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I. THE EXERCISE: CALCULATING THE HELIUM-4 ABUNDANCE AFTER THE BIG BANG

The neutron abundance in the early Universe is governed by the following processes:

nepte 4+, (1la)
n+verpte (1b)
n+et o p+o. (1c)

Based on dimensional analysis, the rate of these interactions roughly scale as I' ~ G%T® and hence they will freeze-out
at T ~ 1MeV. In the Standard Model, effectively all of the neutrons in the plasma end up forming *He because it is
the most tightly bounded light nuclei. This means that if we are able to track the neutron abundance of the Universe
we will know how much “He should have been generated after the Big Bang. By contrasting this prediction with
observations of the helium mass fraction in the Universe, Y, = pape/pp = 0.245+0.003 [PDG-24], we can set bounds
on an array of BSM models, including to the parameter Nog. This exercise will guide you through the basics of the
calculation.

1. Assuming that there are only neutrons and protons in the plasma, write down the Boltzmann equation for
the neutron and proton number densities given processes that interconvert them. Write these equations as a
function of the rate of neutron conversion A, and proton conversion Ayy,.

Solution: The equations are as follows:

T +3Hn, = —Apphin + Apnp (2a)
d
% 4 3Hny, = +Anpn — ApnTtp (2b)

2. Given these expressions write the equation for the fraction of neutrons in the plasma, i.e. X,, = n,/(n, +nyp).
Solution:

X,
dt

= —XpXn + Apn(1 — X5,) . (3)

the nice thing is that now the expansion term has disappeared.

3. Assuming that the rates of proton-to-neutron and neutron-to-proton conversion are very efficient, this is, we
are in thermal and chemical equilibrium, obtain the relationship between the \,, and A, reaction rates. Tip:
For this you want to use chemical equilibrium of neutron-proton interactions (i.e. p, = p,) and the formula for
Maxwell-Boltzmann number densities.

Solution: Assuming Maxwell-Boltzmann statistics we can easily relate the number densities of protons and
neutrons. The first step is to note that if processes interconverting protons and neutrons are active then
Pn + tw. = Hp + ple. In addition, due to charge conservation pu. ~ 10727 and hence can be neglected.
Furthermore, in most BSM scenarios for baryogenesis L ~ —B and therefore p,, ~ 1077 is small as well.
That means we can neglect both and find

Hn = Hyp - (4)

With this, we simply need to consider the number density ratio of neutrons and protons in thermal equilibrium
which will simply be given by:

Ny = e~ Am/T (5)



This means that
X5 = 1/(14Am/T), (6)

where Am = m,, —m, = 1.29333 MeV.

Finally, using the detailed balance condition, i.e. that dX,/dt = 0 if the rates are efficient, relates the two
reaction rates as follows:

Xed
Apn = Anp {1—3(2‘1] = e AT Ny (7)

. The neutron-to-proton interaction rates require a phase space integration over the distribution functions of e
and v.. A simplified (but still rather accurate) formula for it is given by:

1 T*Am

Antveoptes = Antetopin, = 15; m3

; (8)

where 7, = 878.4 £ 0.55s is the neutron lifetime, ~ 15 mins. Note that at T ~ MeV these rates are ~ 10% times
faster than neutron decay I'y, = 1/7,,.

Remember that we can write the Hubble parameter as

T2
H=166\g,—. 9
Sy 9)

With this, pose the differential equation for X, as a function of T as the time variable. One can use the
simplification that dT'/dt = —HT.

Solution: By simply rewriting the differential equation as a function of T by simply using the chain rule and
one finds:
dX, dX, 1

aT ~ dt dT/dt (10)

Approximating dT'/dt = —HT (as it would happen in an adiabatically expanding Universe) it is pretty easy to
write down the full differential equation. It simply reads:
dX, 1
dT HT

[ Anp X + Apn (1 — X)) (11)

. Numerically solve this system using g, = 10.75+ 2%AN€H and find the resulting solution for X,, without taking
into account for the moment n decay. What do you find for ANeg = —1,0,+17 What is the fractional change
to this neutron fraction?

Solution:
Xo(T —0)=0.1556  [ANeg = —1] (12a)
X, (T — 0) =0.1629 [AN.g = 0] (12b)
X, (T — 0) =0.1691 [ANeg = +1] (12¢)
I.e. one finds:
AX
e " ~0.04 ANyg , (13)

. Finally, we need to relate the neutron abundance in the Universe to the abundance of Helium-4. In order to form
Helium-4, a substantial amount of D, T and 3He needs to be synthesized before hand. Critically, any “heavy”
element formation requires the presence of substantial amounts of deuterium and this means that BBN will
happen quickly once the abundance of deuterium is O(1). We can then approximate the abundance of helium-4
as given by the abundance of all the neutrons in the plasma once there is a large number of deuterium in the
plasma and BBN starts. This is:

Nage = Np /2, (14)



since what is typically quoted is the mass fraction of helium then one finds:

Nna
Yp =4—2 = 92X, |7—Tppn - (15)
ng

The goal now is to estimate this temperature, Tgpn. In the plasma there are processes n+p <> D 4~ occurring
efficiently and this tells us that u, + p, = pp. Again, by using the Maxwell-Boltzmann number density formula
we can then relate the number densities of n, p, v and D. Find this relationship in terms of the deuterium
fraction, i.e. Xp = np/np where np is the number of baryons. Note that gp = 3 (because Deuterium is a
vector state). Once you have that formula solve for when Xp ~ 1072 to find the temperature at which BBN
starts. You should find Ty ~ 0.072 MeV.

Solution:

3y/2¢(3)(mpT)*? -
NSE _ ™ b
X = 3/2 3 i (16)

3/2 nBX’nXpe
my "My

where here Bp ~ 2.22MeV is the binding energy of deuterium, ng = np/n, is the baryon to photon ratio
np = 6 x 10719, Solving this explicitly with X,, ~ 0.15, ¥, ~ 1 — 0.15 and 1, = 6 x 1071? one finds:

XNE =102 for T, ~0.072MeV (17)

and this tells us that Tggn = 0.072MeV and this is the temperature we need to evaluate the lifetime of the
neutron for to get the helium abundance.

. Given that we know the temperature at which BBN starts we can calculate the final helium abundance using
Eq. (7). The only thing that changes between neutron-proton freeze-out is that the neutrons are decaying. This
can be easily incorporated by taking:

Yp = 2X,,(T — 0) x e teen/mn (18)

The only piece we have left is simply to get the time at which this corresponds. Remember that in a radiation
dominated Universe we have ¢ ~ 1/(2H). Taking into account entropy conservation find that at Tppn =~
0.072MeV almost all eTe™ have annihilated and therefore g, ~ 3.36 + 0.46AN.g. With this, calculate Yp
for ANegg = —1,0,+1. What is the fractional change to this neutron fraction? Given the observed value of
Y, = 0.245 £ 0.003 what bound can be derived on ANcg?.

Solution: With this we then find:

Yp =2 x0.1556 x 0.739 = 0.230  [ANeg = —1] (19a)
Yp =2x0.1629 x 0.755 = 0.246  [ANeg = 0] (19b)
Yp =2 x 0.1691 x 0.769 = 0.260 [ANeg = +1] (19¢)
which can be summarized as:
AY;
P~ 0.056 x ANeg (20)
Yp

This allows us to understand that 1), since the helium abundance has been measured with ~ 1% precision
and its measurements agree with the SM prediction one can bound AN ~ +0.2. And that the effect of the
modified expansion history affects both neutron-proton freeze-out as well as the time of BBN and that the two
effects roughly contribute to 2/3 and 1/3 of the effect, respectively.
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