ne}$ $^{16}\text{O} + ^{16}\text{O} \rightarrow ^{28}\text{Si} + ^{4}\text{He}$ 20 Ne +⁴ He \rightarrow ²⁴ Mg Neon fusion Θ $^{28}\text{Si} + ^{4}\text{He} \rightarrow ^{32}\text{Si}$ Silicon fusion \bigcirc
 - … and so on up to iron

³⁶Ar, ⁴⁰Ca, ⁴⁴Ti, ⁴⁸Cr, ⁵²Fe, ⁵⁶Ni, ⁵⁶Co

Nuclear burning cycles

- Nuclear fuel in the current cycle is exhausted.
- Nuclear reaction rate decreases.
- Stellar core contracts.
- Central temperature and density increase.
- A new fusion cycle starts.

burning stage	$T (10^9 \text{K})$	ρ (g/cm ³)	fuel	main products	timescale
hydrogen	0.035	5.8	Н	He	1.1×10^7 yr
helium	0.18	1.4×10^{3}	He	C, O	$2.0 \times 10^6 \text{ yr}$
carbon	0.83	2.4×10^{5}	С	O, Ne	$2.0 \times 10^3 \text{ yr}$
neon	1.6	7.2×10^{6}	Ne	O, Mg	0.7 yr
oxygen	1.9	6.7×10^{6}	O, Mg	Si, S	2.6 yr
silicon	3.3	4.3×10^{7}	Si, S	Fe, Ni	18 d

Table 12.1. Properties of nuclear burning stages in a 15 M_{\odot} star (from Woosley et al. 2002).

[O. Pols: Stellar structure and evolution]

Onion shell structure

Credit: http://astronomy.nmsu.edu/tharriso/ast110/class19.html

Stellar winds

• Massive stars ($> 15M_{\odot}$) experience rapid mass outflows

Туре	$T_{\rm eff}$	М	v_{∞}	М
	(kK)	(M_{\odot})	(km/s)	$(M_{\odot} \mathrm{yr}^{-1})$
Sun	6	1	~500	10 ⁻¹⁴
0	30-45	20-60	2000-3500	$10^{-7} - 10^{-5}$

• Modelled as stationary outflow $\dot{M} = 4\pi r^2 \rho(r) v(r)$

Wind acceleration, with a(r) from radiation (or other sources):

$$v\left(\frac{dv}{dr}\right) = -\frac{GM}{r^2} - \frac{1}{\rho}\frac{dp}{dr} + a(r)$$

Wind acceleration due to radiation pressure

Irina Dvorkin

Massive star right before core collapse

Credit: Richard Pogge

Massive star right before core collapse

[Griffiths et al., arXiv:2408.03368]

Core collapse

[Sumiyoshi et al., arXiv:2207.00033]

Core collapse

Core collapse and formation of a neutron star

[Janka et al., arXiv:0612072]

Core collapse and formation of a neutron star

[Janka et al., arXiv:0612072]

Core collapse and formation of a neutron star

[Janka et al., arXiv:0612072]

The fate of massive stars

Zero-age Main Sequence mass (solar masses)

The fate of massive stars: islands of explodability

[Pejcha & Thompson, arXiv:1409.0540]

Explodability criteria

- Criteria based on pre-supernova structure
 - Criteria for zero-age main sequence stars depend also on stellar evolution

• Compactness
$$\xi_M = \frac{M/M_{\odot}}{R(M_{bary} = M)/1000 \ km}$$

• For example: if $\xi_2 < 0.5$ star explodes

Explodability of various stellar models

Compactness seems to be non-monotonic with (initial) stellar mass!

Explodability of various stellar models

- Compactness seems to be non-monotonic with (initial) stellar mass!
- Episodes of convective burning in shells surrounding the core (carbon, oxygen, silicon) have a large effect on compactness

 Modelling uncertainties: convection regions; rates of some nuclear reactions

$$^{12}\text{C} + ^{4}\text{He} \rightarrow ^{16}\text{O}$$

Credit: T. Sukhbold (PhD thesis)

Neutron star structure

Neutron star equation of state

Pressure vs. density $P(\rho)$ at and above the nuclear saturation density

 Tolman-Oppenheimer-Volkov (TOV) equations

$$\frac{dM(r)}{dr} = 4\pi r^2 \rho(r)$$

$$\frac{dP(r)}{dr} = -\frac{GM(r)\rho(r)}{r^2} \left(1 + \frac{P}{\rho}\right) \left(1 + \frac{4\pi r^3 P}{M(r)}\right) \left(1 - \frac{2GM}{r}\right)^{-1}$$

