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SU(2) vs. SU(3) - two sites

⊗ = ⊕
22 1 3× = +

½ ⊗ ½ = 0 ⊕ 1

Addition of two S=½ SU(2) spins:

using Young diagrams:

↑ and ↓ spins

|↑↓〉−|↓↑〉 singlet
odd (anti-symmetrical)

|↑↑〉, |↑↓〉+|↓↑〉, |↓↓〉 triplet 
even (symmetrical)

⊗ = ⊕
33 3 ̅ 6× = +

Addition of two SU(3) spins:

|aa〉, |bb〉, |cc〉, |ab〉+|ba〉, 
|ac〉+|ca〉, and |bc〉+|cb〉
even (symmetrical)

|ab〉−|ba〉, |ab〉−|ba〉, |ab〉−|ba〉 
odd (anti-symmetrical).

|a〉, |b〉, and |c〉. 

H = P12

P12(|αβ〉 − |βα〉) = −(|αβ〉 − |βα〉)

P12(|αβ〉 + |βα〉) = +(|αβ〉 + |βα〉) E=+1, even wave function

E=−1, odd wave function
1 2



SU(3) singlet

in the SU(3) singlet the spins are fully entangled:

 we cannot write it in a product form

= |abc〉 + |bca〉 + |cab〉 − |acb〉 − |acb〉 − |acb〉

spins fully antisymmetrized

SU(3) irreps on 3 sites

1 2 × 83 = +

Addition of three SU(3) spins (27 states):

⊕⊕  2×=⊗ ⊗

+ 10× ×3 3



SU(3) in S=1 spin model
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SU(3) in S=1 spin model
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FIG. 1. (Color online) The simplex solid states obtained with
iPEPS (D = 14) for two different SU(N ) Heisenberg models. The
width of a bond is proportional to the magnitude of the bond energy,
while blue (red dotted) bonds correspond to negative (positive)
energies. (a) One of the two degenerate trimerized ground states
of the SU(3) Heisenberg model on the kagome lattice. (b) One of the
two quadrumerized ground states of the SU(4) Heisenberg model on
the checkerboard lattice.

The Rapid Communication is organized as follows: First
we provide details on the iPEPS simulations, in particular,
how the models are simulated using a square-lattice iPEPS.
Then we present the iPEPS and ED results obtained for the
kagome and the checkerboard model, respectively. Finally, we
summarize our findings.

Infinite projected entangled-pair states (iPEPSs). A
projected-entangled pair state (PEPS) is an efficient variational
ansatz for two-dimensional ground state wave functions.22–26

It can be seen as a natural extension of a matrix product state
(MPS), the underlying ansatz of the famous density matrix
renormalization group (DMRG) method.27 The main idea is
to represent a wave function by a trace of a product of tensors,
with one tensor per lattice site. On the square lattice each
tensor T

p
ijkl has five indices: one index p which carries the local

Hilbert space of a lattice site with dimension d, and four indices
i,j,k,l—the auxiliary bonds with bond dimension D—which
connect to the four nearest-neighbor tensors. Thus, each tensor
contains dD4 variational parameters, and by varying D the
accuracy of the ansatz can be systematically controlled. A
bond dimension D = 1 simply corresponds to a product state
(a site-factorized wave function), and upon increasing D
quantum fluctuations (entanglement) can be taken into account
in a systematic way.

Details on the iPEPS method for the square lattice can
be found in Refs. 28–30, in particular, how to optimize the
tensors (i.e., finding the best variational parameters) and how to
compute expectation values by contracting the tensor network
(i.e., computing the trace of the product of all tensors). We
performed similar iPEPS simulations already for the SU(4)
Heisenberg model31 and the triangular- and square-lattice
SU(3) Heisenberg models.32

For the experts, we note that the optimization is done
through an imaginary time evolution using the simple
update,29,33–35 and we have verified some simulation re-
sults also with the full update.29 The corner-transfer matrix
method29,36,37 is used to contract the tensor network, where
the error of the approximate contraction can be controlled by
the boundary dimension χ . The simulation results in this work
are extrapolated in χ , where the extrapolation error is small

FIG. 2. (Color online) The two different simulation setups used to
simulate the kagome lattice with the iPEPS method developed for the
square lattice. Black circles and triangles correspond to tensors, and
black lines to the connection between tensors (the physical index of a
tensor is not shown). Interactions between physical sites (solid circles)
are given by thick shaded lines. (a) Auxiliary tensors (white circles)
are introduced to create a square lattice iPEPS. The interactions along
the horizontal and vertical direction correspond to nearest-neighbor
couplings on the square lattice, whereas the interactions along the
diagonal are treated as next-nearest-neighbor interactions. (b) Three
physical sites A, B, C on the kagome lattice, each having a local
dimension d = 3, are mapped into a block site with a local dimension
d̃ = 27.

compared to the symbol sizes. To improve the efficiency of the
simulations we used tensors with Zq symmetry.38,39

To simulate the checkerboard model we use the usual square
lattice iPEPS ansatz where we treat the diagonal couplings as
next-nearest-neighbor interactions as described in Ref. 40.

For the kagome lattice we implemented two different
simulation setups based on a square lattice iPEPS, which have
the advantage that existing algorithms for the optimization
and contraction can be reused. For the first variant we
use one tensor per lattice site, plus additional auxiliary
tensors which are inserted to form a square lattice iPEPS, as
sketched in Fig. 2(a). (The bond dimension of the auxiliary
tensors can be chosen as D = 1 since all correlations are
carried by the tensors on the physical sites.) The couplings
along the horizontal and vertical direction correspond to
nearest-neighbor couplings between two tensors, whereas
the remaining bonds necessary to form the kagome lattice
are represented by the next-nearest-neighbor bonds in
the square lattice, which can be treated as explained in
Ref. 40. In the second setup we map the kagome lattice onto a
square lattice by blocking three sites as illustrated in Fig. 2(b).
The original Hamiltonian is mapped onto a square lattice
Hamiltonian with nearest-neighbor interactions between the
block sites (see the Supplemental Material41). We point out
here that we do not block three sites belonging to a triangle
in the kagome lattice, since this would automatically bias the
solution towards a trimerized state.

Since we work directly in the thermodynamic limit, the
ground state wave function may exhibit spontaneously broken
symmetries. We measure the energy on each bond Eb in the
unit cell. If the energies are not equal on all symmetry related
bonds, i.e., if the difference

"E = max(Eb) − min(Eb) (2)

is finite, then the state breaks some lattice symmetries.
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The trimerized/simplex solid state/simplex valence-bond crystal for the 
fundamental 3 irrep model and S=1 Kagome (BLBQ, including the pure 

Heisenberg point)

What do we know about SU(3) Kagome ?

