BSM in the Early Universe

Miguel Escudero Abenza

miguel.escudero@cern.ch

Precision Cosmology

Theoretical Understanding?

Motivating Question:

What fraction of the Energy Density of the Universe comes from Physics Beyond the Standard Model?

99.85%!

Miguel Escudero Abenza (CERN)

Standard Model Prediction:

We should be living in a Radiation Dominated Universe!

Theoretical Understanding?

Dark Energy Little to nothing

Dark MatterThe CMB anisotropies clearly motivate a particle description
Many candidates: WIMPs, Axions, Sterile Neutrinos ...Existing experimental constraints on the various possibilities

Baryons

Small number of Baryons per photon point towards a primordial asymmetry:

$$\frac{n_B}{n_{\gamma}} \bigg|_{\text{today}} = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \bigg|_{\text{today}} = 6.1 \times 10^{-10} \text{ CMB \& BBN}$$

Main goal of these Lectures

Have an understanding of the physical state of the Early Universe

Early Universe Thermodynamics

Explore key potential BSM cosmological events:

The formation of the hot Cosmological Axion Background

Thermal Dark Matter freeze-out

Baryogenesis via out-of-equilibrium decays

Primordial Helium abundance in the presence of dark radiation

Other cool BSM topics I cannot cover: phase transitions, GWs, topological defects, inflation ...

Miguel Escudero Abenza (CERN)

The Known Thermal History

The Known Thermal History

Key Stages in the Thermal History

Baryogenesis Models

*not an exhaustive list, but it does include some of the most popular models

Miguel Escudero Abenza (CERN)

Baryogenesis Models

*Baryogenesis via out-of-equilibrium decays

Dark Matter Models

*not an exhaustive list, but it does include some of the most popular models

Miguel Escudero Abenza (CERN)

Dark Matter Models

*models where particles were in thermal equilibrium

Dark Radiation Relics

*not an exhaustive list, but it does include some of the most studied scenarios

Miguel Escudero Abenza (CERN)

Dark Radiation Relics

*scenarios that we will generically understand how much they contribute to Neff

Miguel Escudero Abenza (CERN)

A Crash Course on Early Universe Cosmology

The Outline

Lectures I and II:

Thermal History overview [done]

Cosmological Dynamics

Early Universe Thermodynamics: Distribution functions Densities and entropy Time-temperature relation

Lectures III and IV:

Interaction rates and thermal state of the SM plasma

Production of relics

Hot Axion Background

WIMP freeze-out

Baryogenesis via out-of-equilibrium decays

Miguel Escudero Abenza (CERN)

Degrees of Freedom

Data from Laine & Meyer [1503.04935]

Contribution to DNeff

Implications:

No thermalized eV-scale sterile neutrinos Bound on the axion decay constant/ mass of $m_a \lesssim 0.2 \, {\rm eV}$ Key bound on Stochastic Gravitational Wave backgrounds

Miguel Escudero Abenza (CERN)

Implication of current DNeff bound

Lecture III

Recap from Lectures I and II:

Cosmological Dynamics

 General Relativity relates the expansion rate of the Universe with the energy density in all the species contained on it

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$

Friedmann Equation:

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho$$

H : Expansion rate (Hubble parameter)

$$ho$$
 : Energy density

Continuity equation:

$$\frac{d\rho}{dt} = -H(\rho + p)$$

) : pressure

O : energy density

Miguel Escudero Abenza (CERN)

 $\nabla^{\mu}T_{\mu\nu}$ =

We will be dealing with situations in the early Universe with very dense systems of interacting particles: plasmas. Need to study equilibrium thermodynamics

homogeneity and isotropy imply:

Bosons: 1
$$f(E) = \frac{1}{-1 + e^{(E-\mu)/T}}$$

$$f(\vec{x}, \vec{p}) = f(|\vec{p}|)$$

Fermions: 1 $f(E) = \frac{1}{+1 + e^{(E-\mu)/T}}$

Thermodynamic quantities

number density
$$n = \frac{1}{(2\pi)^3} \int d^3 p f(p)$$

energy density $\rho = \frac{1}{(2\pi)^3} \int d^3 p E f(p)$
pressure $p = \frac{1}{(2\pi)^3} \int d^3 p \frac{p^2}{3E} f(p)$

Miguel Escudero Abenza (CERN)

 $\begin{array}{l} \text{entropy} \\ \text{density} \end{array} s = \frac{\rho + p}{\tau} \end{array}$