Tidal deformability

- A spherically symmetric neutron star is placed in a static external quadrupolar tidal field ε
- The induced quadrupolar moment is: $Q = -\lambda \epsilon$
- **Tidal deformability** λ

• Tidal Love number k_2 (obtained by solving the TOV eqs): $\lambda = \frac{2}{3}k_2\left(\frac{Rc^2}{G}\right)^3$

• Dimensionless tidal deformability:
$$\Lambda = \frac{\lambda}{M^5}$$

Neutron stars: from theory to observed quantities

See [Chatziioannou et al., arXiv:2407.11153]

Tidal deformability

Neutron star mass-radius relation

- Stiff EOS: high maximum mass, large radii
- Soft EOS: low maximum mass, small radii

Burgio et al., arXiv:2105.03747

Neutron star equation of state: observational constraints

Black hole formation

- If the mass of the proto-neutron star is above the maximally allowed limit: further collapse to a black hole
- Until recent years: no black holes heavier than $\sim 5 M_{\odot}$. Is there a mass gap between neutron stars and black holes?

Pair instability in massive stars

- Electron-positron pairs remove pressure from the star $\gamma + \gamma \rightarrow e^+ + e^-$
- If pressure is radiation-dominated, this leads to local thermal instability
- Contraction, increase in temperature, increase in pair production rate
- Runaway oxygen/silicon burning
- Disruption of the star
Pair instability (PI) and pulsational pair instability (PPI)

Pair instability and the upper mass gap

[Renzo and Smith, arXiv:2407.16113]

Pair instability: dependence on metallicity

[Spera et al., arXiv:2206.15392]

Uncertainty in nuclear reaction rates

 $^{12}C + ^{4}He \rightarrow ^{16}O$ determines the amount of oxygen available for explosive burning

[Renzo & Smith, arXiv:2407.16113]

Neutron star and (stellar) black hole masses

- Lower limit on NS: Chandrasekhar mass
- Upper limit on NS/lower limit on BH: equation of state
- Mass gap between NS and BH ???
- Upper limit on **BH**: pair-instability (initial stellar mass?)

Lecture plan

- Evolution of massive stars and formation of compact objects
- Evolution of <u>binary</u> massive stars and formation of <u>binary</u> compact objects
- Gravitational-wave astronomy
- Gravitational-wave observations of binary compact objects

Lecture plan

- Evolution of <u>binary</u> massive stars and formation of <u>binary</u> compact objects
 - Physical processes in binary stars
 - Modelling methods and challenges
 - Observables

Most stars live in binaries

1

Key processes in binary stars

- Stable mass transfer
- Unstable mass transfer
- Supernova kicks and binary disruption

[Credit: Robert Hynes]

	single star		close binary star	
initial mass	He-core mass	final remnant	He-core mass	final remnant
$\lesssim 2.0 M_{\odot}$	$\approx 0.6 M_{\odot}$	CO white dwarf	$< 0.47 M_{\odot}$	He white dwarf
$2.0-6M_\odot$	$0.6 - 1.7 M_{\odot}$	CO white dwarf	$0.4 - 1.3 M_{\odot}$	CO white dwarf
$6-8 M_{\odot}$	$1.7 - 2.2 M_{\odot}$	ONe white dwarf	$1.3 - 1.7 M_{\odot}$	CO white dwarf
$8 - 10 M_{\odot}$	$2.2 - 3.0 M_{\odot}$	neutron star	$1.7 - 2.2 M_{\odot}$	ONe white dwarf
$10-25 M_{\odot}$	$3.0 - 10 M_{\odot}$	neutron star	$2.2 - 8 M_{\odot}$	neutron star
$\gtrsim 25~M_{\odot}$	$> 10 M_{\odot}$	black hole	$> 8 M_{\odot}$	neutron star/black hole

[O. Pols: Stellar structure and evolution]

Initial distribution of binary parameters

- Orbital period
- Eccentricity
- Mass ratio

[Credit: Clément Pellouin]

Roche lobe

a : separation between the stars

$$q = M_1/M_2$$
 : mass ratio

Binary stars and their Roche lobes

Stars may be deformed but no mass exchange

Stable mass transfer: Roche lobe overflow (RLO)

Possible formation of an accretion disk

Unstable mass transfer?

Merger?

Stable mass transfer

- Accretion of (some fraction) of wind from the companion
- Roche Lobe Overflow:
 - Binary orbit shrinks
 - Radius of one of the star increases

Stability of mass transfer

Derivative of donor radius to its mass: $\zeta_* = \frac{dR}{dM}$

- Derivative of donor Roche Lobe radius to its mass: $\zeta_L = \frac{dR_L}{dM}$
- If $\zeta_* > \zeta_L$: mass transfer is stable (Roche Lobe radius increases faster than stellar radius)

Stability of mass transfer

 $M_{\rm tot} = 2 M_{\odot}$

Total mass and angular momentum are conserved

Donor star fills its Roche lobe:

Example 1: $A \rightarrow B$

Example 2: $D \rightarrow E$

Stellar radius reacts to mass loss

Example 1: $R < R_L$

Example 2: $R > R_L$

Common envelope

Necessary to explain the existence of compact binaries!