SU(3)

Large-N expansion: Hermele & Gurarie, Phys. Rev. B 
84, 174441 (2011);


iPEPS and ED: Corboz, Penc, Mila, & Läuchli, Phys. 
Rev. B 86, 041106(R) (2012)

S=1

H. J. Changlani, A. M. Läuchli, Trimerized ground state of the spin-1 Heisenberg 
antiferromagnet on the kagome lattice, Phys. Rev. B 91, 100407 (2015)  

T. Liu, W. Li, A. Weichselbaum; J von Delft, Jan, G. Su, Simplex valence-bond crystal 
in the spin-1 kagome Heisenberg antiferromagnet, Phys. Rev. B 91, 060403(R) (2015) 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Spin-1 antiferromagnets are abundant in nature, but few theories or results exist to understand their general
properties and behavior, particularly in situations when geometric frustration is present. Here we study the S =
1 Kagome compound Na2Ti3Cl8 using a combination of Density Functional Theory, Exact Diagonalization, and
Density Matrix Renormalization Group methods to achieve a first principles supported explanation of exotic
magnetic phases in this compound. We find that the effective magnetic Hamiltonian includes essential non-
Heisenberg terms that do not stem from spin-orbit coupling, and both trimerized and spin-nematic magnetic
phases are relevant. The experimentally observed structural transition to a breathing Kagome phase is driven by
spin–lattice coupling, which favors the trimerized magnetic phase against the quadrupolar one. We thus show
that lattice effects can be necessary to understand the magnetism in frustrated magnetic compounds, and surmise
that Na2Ti3Cl8 is a compound which cannot be understood from only electronic or only lattice Hamiltonians,
very much like VO2.

The search for exotic phases of matter in geometrical frus-
trated magnets has been an area of active research. To a large
extent, effort has been focused on S = 1/2 2D materials [1–3]
which have seen a flurry of theoretical activity [4–10]. Less
explored is the S � 1 case [11, 12], where many candidate
materials exist, but where the theoretical effort has not been
proportionate to the experimental activity. This is partly based
on the rationale that larger S systems magnetically order at
low temperature, however, there are many counter-examples
to this intuition. For example, both theoretically and exper-
imentally, it has been found that certain compounds do not
conform to this scenario and instead form long-range non-
magnetic states such as valence bond (simplex) or "trimer-
ized" phases (in the case of the S = 1 kagome [13–17]). In
some cases, a strongly quantum fluctuating phase or "spin liq-
uid" is favored, as has been argued in the case of the nearly
idealized Heisenberg S = 1 pyrochlore [18–20]), triangu-
lar lattices [21–24], with second nearest neighbor and/or bi-
quadratic couplings and possibly even the honeycomb lat-
tice [25]. Further prohibiting deeper understanding of the
physics of these materials is the interaction of magnetic de-
grees of freedom with the lattice, which provides an addi-
tional mechanism of relieving magnetic frustration. This work
is thus motivated by the exploration of the interplay of mag-
netism with the lattice in S = 1 kagome materials, which have
multiple reported experimental realizations [26, 27].

Na2Ti3Cl8 , a compound that has been known for at least 24
years [28], has recently seen a resurgence of interest due to the
underlying S = 1 kagome physics, and its relevance to under-
standing the interplay between magnetic and lattice degrees
of freedom [29, 30]. At room temperature, the compound
has layers of titanium ions arranged in a kagome structure,
as shown in Fig. 1. The titanium ions are in Ti2+ configura-

3.70 Å

2.98 Å
3.99 Å

3.70 Å

(a) (b)

(c)

Figure 1. (Color online) (a) Crystal structure of Na2Ti3Cl8 con-
sists of layers of edge-sharing TiCl6 octahedra, which are interca-
lated with Na ions. (b) At room temperature, Ti ions in each layer
form ideal Kagome lattices (HT structure). (c) At low temperatures,
a breathing distortion sets in, resulting in two different Ti-Ti bond
lengths of 2.98 Åand 3.99 Å.

tion, so Hund’s rules dictate a 3d2 configuration with S = 1
magnetic moments. Experimentally, at low temperature (LT),
Na2Ti3Cl8 has the "breathing kagome" or "trimerized" struc-
ture, referred to as in the literature as the � phase [29] (Fig.
1b). On heating the sample, at around 200 K, a phase tran-
sition occurs to the undistorted kagome structure, the room
temperature ↵ phase [29], which we refer to as the high tem-
perature (HT) phase. On cooling the sample from the HT
phase, one reproducibly gets trapped in an “intermediate" �

phase (IT phase) which appears to be a distinct metastable
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state [29]. Magnetic susceptibility drops sharply with decreas-
ing temperature below the HT phase, consistent with S = 1
atomic moments at HT phase, which are suppressed in the IT
and LT phases as the crystal structure is trimerized [28–30].

Here we elucidate the magnetic ground state and expli-
cate the mechanism of the breathing distortion in Na2Ti3Cl8
by a combination of first principles density functional theory
(DFT), exact diagonalization (ED), and density matrix renor-
malization group (DMRG) approaches. We find that (i) the
magnetic Hamiltonian that describes the interactions between
atomic spins moments in the HT phase includes essential non-
Heisenberg terms (biquadratic and ring-like exchange) that
stem from higher order processes, and (ii) due to the magni-
tude of these non-Heisenberg terms, the magnetic groundstate
of the HT Hamiltonian is ferroquadrupolar (nematic) instead
of trimerized. This implies that the breathing distortion of
the lattice is necessary to stabilize the trimerized phase. We
also find that (iii) the DFT calculations on the HT phase with
Neel order point to no lattice instability, which implies that
the trimerized ground state is stabilized through spin-lattice
coupling. In other words, neither the lattice nor the mag-
netic Hamiltonians by themselves have any instabilities to-
wards trimerization, but their combination gives rise to a co-
incident magnetic-structural transition.

The Effective Hamiltonian— Lack of information on the
low-energy effective Hamiltonian is often a limiting factor in
studies of frustrated magnetic materials. While there has been
progress in downfolding approaches using quantum mechani-
cal expectation values [31, 32], here we adopt the classical fit-
ting approach in conjunction with DFT that is now commonly
used to extract magnetic Hamiltonians and parameter for real
materials. (See, for example, Refs. [33–35].) We performed
self-consistent DFT calculations for multiple magnetic config-
urations, including various collinear and non-collinear states,
and extracted the final spin configurations and energies at the
DFT level. We then fit the parameters of various magnetic
models to these energies.