Bosons: f(E)

$$= \frac{1}{-1 + e^{(E-\mu)/T}}$$

 $n = g \frac{\xi(3)}{\pi^2} T^3$ Bose-Einstein

1

Ultrarelativistic regime:

$$T \gg m \ \mu \ll T$$

Fermions:
$$f(E) = \frac{1}{+1 + e^{(E-\mu)/T}}$$

non-relativistic regime: $m \ll T \ \mu \ll T$

1

$$n = g(Tm/(2\pi))^{3/2}e^{-m/T}$$

$$\rho = m \times n$$

 $n = \frac{3}{4}g\frac{\xi(3)}{\pi^2}T^3 \quad \text{Fermi-Dirac}$ $\rho = g\frac{\pi^2}{30}T^4 \quad \text{Bose-Einstein}$ $\rho = \frac{7}{8}g\frac{\pi^2}{30}T^4 \quad \text{Fermi-Dirac}$

 $p = 1/3\rho$

g = Internal degrees of freedom

Key things to remember:

$$T \gg m \qquad T \ll m$$

$$n \simeq T^3 \langle E \rangle \simeq 3T \qquad n \simeq (Tm)^{3/2} e^{-m/T}$$

$$\rho \simeq T^4 \quad p = 1/3\rho \qquad \rho \simeq mn$$

Main consequence:

Ultra relativistic particles dominates the energy density of the Universe

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3}\rho \qquad s = \frac{\rho + p}{T}$$
$$H = 1.66\sqrt{g_{\star}}\frac{T^{2}}{M_{\rm Pl}} \quad t = \frac{1}{2H} \qquad s = \frac{\pi^{2}}{45}g_{\star s}T^{2}$$

Miguel Escudero Abenza (CERN)

Departures from Equilibrium

A process will be in equilibrium in the early Universe if:

 $\Gamma \gtrsim H$ (equilibrium)

 $\Gamma \leq H$ (out-of-equilibrium)

why?

number of interactions over the Universe lifetime will simply be:

$$N \simeq t_U / \tau \simeq \Gamma / H$$

Miguel Escudero Abenza (CERN)

BSM in the Early Universe

UNDARK school 10-03-25 28

Particle Interaction Rates

2 Key Corollaries

1) Interaction rates in the Standard Model are typically fast compared to the expansion of the Universe

$$\Gamma \gtrsim H$$
 e.g.: $e^+e^- \rightarrow \gamma\gamma$

2) We would expect an array of BSM particles floating around in the early Universe since they can be produced by particle interactions!

$$\Gamma \gtrsim H$$
 e.g.: $e^+e^- \rightarrow XX$

The Collision term:

$$\begin{split} C[f_1] &= -\frac{1}{2E_1} \frac{1}{g_1} \int d\Pi_2 d\Pi_3 d\Pi_4 (2\pi)^4 \delta^4 (p_1 + p_2 - p_3 - p_4) \times S \times \\ & \left[\left| \mathcal{M} \right|_{1+2 \to 3+4}^2 f_1 f_2 [1 \pm f_3] [1 \pm f_4] - \left| \mathcal{M} \right|_{3+4 \to 1+2}^2 f_3 f_4 [1 \pm f_1] [1 \pm f_2] \right] \\ d\Pi_i &\equiv \frac{d^3 p_i}{2E_i (2\pi)^3} \\ S &= 1/2 \text{ only if 3 and 4 are identical, otherwise } S = 1 \end{split}$$

$$g_1 \int \frac{d^3 p_1}{(2\pi)^3} C[f_1] = -\int d\Pi_1 d\Pi_2 d\Pi_3 d\Pi_4 (2\pi)^4 \delta^4 (p_1 + p_2 - p_3 - p_4) \times S \times \left[\left| \mathcal{M} \right|_{1+2\to 3+4}^2 f_1 f_2 [1 \pm f_3] [1 \pm f_4] - \left| \mathcal{M} \right|_{3+4\to 1+2}^2 f_3 f_4 [1 \pm f_1] [1 \pm f_2] \right]$$

The Collision term:

$$g_1 \int \frac{d^3 p_1}{(2\pi)^3} C[f_1] = -\int d\Pi_1 d\Pi_2 d\Pi_3 d\Pi_4 (2\pi)^4 \delta^4 (p_1 + p_2 - p_3 - p_4) \times S \times \left[\left| \mathcal{M} \right|_{1+2\to 3+4}^2 f_1 f_2 [1 \pm f_3] [1 \pm f_4] - \left| \mathcal{M} \right|_{3+4\to 1+2}^2 f_3 f_4 [1 \pm f_1] [1 \pm f_2] \right]$$

Assuming T invariance, neglecting statistical factors one gets:

$$|\mathscr{M}|^2_{1+2\to 3+4} [f_1f_2 - f_3f_4]$$

Taking these distributions to be of Maxwell-Boltzmann type with the same temperature one finds:

$$\left| \mathcal{M} \right|_{1+2\to 3+4}^{2} e^{-(E_1+E_2)/T} \left[\frac{n_1}{n_1^{(0)}} \frac{n_2}{n_2^{(0)}} - \frac{n_3}{n_3^{(0)}} \frac{n_4}{n_4^{(0)}} \right]$$