Merger time due to emission of gravitational waves:

$$t_{\rm merg} = \frac{5}{256} \frac{c^5}{G^3} \frac{a_{\rm i}^4}{M_1 M_2 (M_1 + M_2)}$$

Initial separation needed to merge within a Hubble time:

$$a_{
m i} \simeq 4.8 R_{\odot} \left(rac{M}{1.4 \; M_{\odot}}
ight)^{3/4} \left(rac{t_{
m merg}}{13.8 \; {
m Gyr}}
ight)^{1/4}$$

• But radius of a red supergiant: $10^2 R_{\odot} - 10^3 R_{\odot}$

Simple common envelope model

Envelope binding energy

$$E_{\text{bind}} = -\int_{M_c}^{M} \frac{Gm}{R(m)} dm = -\frac{GM_{\text{don}}M_{\text{env}}}{\lambda R_{\text{don}}}$$

• Orbital energy:
$$E_{\rm orb} = -\frac{1}{2} \frac{GM_{\rm don}M_{\rm comp}}{a}$$

Some fraction is used to unbind the envelope

$$\Delta E_{\rm bind} = \alpha_{\rm CE} \Delta E_{\rm orb}$$

Assuming envelope is ejected:

$$E_{\mathrm{orb,f}} = E_{\mathrm{orb,i}} + \frac{E_{\mathrm{bind,i}}}{\alpha_{\mathrm{CE}}}$$

Supernova natal kicks

Assume Maxwellian distribution of kick velocity after each supernova

$$P(v_{\mathbf{k}}) = \sqrt{rac{2}{\pi}} rac{v_{\mathbf{k}}^2}{\sigma_{\mathbf{k}}^3} \exp\left(-rac{v_{\mathbf{k}}^2}{2\sigma_{\mathbf{k}}^2}
ight)$$

- Velocity dispersion: $\sigma_k \sim \mathcal{O}(100)$
- Reduced kicks due to fallback
- Reduced kicks if low explosion energy
- Random kick direction

[Callister et al., arXiv:2011.09570]

Formation of compact binaries

'Standard' scenario:

- Massive stellar binary
- First supernova (possible birth kick)
- NS/BH + massive star
- Massive star expands, Roche lobe overflow
- Common envelope
- NS/BH + He star
 - Possible: second Roche lobe overflow
- Second supernova (possible birth kick)
- NS/BH + NS/BH
- Merger

Binary neutron stars: formation

Modelling binary stars

Full hydrodynamical simulations (1D/2D/3D)

Modules for Experiments in Stellar Astrophysics

mesastar.org

Semi-analytic population synthesis codes:

Binary massive stars (masses, separation, eccentricity)

Stellar evolution, mass transfer, winds, ... Supernova explosion (remnant, kick velocity)

Binary neutron stars (separation, eccentricity)

Stellar population synthesis codes

Code Name	Reference		
SeBa	Toonen et al. (2012), based on Portegies Zwart & Verbunt (1996)		
	with ingredients from Hurley et al. (2002)		
BSE	Hurley et al. (2002) , using single-star evolution from Hurley et al. (2000)		
—	Podsiadlowski et al. (2003)		
StarTrack	Belczynski et al. (2002, 2008, 2020)		
_	Mapelli et al. (2013), a modified version of SeBa		
The Brussels code	Vanbeveren et al. (1998); De Donder & Vanbeveren (2004)		
	Mennekens & Vanbeveren (2014)		
BPASS	Eldridge et al. (2008); Eldridge & Stanway (2016); Eldridge et al. (2017)		
	Stanway & Eldridge (2018)		
MOBSE	Mapelli et al. (2017); Giacobbo et al. (2018)		
	Giacobbo & Mapelli (2018, 2019, 2020)		
COMPAS	Stevenson et al. (2017) ; Riley et al. (2022)		
ComBinE	Kruckow et al. (2018)		
SEVN	Spera et al. (2015); Spera & Mapelli (2017); Spera et al. (2019)		
—	Tanikawa et al. (2021), extending BSE to high-mass and metal-poor stars		
COSMIC	Breivik et al. (2020)		
binary_c	Izzard et al. (2004, 2006, 2009)		
The Scenario Machine	Lipunov et al. (1996, 2009)		
POSYDON	Fragos et al. (2023)		
TRES	Toonen et al. (2016)		