In Fig. 2, we present the results of our DFT calculations
for the HT structure, performed using the PBEsol exchange
correlation functional with the on-site +U correction with
U = 3 eV [36–40]. A fit to a nearest-neighbor only Heisen-
berg Hamiltonian captures the main trend of the energy with
an antiferromagnetic nearest neighbor coupling; but the agree-
ment is far from perfect, and especially the non-collinear spin
configurations’ energy are not properly captured by the model
(Fig. 2a). Possibly the simplest extension of the Hamiltonian
is the biquadratic term ⇠ (Si · Sj)

2 [41]. This biquadratic ex-
change is allowed by symmetry, and emerges in various spin-1
models due to higher order (⇠ t

4, where t is the hopping am-
plitude) perturbations which correspond to multiple electrons
between two atoms [36, 42–44]. At the same order in nearest
neighbor hopping t, there also exists a ring exchange on the
triangles with the form ⇠ (Si · Sj) (Si · Sk). We include both

Figure 2. (Color online) Fits of different effective model spin Hamil-
tonians to density functional theory data for U = 3 eV. Each data
point corresponds to a different magnetic configuration. The hori-
zontal axis is the energy from the DFT calculation, and the vertical
axis is the energy for the same configuration from the fitted model.
(a) The fit to the model with only the nearest neighbor Heisenberg
coupling. The energies of many non-collinear states are not repro-
duced well by the model. (b) The model with biquadratic and ring-
exchange couplings. The agreement is enhanced, with no clear out-
liers in the data.

of these terms to get the Hamiltonian

H = J

X

hiji

Si · Sj + Jbq

X

hiji

(Si · Sj)
2

+
JR

2

X

�=i,j,k

((Si · Sj) (Si · Sk) + (Si · Sk) (Si · Sj)) (1)

where hiji refers to nearest neighbor pairs and J > 0 is
the Heisenberg coupling. The symmetrization in the ring ex-
change term is required to maintain Hermiticity of the Hamil-
tonian. Ring exchanges similar to this one have been proposed
and studied in square lattices before [45], but to the best of our
knowledge, this form of the Hamiltonian has not been con-
sidered for a Kagome system before. The inclusion of more
terms make the fit better, as expected (Fig. 2). We find that
while the nearest neighbor antiferromagnetic Heisenberg cou-
pling is the strongest term, both Jbq and JR are nonzero and
significant. In the supplementary information [36] we provide
a jackknife analysis to show that the data is not over-fit, and
discuss the possibility of other Hamiltonians that can be fit to
the DFT data but require further neighbor hopping terms.

Wannier analysis of the electronic structure of Na2Ti3Cl8
provides insight into the reason that the Hamiltonian attains
this complicated form, and also to how the J coefficients be-
have under the structural transition. In Fig. 3a, we show the
t2g-like Wannier functions on the Ti atoms. The Ti cations are
at Wyckoff position 9e with site symmetry 2/m (C2h). This
low symmetry of the crystal field further splits the 3 t2g or-
bitals into t2g ! Ag+Bg+Bg , but our first principles calcu-
lations indicate that the two Bg orbitals (xz and yz) are degen-
erate within numerical noise, and only the Ag (xy) orbital has
a different energy. In Fig. 3b, we show the hoppings between
the 3 t2g-like orbitals in the HT phase. There are at least 3 dif-
ferent t values that are large and hence contribute significantly
to the exchange processes. While we do not attempt to solve
this model explicitly, we note that it is rich enough to give

Trimerized phase in the S = 1 Kagome antiferromagnet 
with ring exchange

https://doi.org/10.1103/PhysRevLett.124.167203
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Simplex solid in SU(3) Kagome
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⊗ = ⊕
33 3 ̅ 6× = +

Each site hosts the symmetric, 
6 dimensional irrep


(like in the S=1 AKLT state).

SU(3) singlet on N sites, 
represented by  
Schwinger bosons: 
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α(i)
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α,β,γ
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3 ��333 � (b)(a) 3

Each site hosts the 
antisymmetric, 3 
dimensional irrep.

SU(3) singlet on 3 sites, represented by fermions :

But we can do this with fermions as well !

|1(i1, i2, i3)i =
X

↵,�,�

"↵��f†
↵(i1)f

†
�(i2)f

†
�(i3)|0i = Fi1,i2,i3 |0i

<latexit sha1_base64="cqbxTxEWHh01I6KavecD3Rny++Y="></latexit>

|FSSi =
Y

4i

Y

5j

F4iF5j |0i
<latexit sha1_base64="mem02Z04q1Vq1ILHmc04PNS/wrw="></latexit>

femionic simplex solid wave function:

⊗ = ⊕
3 ̅3 ̅ 3 6 ̅× = +
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FIG. 1. (a) The model is constructed from trimers |τ 〉 which are
in a singlet state with representation Hv ≡ 1 ⊕ 3 ⊕ 3̄ at each site
(green dots), to which a map P• is applied which selects the physical
degrees of freedom from Hv ⊗ Hv . (b) Mapping to a Z3 topological
model: Each site holds a Z3 degree of freedom: one of two arrows or
no arrow. The arrows are pointing towards the 3 representation and
satisfy a Gauss law across each vertex due to the fusion rules of the
SU(3) irreps.

indeed exhibits left- and right-propagating modes with very
different velocities, and the slow mode in the trivial sector
displays a level counting clearly matching that of a chiral
SU(3)1 Conformal Field Theory (CFT). Yet, we find clear
evidence that the modes couple and the ES is gapped. How-
ever, under a specific deformation the chiral features become
more pronounced, and it is well conceivable that the ES
becomes chiral for instance as the deformation drives the
system through a phase transition.

II. SU(3) MODEL

We start by providing the construction of the model, illus-
trated in Fig. 1(a). We start from trimers |τ 〉 built of three “vir-
tual” particles, |τ 〉 ∈ H⊗3

v , where each of the virtual particles
lives in Hv = 1 ⊕ 3 ⊕ 3̄. Here, the boldface numbers denote
representations of SU(3), that is Hv decays into a direct sum
C1 ⊕ C3 ⊕ C3, with u ∈ SU(3) acting with the trivial action
(1), the fundamental action u (3), and the antifundamental
action ū (3̄), respectively. We will choose |τ 〉 to be an SU(3)
singlet. H⊗3

v supports a total of nine singlets, namely one in
each of the spaces 1 ⊗ 1 ⊗ 1, 3 ⊗ 3 ⊗ 3, and 3̄ ⊗ 3̄ ⊗ 3̄, and
the six permutations of 1 ⊗ 3 ⊗ 3̄. We choose |τ 〉 to be an
equal weight superposition of all singlets, with the follow-
ing convention: The six states 1 ⊗ 3 ⊗ 3̄ together with the
1 ⊗ 1 ⊗ 1 singlet are combined with amplitudes ±1 to form
a fully symmetric state |S〉, the remaining states 3 ⊗ 3 ⊗ 3
and 3̄ ⊗ 3̄ ⊗ 3̄ are combined with amplitudes +1 to form a
fully antisymmetric state |A〉, and |τ 〉 = |S〉 + i|A〉. The state
|τ 〉 thus has a chiral symmetry: It transforms trivially under
translation and rotation and as |τ 〉 &→ |τ̄ 〉 under reflection.