The Collision term:

$$g_1 \int \frac{d^3 p_1}{(2\pi)^3} C[f_1] = -\int d\Pi_1 d\Pi_2 d\Pi_3 d\Pi_4 (2\pi)^4 \delta^4 (p_1 + p_2 - p_3 - p_4) \times S \times |\mathcal{M}|^2_{1+2\to 3+4} e^{-(E_1 + E_2)/T} \left[\frac{n_1}{n_1^{(0)}} \frac{n_2}{n_2^{(0)}} - \frac{n_3}{n_3^{(0)}} \frac{n_4}{n_4^{(0)}} \right]$$

Now it is very easy to map this to the cross section which is defined as:

$$d\sigma_{1+2\to 3+4} \equiv \frac{1}{2E_1 2E_2} \frac{1}{|v_1 - v_2|} d\Pi_3 d\Pi_4 (2\pi)^4 \delta^4 (p_1 + p_2 - p_3 - p_4) S |\mathcal{M}|^2_{1+2\to 3+4}$$

And one literally arrives to:

$$\frac{dn_1}{dt} + 3Hn_1 = -\langle \sigma v \rangle n_1^{(0)} n_2^{(0)} \left[\frac{n_1}{n_1^{(0)}} \frac{n_2}{n_2^{(0)}} - \frac{n_3}{n_3^{(0)}} \frac{n_4}{n_4^{(0)}} \right]$$

with $\langle \sigma v \rangle \equiv \frac{1}{n_1^0 n_2^0} \int \frac{d^3 p_1}{(2\pi)^3} \frac{d^3 p_2}{(2\pi)^3} |\vec{v}_1 - \vec{v}_2| \times \sigma_{1+2\to 3+4} e^{-\frac{E_1 + E_2}{T}}$

which can be simplified to: [Gondolo & Gelmini '90]

$$\langle \sigma v \rangle = \frac{1}{g_1 g_2 8T m_1^2 m_2^2 K_2[m_1/T] K_2[m_2/T]} \int_{s_0^{\min}}^{\infty} ds s^{3/2} K_1 \left[\frac{\sqrt{s}}{T}\right] \lambda[1, m_1^2/s, m_2^2/s]$$

In most cases, 3 and 4 are in thermal equilibrium and then one simply gets

$$\frac{dn_1}{dt} + 3Hn_1 = -\langle \sigma v \rangle \left[n_1 n_2 - n_1^{\text{eq}} n_2^{\text{eq}} \right]$$

Write as a function of the yield: $Y_1 = n_1/s$ to remove the expansion

$$\frac{dY_1}{dt} = -s \left\langle \sigma v \right\rangle \left[Y_1 Y_2 - Y_1^{\text{eq}} Y_2^{\text{eq}} \right]$$

And since everything depends upon temperature:

$$\frac{dY_1}{dT} = \frac{s \langle \sigma v \rangle}{HT} \left[Y_1 Y_2 - Y_1^{\text{eq}} Y_2^{\text{eq}} \right]$$

Lecture IV

WIMP freeze-out

Baryogenesis

Extrapolation of the Standard Model to the early Universe predicts a Universe with

$$\left.\frac{n_B - n_{\bar{B}}}{n_{\gamma}}\right|_{\rm SM} \ll 10^{-20}$$

Baryogenesis: dynamical generation of the baryon asymmetry of the Universe

Three key requirements: The Sakharov conditions (1967)

1) C and CP violation

2) Departure from Thermal Equilibrium

3) Baryon number violation

Baryogenesis $\frac{dY_B}{dt} = +\langle \Gamma_X \rangle \epsilon(Y_X - Y_X^{eq}) - 2Y_B \langle \Gamma_{B-breaking} \rangle$

General BSM bounds

Any massless or light particles in your spectrum?

If yes, calculate their production rate

If $Max[\frac{\Gamma}{II}] > 1$ then they would have been produced abundantly and hot dark matter bounds: $\Omega_{\rm ncdm}h^2 < 0.0013$

Hot Axions:

Notari, Rompineve, Villadoro [2211.03799]

Gariazzo, de Salas & Pastor 1905.11290

3.7

39

 10^{-2}

 10^{-1}

Any massive particles in the spectrum?

Calculate their production rate and estimate their abundance.

If they are stable they contribute to dark matter, and then $\Omega_{\rm DM} h^2 \leq 0.12$

If they are not stable then they can lead to modifications of the early Universe. Either leading to theoretical inconsistencies or leading to actual bounds from BBN or the CMB

Thermal Dark Matter

scalar coupled to the Higgs:

Long-lived particles

scalar mixed with the Higgs:

Long-lived particles ALP

Langhoff, Outmezguine, Rodd [2209.06216]

Long-lived particles Gravitinos

Kawasaki, Kohri, Moroi [astro-ph/0408426]