[Credit for compilation: Clément Pellouin]

Stellar population synthesis codes

Challenges:

- Uncertainties in single stellar evolution (ex: evolution of stellar radius)
- Large uncertainties in some key processes (ex: supernova explosion)
- Over-simplification of some complex processes (ex: common envelope)
- Very large number of parameters

Advantages:

- Large populations
- Observables: masses, redshifts, merger rates, …
- Can combine with galaxy models

Stellar population synthesis codes: some results

- Efficiency of compact binary formation is very small
- Difficult to form black hole binaries at high metallicity

[Santoliquido et al., arXiv:2009.03911]

Stellar population synthesis codes: some results

- Long time delays between the birth of the binary star and the merger of the compact binary
- These time delays depend on the details of the formation channel

BNS, low-metallicity progenitors

[Pellouin et al., arXiv:2411.04563]

Stellar population synthesis codes: some results

Models fit the observed merger rate... but there are a lot of parameters!

Dynamical formation channel

Dynamical formation channel

Dynamical formation channel

Binary massive stars and binary compact objects: observables

- Binary pulsars in the Galaxy (masses, orbital parameters)
- X-ray binaries (masses, orbital parameters)
- Gamma-ray bursts (rates, redshifts, location in host galaxies)
- Compact binary mergers: gravitational waves (masses, redshifts, merger rates...)

Lecture plan

- Evolution of massive stars and formation of compact objects
- Evolution of <u>binary</u> massive stars and formation of <u>binary</u> compact objects
- Gravitational-wave astronomy
- Gravitational-wave observations of binary compact objects

Lecture plan

- Gravitational-wave astronomy
 - Gravitational waves: theory
 - Binary compact object mergers
 - Observing gravitational waves

Linearized theory

Solve Einstein's equations assuming a small perturbation of the flat spacetime

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}$$

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$
 with $|h_{\mu\nu}| \ll 1$

Linearized theory

Solve Einstein's equations assuming a small perturbation of the flat spacetime

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}$$

 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \qquad \text{with} \qquad |h_{\mu\nu}| \ll 1$

Linearized equation in Lorenz gauge $\partial^
u ar{h}_{\mu
u} = 0$, with $ar{h}_{\mu
u} \equiv h_{\mu
u} - rac{1}{2}\eta_{\mu
u}h$

$$\left(-\frac{\partial^2}{c^2\partial t^2} + \nabla^2\right)\bar{h}_{\alpha\beta} = -\frac{16\pi G}{c^4}T_{\alpha\beta}$$

Wave equation

Outside the source

$$\left(-\frac{\partial^2}{c^2\partial t^2} + \nabla^2\right)\bar{h}_{\alpha\beta} = 0$$

The perturbation travels with the speed of light

Plane wave solution

Lorenz gauge

$$\bar{h}_{\alpha\beta} = A_{\alpha\beta} \exp(ik_{\gamma}x^{\gamma})$$

$$\bar{h}_{\mu\nu}{}^{,\nu} = 0 \to A_{\mu\nu}k^{\nu} = 0$$

orthogonal to propagation vector

Any solution is a superposition of plane waves
How many degrees of freedom?

The metric perturbation can be decomposed into 4 scalars, 2 transverse vectors, and a transverse trace-free tensor

Take wavevector in the z direction

 h_{00} is a scalar under spatial rotations 1 d.o.f = scalar

$$n_{0i}$$
 is a 3-vector

$$\vec{h}_{0i} = \overrightarrow{\nabla} \Phi + \overrightarrow{\nabla} \times \overrightarrow{V}$$

3 d.o.f = divergence + transverse vector

 h_{ij} contains trace + scalar $\partial^i \partial^j h_{ij}$ + transverse vector + traceless transverse tensor

6 d.o.f = divergence + trace + transverse vector + TT tensor

 $h_{\mu\nu} = \begin{pmatrix} h_{00} & h_{01} & h_{02} & h_{03} \\ h_{10} & h_{11} & h_{12} & h_{13} \\ h_{20} & h_{21} & h_{22} & h_{23} \\ h_{30} & h_{31} & h_{32} & h_{33} \end{pmatrix}$

Polarizations (most general case!)

The metric perturbation can be

decomposed into 4 scalars, 2 transverse

vectors, and a transverse trace-free

tensor

But only 2 scalar, 1 transverse vector and the TT tensor are invariant to coordinate transformations -> 6 d.o.f.

$$h_+, h_{\times}, h_b, h_l, h_x, h_y$$

$$h_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_b + h_+ & h_\times & h_x \\ 0 & h_\times & h_b - h_+ & h_y \\ 0 & h_x & h_y & h_l \end{pmatrix}$$

Polarizations (most general case!)