We now arrange the trimers |τ 〉 as shown in Fig. 1(a) and
apply maps P(α,β ) to pairs of adjacent virtual sites, where the
parameters α,β ∈ [0, 1] will allow us to interpolate between
the fixed-point model and the SU(3) spin liquid. We first de-
fine the map P⊥ ≡ P(1,1) which projects the two adjacent sites
H⊗2

v = (1 ⊕ 3 ⊕ 3̄)⊗2 onto the union of the three components
Hω = 1 ⊗ 3, Hω̄ = 3 ⊗ 1, and H1 = 3̄ ⊗ 3̄. We will show in
a moment that the resulting wave function is a fixed-point
wave function with Z3 topological order.

The interpolation in α is now obtained by adiabati-
cally removing the 6̄ component in H1 = 3̄ ⊗ 3̄ = 3 ⊕ 6̄,

that is,

P(α,1) =
{
1Hω

⊕ 1Hω̄
⊕

[
α1H1 + (1 − α)!H3

1

]}
P⊥, (1)

where we have decomposed H1 = 3 ⊕ 6̄ ≡ H3
1 ⊕ H6̄

1, and
!H denotes the orthogonal projector onto H.

At α = 0, we are left with P333 = P(0,1) which maps
into H333 = Hω ⊕ Hω̄ ⊕ H3

1
∼= 3 ⊗ C3, where the first ten-

sor component transforms as 3, while the second compo-
nent labels which representation we consider, and thus trans-
forms trivially under SU(3). We can now remove the C3

adiabatically,

P(0,β ) = {13 ⊗ [β 1C3 + (1 − β )|e〉〈e|C3 ]} P(0,1), (2)

by projecting the label onto the equal weight superposition
|e〉 of the three components (with the phases of Hω, Hω̄

chosen opposite, leaving P(0,β ) antisymmetric). For (α,β ) =
(0, 0), we can factor out the |e〉 and are thus left with an
SU(3)-invariant wave function [as the building blocks are
SU(3)-invariant] with the fundamental representation at each
site. Clearly, the two interpolations can be combined into a
two-parameter family, though in the following we will only
consider the presented sequence of interpolations (1, 1) →
(0, 1) → (0, 0).

Let us now show how to map the model with P(1,1) =
P⊥ : H⊗2

v → Hω ⊕ Hω̄ ⊕ H1 to a topological Z3 fixed-point
model by local unitaries. To this end, let us first add an
extra qutrit (“indicator”) {|−〉t , | →〉t , | ←〉t } at each vertex,
onto which we copy the information whether the system
at that vertex is in the space H1 = 3̄ ⊗ 3̄, Hω = 1 ⊗ 3, or
Hω̄ = 3 ⊗ 1, as shown in Fig. 1(b) (the arrow always points
towards the 3 irrep). Now consider for a moment the scenario
where we project all indicator qutrits onto this basis (“classical
configurations”). Given any such classical configuration, the
states of the virtual system factorize into singlet states of the
corresponding irreps on the individual triangles, and can thus
be brought into a fiducial state by local unitaries controlled by
the state of the indicator qutrits, and thus effectively removed.

This operation can be done coherently, leaving us with
the indicator qutrits in a superposition of all allowed con-
figurations. The construction of |τ 〉 ensures that around each
vertex of the dual honeycomb lattice, the number of 3 (i.e.,
ingoing arrows) minus the number of 1 (i.e., outgoing ar-
rows) is 0 mod 3. Associating the indicator qutrits with Z3
variables (with arrows pointing from the A to the B sublattice
corresponding to ω = e2π i/3, the other arrows to ω̄, and “no
arrow” to 1), it follows that the indicator qutrits which live
on the edges of the honeycomb lattice satisfy a Z3 Gauss’
law. In addition, all allowed configurations appear with equal
weight. Thus, the wave function given by the indicator qutrits
is the wave function of a quantum double model D(Z3), i.e.,
a fixed-point wave function with Z3 topological order.1

1Observe that our model is not a “resonating trimer state” as, e.g.,
in Ref. [17], since projecting 3̄ ⊗ 3̄ creates large entangled clusters
(e.g., for the vacuum of the Z3 model). Placing the model of Ref. [17]
on the kagome lattice in fact yields a variant of our model with a
modified |τ 〉 which we found to be in a trivial phase.

045116-2

Tensor network for Kagome
I. Kurecic, L. Vanderstraeten, N. Schuch: A gapped SU(3) spin liquid with 
Z_3 topological order, Phys. Rev. B 99, 045116 (2019)

parent Hamiltonian has 17 (?) sites, not shown in the papers
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A guess: sum of local projectors, like in the S=1 AKLT model 

Do we know the parent Hamiltonian ?

H = J
X

hi,ji

Pi,j +K
X

4,5
(Pi,j,k + Pi,k,j)

<latexit sha1_base64="yDll9v2FBQXIsYJwCWIxSz33Zdc="></latexit>

hFSS|H2
|FSSihFSS|FSSi = hFSS|H|FSSi2

<latexit sha1_base64="H8wRc2owtmrQC0nodZseFXyAEYg="></latexit>

We may try it on a small cluster: we generate the FSS, and ask 
whether the condition for being an eigenstate :

is satisfied with some values of J and K.

Surprise: it is satisfied for any value of J and K, 
the FSS is always an eigenstate of H !


(c.f. AKLT in S=1 chain)


But how does this happen?



The irreps in a triangle
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Comparing the S=1 AKLT chain with FSS

{s=1
sz=1

s=1
sz=0

S= 0 or 1

H
AKLT =

X

bonds

|S=2ihS=2|
<latexit sha1_base64="K8VMapTWKmWVFide7P6OkYKs/9w=">AAACLnicbZDNSgMxFIUz/tb6V3XpJloEV2WmCnZTqLgRFFS0ttDUkknTGsxkhuSOWMZ5Jze+g08giIgbBR/DtM5G64WQw3fvJTnHj6Qw4LovzsTk1PTMbG4uP7+wuLRcWFm9NGGsGa+zUIa66VPDpVC8DgIkb0aa08CXvOHfHAz7jVuujQjVBQwi3g5oX4meYBQs6hROSEDhmlGZHKZXCQF+B8n+0fFFmuIqJiYOOhn0Q9U1lt 6fk40q2SgTTVVfciJHF87ofadQdEvuqPC48DJRRFmddgpPpBuyOOAKmKTGtDw3gnZCNQgmeZonseERZTe0z5OR3RRvWdTFvVDbowCP6K85GhgzCHw7OTRn/vaG8L9eK4ZepZ0IFcXAFft5qBdLDCEeZoe7QnMGcmAFZVrYH2J2TTVlYBPOW+veX6Pj4rJc8nZK5bPdYq2ShZBD62gTbSMP7aEaOkSnqI4YekSv6AN9Og/Os/PmvP+MTjjZzhr6Vc7XN5R4qH8=</latexit>

H = J
X

hi,ji

Pi,j +K
X

4,5
(Pi,j,k + Pi,k,j)

<latexit sha1_base64="yDll9v2FBQXIsYJwCWIxSz33Zdc="></latexit>

AKLT chain

Fermionic simplex solid is an eigenstate of the 
Hamiltonian

and ground state when  and .c1 > 0 c10 > 0

H
FSS =

X

4,5
(c1|1ih1|+ c10|10ih10|)

<latexit sha1_base64="Q/GvLYiPGGyvdpmLgw9SVEIwAx8="></latexit>

1 ⨀ 8 = 8A̅

B̅A̅ A̅

B̅

C̅

J =
1

6
(c10 � c1) , K =

1

6
(c10 + c1)

<latexit sha1_base64="ie82BU/lVlMTbJfc6izVO9Z1SeE="></latexit>



full ED for small system (12 sites)
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H = J
X

hi,ji

Pi,j +K
X

4,5
(Pi,j,k + Pi,k,j)
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34650 states in the 
 

sector, but the 
symmetry group is 

large


nA = nB = nC

J = cos ϑ, K = sin ϑ



Lower bound on energy

J = J1 + 2J2 + J3

K = K1 + 3K2
<latexit sha1_base64="GpreoJuIaOH77S+dHG7LElasWdY=">AAACBHicbVBLSwMxGMzWV11fqx69BEuLUCi7W8FeCgUvsr1UsA/oliWbZtvQ7IMkK5TSqxf/ihcRLwqe/Qv+G9N2L7Z+kDDMzEcy4yeMCmmaP1pua3tndy+/rx8cHh2fGKdnHRGnHJM2jlnMez4ShNGItCWVjPQSTlDoM9L1J7cLvftIuKBx9CCnCRmEaBTRgGIkFeUZRQeWYB06nlW2Hc8uO14Vuq7ehKU6bCqyqm4bekbBrJjLgZvAykABZNPyjG93GOM0JJHEDAnRt8xEDmaIS4oZmetuKkiC8ASNyGwZYg6LihrCIObqRBIu2T8+FAoxDX3lDJEci3VtQf6n9VMZ1AYzGiWpJBFePRSkDMoYLhqBQ8oJlmyqAMKcqh9CPEYcYal601V0az3oJujYFatase+vC41aVkIeXIBLcAUscAMa4A60QBtg8AxewQf41J60F+1Ne19Zc1q2cw7+jPb1C6m1kg0=</latexit>
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H(J,K) =
X

lattice

H9(J1, J2, J3,K1,K2)
<latexit sha1_base64="FZwhB+9lJkbwE8GZYeT8NKjre/0="></latexit>

Let us write the lattice Hamiltonian as a sum offer the 
lattice of a Hamiltonian defined on a (9-site) open cluster:

where
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Lower bound on energy

ELB = max
J=J1+2J2+J3
K=K1+3K2

EGS(J1, J2, J3,K1,K2)

<latexit sha1_base64="B40jkGIDDkd+227IGwbBZWLoiW4="></latexit>

"1 = �3J + 2K

"8 = �K

"10 = 3J + 2K
<latexit sha1_base64="FFbe3Cl7J6bRYqOkn4QKAex5/NI="></latexit>

Actually, the 
energies of a 
single triangle 

gives also a lower 
bond (per triangle)

The energy calculated from the ground states of the sub-Hamiltonians will always 
be lower that the ground state energy of , as the true ground state of  can be 
viewed as a variational wavefunction for    

ℋ ℋ
ℋ9

FSS

FM

FM

The FM and the FSS saturate the lower bound, 
they are ground states (beware uniqueness)
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c10 = 3(K + J)
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J = cos ϑ, K = sin ϑ
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full ED for small system (12 sites) - degenerate GS
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The #=3$/4 (J = −K) case
H =

X

4,5
|1ih1|

<latexit sha1_base64="CMhEbq+3DCIp+ZRIU1aqE+PWWRQ="></latexit>
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The irepps of 3 spins in 
the triangle contain 1 

and 8, but no 10.

the building blocks are:

cf. I. Kurecic, L. Vanderstraeten, 
N. Schuch, PRB 99, 045116 
(2019)



The J = K case: Lego time!
H =

X

4,5
|10ih10|
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“current conservation” - some 
kind of a Coulomb liquid ?


On each bond 3 possibilities:

2 directions of arrow and 

absence of an arrow.


Z3 degrees of freedom


topological sectors 

(definition not obvious 

because of overlap and non-
orthogonality)



The J = K case: singlet states characterized by 
directed loops on honeycomb lattice

1 1

2 2

3 �
3 ��33(a) (b) (c)

local moves ⇒ 
extensive number of 

loops

number of undirected loops = 2×2×2(Nhex-1)

N undirected directed linearly 
independent

12 32 69 48
27 1024 2551 2485
36 8192 22437 22332

for 12 sites they span 
the singlet GS 

manifold



N undirected directed
linearly 

independent 
(GS manifold)

total # of singlets

12 32 69 48 462
21 595 1385670
27 1024 2551 2485 414315330
36 8192 22437 22332 2861142656400
39 16384 46339 46219 57468093927120

48 131072 408665 521086299271824330

degeneracy of the manifold
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The J = K case: other irreps also appear

What is the origin of the higher SU(3) irreps ???
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Tensor network: the wave function

each triangle represents the 
antisymmetrizing Levi-Civita symbol 

3 ̅
3 ̅3 ̅

3
3 ̅

|1(i1, i2, i3)i =
X

↵,�,�

"↵��f†
↵(i1)f

†
�(i2)f

†
�(i3)|0i = Fi1,i2,i3 |0i

<latexit sha1_base64="cqbxTxEWHh01I6KavecD3Rny++Y="></latexit>3 ��333 � (b)(a) 3

we antisymmetrize at each 3 site

⊗ = ⊕
3 ̅3 ̅ 3 6 ̅× = +



Tensor network: the overlap

R. Penrose, 
Applications of 
negative dimensional 
tensors, 1971

Penrose polynomial, 
defined for plane graphs 


graph of contracted 
Levi-Civita symbols 

12: 13392  
27: 1828256832
36: 2220531642144
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Penrose graph

The graphs are 
“bipartite” (median graph for 

degree 3 regular bipartite graph)