The metric perturbation can be decomposed into 4 scalars, 2 transverse vectors, and a transverse trace-free tensor

But only 2 scalar, 1 transverse vector and the TT tensor are invariant to coordinate transformations -> 6 d.o.f.

$$h_+, h_{\times}, h_b, h_l, h_x, h_y$$

$$h_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_b + h_+ & h_\times & h_x \\ 0 & h_\times & h_b - h_+ & h_y \\ 0 & h_x & h_y & h_l \end{pmatrix}$$

Gravitational–Wave Polarization

[C. Will, in Living Reviews in Relativity]

Polarizations in GR

In GR, out of the 6 remaining Einstein equations, 4 are constraint equations (no second-order time derivatives)

Only 2 equations are evolution equations -> 2 d.o.f. h_+, h_{\times}

$$h_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{+} & h_{\times} & 0 \\ 0 & h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Plus polarization

$$h_{\mu\nu}(t-z/c) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{+} & 0 & 0 \\ 0 & 0 & -h_{+} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \cdot \cos\left(\omega(t-z/c)\right)$$

 $ds^{2} = -c^{2}dt^{2} + dz^{2} + \left(1 + h_{+}\cos[\omega(t - z/c)]\right)dx^{2} + \left(1 - h_{+}\cos[\omega(t - z/c)]\right)dy^{2}$

Cross polarization

$$h_{\mu\nu}(t-z/c) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & h_{\times} & 0 \\ 0 & h_{\times} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \cdot \cos\left(\omega(t-z/c)\right)$$

$$ds^{2} = -c^{2}dt^{2} + dz^{2} + dx^{2} + dy^{2} + 2\left(1 + h_{x}\cos[\omega(t - z/c)]\right)dxdy$$

Linear polarization

Circular polarization

GW effect on test masses

Sources of GW: dimensional analysis

$$\left(-\frac{\partial^2}{c^2\partial t^2} + \nabla^2\right)\bar{h}_{\alpha\beta} = -\frac{16\pi G}{c^4}T_{\alpha\beta}$$

Matter field is characterized by its multipole moments:

The quadrupole formula (TT gauge)

$$\bar{h}_{ij}^{TT}(t,\vec{x}) \simeq \frac{2G}{c^4 r} \ddot{Q}^{TT}(t-r/c)$$

Compact binaries (binary black holes, neutron stars...)

Non-spherical rotating stars

The quadrupole formula: binary system

Equal-mass circular binary in the x-y plane, orbital frequency (M) and initial separation a_0

$$Q_{xx} = \frac{1}{4}Ma_0^2\cos(2\omega t)$$

$$Q_{yy} = -\frac{1}{4}Ma_0^2\cos(2\omega t)$$

$$Q_{xy} = \frac{1}{4}Ma_0^2\sin(2\omega t)$$

Radiation in the x direction

$$\bar{h}_{yy}^{TT} = -\bar{h}_{zz}^{TT} = \frac{GMa_0^2\omega^2}{2c^2r}\cos(2\omega(t-r/c))$$

Linear polarization aligned with the orbital plane

Χ

Binary system: unequal masses

Kepler law:

$$\omega^2 = \frac{G(M_1 + M_2)}{a_0^3}$$

GW frequency:

$$f_{GW} = \frac{\omega}{\pi}$$

Orbital inclination: heta

$$\begin{pmatrix}
h_{+} = \frac{4}{r} \left(\frac{GM_{c}}{c^{2}}\right)^{5/3} \left(\frac{\pi f_{GW}}{c}\right)^{2/3} \frac{1 + \cos^{2}\theta}{2} \\
h_{\times} = \frac{4}{r} \left(\frac{GM_{c}}{c^{2}}\right)^{5/3} \left(\frac{\pi f_{GW}}{c}\right)^{2/3} \cos\theta$$

Chirp mass:

$$M_c = \frac{(M_1 M_2)^{3/5}}{(M_1 + M_2)^{1/5}}$$

GW energy flux and luminosity

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}$$

Far from the source: the energy is due to GW

Weak field, developing to lowest order

$$t_{\mu\nu}^{TT} = \frac{c^2}{8\pi G} \left(R_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} \eta^{\delta\rho} R_{\lambda\rho} \right)$$

second order in h

GW energy flux and luminosity

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}$$

Far from the source: the energy is due to GW

Weak field, developing to lowest order

Flux:

$$\frac{dE}{dtdA} = t_{03}^{TT} = -\frac{c^3}{16\pi G} \left\langle \dot{h}_+^2 + \dot{h}_\times^2 \right\rangle$$