Evaluating Penrose graphs

1
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3

ε1,2,3 ε1,2,3 = 6
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…ε5,1,6 ε1,2,3 ε2,4,3 ε4,7,8… = − 2 × …ε5,1,6 ε1,7,8…

= −2 ×

εi, j,k εi,l,m = δl
j δm

k − δm
j δl

k

εi, j,k εi, j,l = 2δl
k

εi, j,k εi, j,k = 6

=

implied sum over repeated indices

We can define a recursive procedure to evaluate the Penrose graph:



Evaluating Penrose graphs

…ε1,2,8 ε2,3,4 ε4,5,6 ε6,7,8… = δ3
1δ7

5 + δ7
1δ3

5

1 2 3
4
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8 = +1,3
7,5

1,7
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1 2
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4
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6
= − δ2

1δ6
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5 − δ6
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3δ2
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1δ2
3δ6
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3δ2
5



12 sites
27 sites
48 sites

Spin-spin correlation function
calculated using “tensor network”
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12 sites
27 sites
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Spin-spin correlation function
calculated using “tensor network”
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Spin-spin correlation function
decays exponentially, 

Manhattan distance

C(r) = hFSS|AµAµ|FSSi
= hFSS| (P0,r � 1/3) |FSSi
⇡ 3�r

<latexit sha1_base64="Ei3zYSdUaloCKYWs/zFyB98vraE="></latexit>



we calculate the 
eigenvalues of the 

polarization operator 
p:





where  is the 
expectation value of 
the spin correlation  

on the bond.

p = ∑
j∈bonds

ωl( j)⟨)j⟩

⟨)j⟩

Topological sectors (polarizability)

1

−1

ω

ω2ω4

ω5

ω = exp 2πi
6

following Bulaevskii, Batista, Mostovoy, and Khomskii,

Phys. Rev. B 78, 024402 (2008).

Re(p)

Im(p)



Topological sectors (polarizability)

we calculate the 
eigenvalues of the 

polarization 
operator:



p = ∑
j∈bonds

ωl( j))j

27 sites, 2485 states
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FIG. 1. (a)–(j) Ten possible configurations of a local tensor to
realize the trimer covering. Known trimer coverings consisting of
linear and bent types only arise as special limits. The numbers 0, 1,
and 2 denote the indices of the site tensor. (k) Red and blue bars
represent all possible L- and B-type trimers, respectively.

Z =
∑

{li ,ri ,ui ,di } Al1r1u1d1δr1l2Al2r2u2d2 · · · gives the number of
trimer coverings.

The efficient calculation of Z proceeds on a cylinder ge-
ometry with the periodic boundary condition (PBC) imposed
along the x direction of length Nx and open ends along the
y direction of length Ny . The largest eigenvalue λ of the
row-to-row transfer matrix (TM) is used to evaluate Z ∼ λNy .
The entropy per site is s = ln Z/N , where N = NxNy counts
the number of lattice sites. We quote below the thermodynamic
extrapolation of the entropy for the mixed (both L- and B-type)
trimer case along with known results for L-only and B-only
types [24,25]:

s∞ =






0.15852(1.17178) for L-type,
0.27693(1.31907) for B-type,
0.41194(1.50974) for L- and B-type.

(1)

The number in the parentheses is x = es∞ , with which one
obtains Z ∼ xN .

Interestingly, we have found from analysis of the adjacency
graph of the transfer matrix that trimer configurations on the
cylinder can be classified into three distinct topological sectors
[26]. The winding number characterizing each sector can be
defined with a string threading the dual lattice. As depicted in
Fig. 2(a), we assign a direction to the string and give a weight
ω = e2π i/3 when the center position of the trimer is seen on
the right side of the path, and ω∗ if seen on the left side. With
this definition, the total weight for the elementary string loop
surrounding a site anticlockwise [Fig. 2(b)] is always ω, and it
can be considered as a locally conserved quantity in the trimer
problem. The winding number % around a single trimer is the
product of three factors of ω as the loop should consist of
three consecutive elementary loops, thus giving % = ω3 = 1.
For noncontractible loops defined on a compact manifold such
as the torus, the allowed winding numbers are % = 1,ω,ω∗,
as readers can easily verify, and cannot be modified by local
rearrangements of the string or of the trimers.

FIG. 2. (a) Assignment of the weight ω = e2π i/3 and its conjugate
ω∗ for the passage through the dual lattice with the center of the trimer
(blue dot) on the right and left side of the path, respectively. (b) For
any elementary loop surrounding a site, the total weight is always
% = ω. For any loop surrounding a single trimer, the total weight is
% = ω3 = 1.

A quantum Hamiltonian with 9g (g = genus of the mani-
fold) topological degeneracy may be constructed in analogy
with the RK Hamiltonian [3,4]:

(2)

The summation over all lattice translations of the blue-dot
site, as well as the 90◦ rotation (R π

2
) of the displayed terms,

are assumed. The v and t terms are the potential and resonating
pieces, respectively, in analogy with the structure of the RK
Hamiltonian for dimers [3,4]. In the potential terms, · · ·
denotes all other possible diagonal terms [26]. Resonating
terms involve only two trimers at one time and are not able
to alter the topological sector of the initial configuration. As
with all dimer models, there are certain “staggered states”
that cannot be reached by applying any number of resonance
moves. An example is given in Fig. 3(a). Acting with the
Hamiltonian on the staggered state gives 0 irrespective of t
and v values. Higher-order moves such as the simultaneous
rearrangement of six trimers caged inside the blue contour in

FIG. 3. (a) Staggered trimer configuration. A nonflippable six-
trimer block inside the blue boundary can be connected to (b) a
flippable configuration through six-trimer resonance moves.
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represent all possible L- and B-type trimers, respectively.

Z =
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{li ,ri ,ui ,di } Al1r1u1d1δr1l2Al2r2u2d2 · · · gives the number of
trimer coverings.

The efficient calculation of Z proceeds on a cylinder ge-
ometry with the periodic boundary condition (PBC) imposed
along the x direction of length Nx and open ends along the
y direction of length Ny . The largest eigenvalue λ of the
row-to-row transfer matrix (TM) is used to evaluate Z ∼ λNy .
The entropy per site is s = ln Z/N , where N = NxNy counts
the number of lattice sites. We quote below the thermodynamic
extrapolation of the entropy for the mixed (both L- and B-type)
trimer case along with known results for L-only and B-only
types [24,25]:
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The number in the parentheses is x = es∞ , with which one
obtains Z ∼ xN .

Interestingly, we have found from analysis of the adjacency
graph of the transfer matrix that trimer configurations on the
cylinder can be classified into three distinct topological sectors
[26]. The winding number characterizing each sector can be
defined with a string threading the dual lattice. As depicted in
Fig. 2(a), we assign a direction to the string and give a weight
ω = e2π i/3 when the center position of the trimer is seen on
the right side of the path, and ω∗ if seen on the left side. With
this definition, the total weight for the elementary string loop
surrounding a site anticlockwise [Fig. 2(b)] is always ω, and it
can be considered as a locally conserved quantity in the trimer
problem. The winding number % around a single trimer is the
product of three factors of ω as the loop should consist of
three consecutive elementary loops, thus giving % = ω3 = 1.
For noncontractible loops defined on a compact manifold such
as the torus, the allowed winding numbers are % = 1,ω,ω∗,
as readers can easily verify, and cannot be modified by local
rearrangements of the string or of the trimers.
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(blue dot) on the right and left side of the path, respectively. (b) For
any elementary loop surrounding a site, the total weight is always
% = ω. For any loop surrounding a single trimer, the total weight is
% = ω3 = 1.

A quantum Hamiltonian with 9g (g = genus of the mani-
fold) topological degeneracy may be constructed in analogy
with the RK Hamiltonian [3,4]:
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The summation over all lattice translations of the blue-dot
site, as well as the 90◦ rotation (R π
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) of the displayed terms,

are assumed. The v and t terms are the potential and resonating
pieces, respectively, in analogy with the structure of the RK
Hamiltonian for dimers [3,4]. In the potential terms, · · ·
denotes all other possible diagonal terms [26]. Resonating
terms involve only two trimers at one time and are not able
to alter the topological sector of the initial configuration. As
with all dimer models, there are certain “staggered states”
that cannot be reached by applying any number of resonance
moves. An example is given in Fig. 3(a). Acting with the
Hamiltonian on the staggered state gives 0 irrespective of t
and v values. Higher-order moves such as the simultaneous
rearrangement of six trimers caged inside the blue contour in

FIG. 3. (a) Staggered trimer configuration. A nonflippable six-
trimer block inside the blue boundary can be connected to (b) a
flippable configuration through six-trimer resonance moves.
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Trimers are not singlets of an 
SU(3) models (antisymmetry 
missing).
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FIG. 1. (a)–(j) Ten possible configurations of a local tensor to
realize the trimer covering. Known trimer coverings consisting of
linear and bent types only arise as special limits. The numbers 0, 1,
and 2 denote the indices of the site tensor. (k) Red and blue bars
represent all possible L- and B-type trimers, respectively.

Z =
∑

{li ,ri ,ui ,di } Al1r1u1d1δr1l2Al2r2u2d2 · · · gives the number of
trimer coverings.

The efficient calculation of Z proceeds on a cylinder ge-
ometry with the periodic boundary condition (PBC) imposed
along the x direction of length Nx and open ends along the
y direction of length Ny . The largest eigenvalue λ of the
row-to-row transfer matrix (TM) is used to evaluate Z ∼ λNy .
The entropy per site is s = ln Z/N , where N = NxNy counts
the number of lattice sites. We quote below the thermodynamic
extrapolation of the entropy for the mixed (both L- and B-type)
trimer case along with known results for L-only and B-only
types [24,25]:

s∞ =






0.15852(1.17178) for L-type,
0.27693(1.31907) for B-type,
0.41194(1.50974) for L- and B-type.

(1)

The number in the parentheses is x = es∞ , with which one
obtains Z ∼ xN .

Interestingly, we have found from analysis of the adjacency
graph of the transfer matrix that trimer configurations on the
cylinder can be classified into three distinct topological sectors
[26]. The winding number characterizing each sector can be
defined with a string threading the dual lattice. As depicted in
Fig. 2(a), we assign a direction to the string and give a weight
ω = e2π i/3 when the center position of the trimer is seen on
the right side of the path, and ω∗ if seen on the left side. With
this definition, the total weight for the elementary string loop
surrounding a site anticlockwise [Fig. 2(b)] is always ω, and it
can be considered as a locally conserved quantity in the trimer
problem. The winding number % around a single trimer is the
product of three factors of ω as the loop should consist of
three consecutive elementary loops, thus giving % = ω3 = 1.
For noncontractible loops defined on a compact manifold such
as the torus, the allowed winding numbers are % = 1,ω,ω∗,
as readers can easily verify, and cannot be modified by local
rearrangements of the string or of the trimers.

FIG. 2. (a) Assignment of the weight ω = e2π i/3 and its conjugate
ω∗ for the passage through the dual lattice with the center of the trimer
(blue dot) on the right and left side of the path, respectively. (b) For
any elementary loop surrounding a site, the total weight is always
% = ω. For any loop surrounding a single trimer, the total weight is
% = ω3 = 1.

A quantum Hamiltonian with 9g (g = genus of the mani-
fold) topological degeneracy may be constructed in analogy
with the RK Hamiltonian [3,4]:

(2)

The summation over all lattice translations of the blue-dot
site, as well as the 90◦ rotation (R π

2
) of the displayed terms,

are assumed. The v and t terms are the potential and resonating
pieces, respectively, in analogy with the structure of the RK
Hamiltonian for dimers [3,4]. In the potential terms, · · ·
denotes all other possible diagonal terms [26]. Resonating
terms involve only two trimers at one time and are not able
to alter the topological sector of the initial configuration. As
with all dimer models, there are certain “staggered states”
that cannot be reached by applying any number of resonance
moves. An example is given in Fig. 3(a). Acting with the
Hamiltonian on the staggered state gives 0 irrespective of t
and v values. Higher-order moves such as the simultaneous
rearrangement of six trimers caged inside the blue contour in

FIG. 3. (a) Staggered trimer configuration. A nonflippable six-
trimer block inside the blue boundary can be connected to (b) a
flippable configuration through six-trimer resonance moves.
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Figs. 3(a) and 3(b) can connect such staggered configurations
to flippable ones. Even this six-trimer flip is not able to alter
the topological sector.

At t = v, the trimer Hamiltonian in Eq. (2) can be recast
as a sum of projectors that locally project out the linear
superposition of flippable configurations [3,4,26]. Its ground
state is the linear superposition of all but the staggered
trimer configurations (to be defined shortly), with equal
amplitudes, i.e., the trimer resonating valence bond (tRVB)
state, |tRVB〉 =

∑
T |T 〉. Here, |T 〉 refers to a trimer covering

within a particular topological sector. For a torus with genus
number g = 1, we have 9g = 9 degenerate ground states
not connected with each other by resonance moves of the
Hamiltonian. Each one is a unique ground state of the trimer
RK Hamiltonian at t = v, within the subspace that excludes
staggered configurations, due to the Perron-Frobenius theorem
[27]. The staggered states also have zero energy, in apparent
degeneracy with the tRVB state |tRVB〉. One can rule out
staggered states from the ground state by perturbing away
from the RK point to v = t − ε infinitesimally, ε/t # 1 [28].
Also, since this perturbation does not mix different topological
sectors, we still have 9g independent ground states.