 $t_{\mu\nu}^{TT} = \frac{c^2}{8\pi G} \left(R_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} \eta^{\delta\rho} R_{\lambda\rho} \right)$

second order in h

$$\frac{dE}{dtdA} = -\frac{G}{8\pi c^5 r^2} \left\langle \ddot{Q}_{ij} \ddot{Q}^{ij} \right\rangle$$

GW energy flux and luminosity

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}$$

Far from the source: the energy is due to GW $t_{\mu\nu}^{TT} = \frac{c^2}{8\pi G} \left(R_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} \eta^{\delta\rho} R_{\lambda\rho} \right)$

Weak field, developing to lowest order

Flux:

$$\frac{dE}{dtdA} = t_{03}^{TT} = -\frac{c^3}{16\pi G} \left\langle \dot{h}_+^2 + \dot{h}_\times^2 \right\rangle$$

$$\frac{dE}{dtdA} = -\frac{G}{8\pi c^5 r^2} \left\langle \ddot{Q}_{ij} \ddot{Q}^{ij} \right\rangle$$

Luminosity:

$$L_{GW} = -\frac{dE}{dt} = \frac{G}{5c^5} \left\langle \ddot{Q}_{ij} \ddot{Q}^{ij} \right\rangle$$

second order in h

Luminosity of GW (quadrupole approximation)

$$L_{GW} = -\frac{dE}{dt} = \frac{G}{5c^5} \left\langle \ddot{Q}_{ij} \ddot{Q}^{ij} \right\rangle \qquad \text{But} \qquad \frac{G}{c^5} \qquad \text{is extremely small...}$$
Assume a compact object $\qquad \frac{GM}{Rc^2} \sim 1$
Mass guadrupoles and its derivatives:

 $Q \sim MR^2$ $\ddot{Q} \sim Mv^2 \sim E_{kin}$

$$(\ddot{Q} \sim \frac{E_{kin}}{\tau} \sim \frac{E_{kin}}{R/v} \sim \frac{Mv^2}{R/v}$$

$$L_{GW} \sim \frac{G}{c^5} \ddot{Q}^2 \sim \frac{c^5}{G} \left(\frac{GM}{Rc^2}\right)^2 \left(\frac{v}{c}\right)^6$$

Thankfully $\frac{c^5}{G}$ is extremely large!

Orbital evolution of a compact binary system

Energy is lost to GW, the orbit shrinks:

$$\frac{da}{dt} = -\frac{64}{5} \frac{G^3 \mu m^2}{c^5 a^3}$$

Coalescence time for a circular binary

 $t_{coal} = a_0^4 \cdot \frac{5}{256} \frac{c^5}{G^3} \frac{1}{\mu m^2}$

Reduced mass
$$\mu = \frac{M_1 M_2}{M_1 + M_2}$$

Total mass

 $m = M_1 + M_2$

Hulse-Taylor pulsar

GW150914: frequency chirp

From orbital evolution:

$$f_{GW}(t) = \frac{1}{\pi} \left(\frac{GM_c}{c^3}\right)^{-5/8} \left(\frac{5}{256} \frac{1}{(\tau_{coal} - t)}\right)$$

Frequency chirp:

$$\dot{f}_{GW}(t) = \frac{96}{5} \pi^{8/3} \left(\frac{GM_c}{c^3}\right)^{5/3} f_{GW}^{11/3}$$

Compact binary merger

Beyond the quadrupole

www.soundsofspacetime.org

Eccentric orbits

www.soundsofspacetime.org

Spinning black holes

Irina Dvorkin

Precessing black holes

$0.5M_{\odot} + 5M_{\odot}$

www.soundsofspacetime.org

Precessing black holes

GW150914 : simulation of the signal

Gravitational-wave observatories

- LIGO (Hanford+Livingston, USA)
- Virgo (Italy)
- Kagra (Japan)

LIGO (Livingston, USA)

Gravitational-wave observatories: interferometry

Animation created by T. Pyle, Caltech/MIT/LIGO Lab

Prospects for O4/05 runs

[LIGO Public User Guide: <u>https://emfollow.docs.ligo.org/userguide/capabilities.html</u>]

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

LIGO-Virgo-KAGRA I Aaron Geller I Northwestern

Abbott et al. 2019, PRX, 9, 031040; Abbott et al. 2021, PRX, 11, 021053; Abbott et al. 2021, arXiv:2111.03606; Abbott et al. 2021, arXiv:2108.01045

https://gracedb.ligo.org/superevents/public/O4/

 $\sim \sqrt{||}$ GraceDB Public Alerts \neg Latest Search Documentation Login

Please log in to view full database contents.

LIGO/Virgo/KAGRA Public Alerts

- More details about public alerts are provided in the LIGO/Virgo/KAGRA Alerts User Guide.
- Retractions are marked in red. Retraction means that the condidate was monually vetted and is no longer considered a candidate of interest.
- Less-significant events are marked in grey, and are not manually vetted. Consult the LVK Alerts User Guide for more information on significance in O4.
- Less-significant events are not shown by default. Press "Show All Public Events" to show significant and less-significant events.

O4 Significant Detection Candidates: 199 (224 Total - 25 Retracted)

O4 Low Significance Detection Candidates: 3646 (Total)

Show All Public Events

Page 1 of 15. next last »

SORT: EVENT ID (A-Z)

Event ID	Possible Source (Probability)	Significant	UTC	GCN	Location	FAR	Comments
S250306ej	Terrestrial (>99%)	Yes	Morch 6, 2025 15:00:44 UTC	GCN Circular Query Notices VOE		2.9257 per year	RETRACTED
S250304cb	BBH (96%), Terrestrial (4%)	Yes	March 4, 2025 06:22:45 UTC	GCN Circular Query		1.7738 per year	

Pulsar timing arrays

Pulsar Timing Arrays: European PTA (Europe) Parkes PTA (Australia) NANOGrav (USA) InPTA (India) CPTA (China) MeerKAT (South Africa)

D. Champion/Max Planck Institute for Radio Astronomy

Pulsar Timing Arrays

 Compare times of arrival of pulses from a network of pulsars

Pulsar Timing Arrays: was the background detected?

Pulsar Timing Arrays: was the background detected?

[Antoniadis+2023]

NANOGrav: Agazie+2023 EPTA: Antoniadis+2023 PPTA: Reardon+2023

Massive black hole binaries

Evolution of massive BH binaries:

 $M_{BH} \sim 10^5 - 10^9 M_{\odot}$

- Seed BHs grow through accretion in galactic centers
- Two galaxies that host BHs merge (10-100 kpc)
- Dynamical friction of BHs with surrounding gas —> bound BH binary (kpc)
- Orbit decay through interactions with surrounding gas and stars (pc)
- Emission of GW —> merger (milli-pc)

* Key unknown ingredients:

- * Seeds of massive black holes
- Co-evolution with host galaxies
- * Interactions with surrounding gas and stars

Pulsar Timing Arrays: was the background detected?

Irina Dvorkin

LISA: Laser Interferometry Space Antenna

LISA - LASER INTERFEROMETER SPACE ANTENNA

Gravitational waves are ripples in spacetime that alter the distances between objects. LISA will detect them by measuring subtle changes in the distances between **free-floating cubes** nestled within its three spacecraft.

* Changes in distances travelled by the laser beams are not to scale and extremely exaggerated

Earth

Sun

LISA: Laser Interferometry Space Antenna

Astrophysical sources of gravitational waves

Irina Dvorkin

UNDARK 2025

Lecture plan

- Evolution of massive stars and formation of compact objects
- Evolution of <u>binary</u> massive stars and formation of <u>binary</u> compact objects
- Gravitational-wave astronomy
- Gravitational-wave observations of binary compact objects

Lecture plan

- Gravitational-wave observations of binary compact objects
 - Binary black hole mergers
 - Binary neutron star mergers: GW and EM observations
 - Stochastic GW backgrounds

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

LIGO-Virgo-KAGRA I Aaron Geller I Northwestern

Abbott et al. 2019, PRX, 9, 031040; Abbott et al. 2021, PRX, 11, 021053; Abbott et al. 2021, arXiv:2111.03606; Abbott et al. 2021, arXiv:2108.01045

Black hole populations: mass distribution

[Abbott et al. 2023, PRX, 13, 011048]

Black hole populations: merger rate evolution

$$R_{BBH}(z=0.2) = 17.3 - 45 \ Gpc^{-3}yr^{-1}$$

[Abbott et al. 2023, PRX, 13, 011048]

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

LIGO-Virgo-KAGRA I Aaron Geller I Northwestern

Abbott et al. 2019, PRX, 9, 031040; Abbott et al. 2021, PRX, 11, 021053; Abbott et al. 2021, arXiv:2111.03606; Abbott et al. 2021, arXiv:2108.01045

GW190521

[Abbott et al. 2020, PRL **125**, 101102]

[Abbott et al. 2020, ApJL, 900, 13]

Irina Dvorkin

Black holes in the upper mass gap

GW190521

$$m_1 = 85^{+21}_{-14} \ M_{\odot}$$

$$m_2 = 66^{+17}_{-18} M_{\odot}$$

Hierarchical merger?

Black hole formed in the mass gap?

[Abbott et al. 2020, PRL **125**, 101102]

[Abbott et al. 2020, ApJL, 900, 13]

PISN: Uncertainty in nuclear reaction rates

 $^{12}C + ^{4}He \rightarrow ^{16}O$

Dynamical formation

[figure: Gerosa&Berti 2017]

BBH mergers in AGN disks?

- AGN + gaseous disk + distribution of BHs
- Some BHs get trapped in the disk
- Torques from gas: BHs migrate within the disk and merge
- BH can grow by gas accretion -> IMBH

Optical counterpart to GW190521: J124942.3+344929 ? [Graham+2020]

The link between stellar-mass and massive black holes?

The link between stellar-mass and massive black holes?

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

LIGO-Virgo-KAGRA I Aaron Geller I Northwestern

Abbott et al. 2019, PRX, 9, 031040; Abbott et al. 2021, PRX, 11, 021053; Abbott et al. 2021, arXiv:2111.03606; Abbott et al. 2021, arXiv:2108.01045

Black holes in the lower mass gap

Irina Dvorkin

UNDARK 2025

Black holes in the lower mass gap

Is the mass gap real? Is it an observational effect? Implications for supernova explosion mechanism?

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

LIGO-Virgo-KAGRA I Aaron Geller I Northwestern

Abbott et al. 2019, PRX, 9, 031040; Abbott et al. 2021, PRX, 11, 021053; Abbott et al. 2021, arXiv:2111.03606; Abbott et al. 2021, arXiv:2108.01045

Merger of binary neutron stars

[Metzger & Berger. 2012, ApJ, 746, 48]

Binary neutron stars: multi-messenger observations!

- Gravitational Waves + Electromagnetic
- Connection with short gamma ray bursts (GRB)
- Kilonova: synthesis of heavy elements
- Identification of host galaxy: 40 Mpc away

[Abbott et al. 2017, ApJ Letters, 848, 2]

Binary neutron stars: multi-messenger observations!

- Gravitational Waves + Electromagnetic
- Connection with short gamma ray bursts (GRB)
- Kilonova: synthesis of heavy elements
- Identification of host galaxy: 40 Mpc away

[Abbott et al. 2017, ApJ Letters, 848, 2]

GW170817: gravitational-wave detection

Irina Dvorkin

Binary neutron stars: waveform

- Some energy goes into deforming the stars
- GW emission from time-varying quadrupole sources

Binary neutron stars: waveform

[Chatziioannou et al., arXiv:2407.11153]

Binary neutron stars: constraining the EOS

Neutron star mass-radius relation

- Stiff EOS: high maximum mass, large radii
- Soft EOS: low maximum mass, small radii

Burgio et al., arXiv:2105.03747

r-process elements

AT 2017gfo kilonova

L_A (10³⁷ erg s⁻¹ Å⁻¹)

- Kilonova: UV-optical-IR transient powered by the radioactive decay of r-process elements synthesized in the merger ejecta
- Opacity depends on the chemical composition of the ejecta
- Ejected mass: $0.04 M_{\odot}$

Did kilonovae produce all the r-process elements?

Irina Dvorkin

UNDARK 2025

GW190425: BNS without EM counterparts

	Low-spin Prior $(\chi < 0.05)$	High-spin Prior $(\chi < 0.89)$
Primary mass m_1	1 .60−1.87 M ⊙	1.61–2.52 <i>М</i> _☉
Secondary mass m_2	1.46–1.69 M_{\odot}	$1.12 - 1.68 M_{\odot}$
Chirp mass \mathcal{M}	$1.44^{+0.02}_{-0.02}M_{\odot}$	$1.44^{+0.02}_{-0.02}M_{\odot}$
Detector-frame chirp mass	$1.4868^{+0.0003}_{-0.0003}M_{\odot}$	$1.4873^{+0.0008}_{-0.0006}~M_{\odot}$
Mass ratio m_2/m_1	0.8 - 1.0	0.4 - 1.0
Total mass m _{tot}	$3.3^{+0.1}_{-0.1}~{ m M}_{\odot}$	$3.4^{+0.3}_{-0.1}M_{\odot}$
Effective inspiral spin parameter χ_{eff}	$0.012\substack{+0.01\\-0.01}$	$0.058\substack{+0.11\\-0.05}$
Luminosity distance $D_{\rm L}$	159^{+69}_{-72} Mpc	159^{+69}_{-71} Mpc
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≼60 0	≤1100

Table 1						
Source	Propert	ties f	or	GW190425		

[Abbott et al. 2020, Astrophys. J. Lett. 892, L3]
Binary neutron stars: masses

Binaries with neutron stars: masses

[Chatziioannou et al., arXiv:2407.11153]

Binary neutron stars: after the merger