Connected trimer (〈tRVB|TiTj |tRVB〉c) and trimer-trimer
(〈tRVB|TiTi+x̂TjTj+x̂ |tRVB〉c) correlation functions, where Ti

is either an L- or a B-type trimer projector, are evaluated and
presented in Fig. 4. By performing a finite size scaling, we
obtained very nicely converged values and therefore the results
in Fig. 4 are not certainly affected by the finite size effect.
All functions decay exponentially with very short correlation
lengths of order one lattice spacing, as observed in the dimer
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FIG. 4. Correlations between (a) L-type, (b) B-type, (c) L- and
B-type, and (d) (LL)-trimers are measured on a 120 × 120 lattice
with the open boundary condition. Here, Rij is the distance between
two trimers at the site i and j , and the estimated correlation length ξ

is shown for each plot.

RK wave function on the triangular lattice [29,30]. It strongly
suggests that the quantum trimer Hamiltonian in Eq. (2) is
gapped at the RK point.

The 9g-fold topological degeneracy along with the likely
gapped nature of the ground state suggests a Z3 gauge theory
description of the low-energy dynamics for the trimer Hamil-
tonian. The relevant magnetic excitations (so-called vortex
and antivortex) will also be of Z3 character, differentiating
a vortex from the antivortex [31]. (In the Z2 gauge theory,
vortex and antivortex are the same [32].) A vortex-antivortex
pair excitation can be constructed explicitly. Let us consider the
same string operator, used previously for defining the winding
number, connecting two sites (p1,p2) on the dual lattice and
define a quantum state

|v1v̄2〉 =
∑

T

ωnr−nl |T 〉, (3)

where nr(l) denotes the number of the trimers crossed by the
string from the right (left) side of its center. This state is
orthogonal to the ground state in the thermodynamic limit,

〈v1v̄2|tRVB〉 =
∑

T

ωnl−nr ∝ 1 + ω + ω∗ = 0. (4)

The first equality follows from the assumed orthogonality
of different trimer configurations 〈T ′|T 〉 = δT T ′ . For a suf-
ficiently large sample and a well-separated vortex-antivortex
pair there should be equal numbers of configurations having
nl − nr = 0,1,2 (mod 3), hence the overlap must be zero. The
phase V12 = ωnl−nr is topologically identical to the operator
creating the Z3 vortex-antivortex pair in the Z3 gauge theory
[31]. Therefore, |tRVB〉 and |v1v̄2〉 can be considered as a
vacuum and a single vortex-antivortex pair state, respectively.
In this sense, we may interpret the nontrivial phase ω obtained
by the elementary loop in Fig. 2(b) as a result of braiding
between the vortex (or antivortex) and a Z3 charge placed at
each site [31].

The t = v RK point defines the first-order phase boundary
[4]. For v/t > 1, the ground state is one of the staggered
configurations such as that shown in Fig. 3(a), defined as states
that are annihilated identically by the actions of t and v terms
in the trimer Hamiltonian. Any trimer configuration containing
a flippable block gains a positive energy (v − t)nfl, where nfl is
the number of such flippable blocks. At v/t = −∞, the ground
state will be chosen to maximize the number of flippable
configurations. It is one of the columnar configurations
depicted in Fig. 5, and those are sixfold degenerate at most,
depending on the boundary condition and the system size.
A likely phase diagram of the quantum trimer model is
schematically proposed in Fig. 5. An extensive numerical work

FIG. 5. Schematic phase diagram of the quantum trimer
Hamiltonian.
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FIG. 1. (a)–(j) Ten possible configurations of a local tensor to
realize the trimer covering. Known trimer coverings consisting of
linear and bent types only arise as special limits. The numbers 0, 1,
and 2 denote the indices of the site tensor. (k) Red and blue bars
represent all possible L- and B-type trimers, respectively.

Z =
∑

{li ,ri ,ui ,di } Al1r1u1d1δr1l2Al2r2u2d2 · · · gives the number of
trimer coverings.

The efficient calculation of Z proceeds on a cylinder ge-
ometry with the periodic boundary condition (PBC) imposed
along the x direction of length Nx and open ends along the
y direction of length Ny . The largest eigenvalue λ of the
row-to-row transfer matrix (TM) is used to evaluate Z ∼ λNy .
The entropy per site is s = ln Z/N , where N = NxNy counts
the number of lattice sites. We quote below the thermodynamic
extrapolation of the entropy for the mixed (both L- and B-type)
trimer case along with known results for L-only and B-only
types [24,25]:

s∞ =






0.15852(1.17178) for L-type,
0.27693(1.31907) for B-type,
0.41194(1.50974) for L- and B-type.

(1)

The number in the parentheses is x = es∞ , with which one
obtains Z ∼ xN .

Interestingly, we have found from analysis of the adjacency
graph of the transfer matrix that trimer configurations on the
cylinder can be classified into three distinct topological sectors
[26]. The winding number characterizing each sector can be
defined with a string threading the dual lattice. As depicted in
Fig. 2(a), we assign a direction to the string and give a weight
ω = e2π i/3 when the center position of the trimer is seen on
the right side of the path, and ω∗ if seen on the left side. With
this definition, the total weight for the elementary string loop
surrounding a site anticlockwise [Fig. 2(b)] is always ω, and it
can be considered as a locally conserved quantity in the trimer
problem. The winding number % around a single trimer is the
product of three factors of ω as the loop should consist of
three consecutive elementary loops, thus giving % = ω3 = 1.
For noncontractible loops defined on a compact manifold such
as the torus, the allowed winding numbers are % = 1,ω,ω∗,
as readers can easily verify, and cannot be modified by local
rearrangements of the string or of the trimers.

FIG. 2. (a) Assignment of the weight ω = e2π i/3 and its conjugate
ω∗ for the passage through the dual lattice with the center of the trimer
(blue dot) on the right and left side of the path, respectively. (b) For
any elementary loop surrounding a site, the total weight is always
% = ω. For any loop surrounding a single trimer, the total weight is
% = ω3 = 1.

A quantum Hamiltonian with 9g (g = genus of the mani-
fold) topological degeneracy may be constructed in analogy
with the RK Hamiltonian [3,4]:

(2)

The summation over all lattice translations of the blue-dot
site, as well as the 90◦ rotation (R π

2
) of the displayed terms,

are assumed. The v and t terms are the potential and resonating
pieces, respectively, in analogy with the structure of the RK
Hamiltonian for dimers [3,4]. In the potential terms, · · ·
denotes all other possible diagonal terms [26]. Resonating
terms involve only two trimers at one time and are not able
to alter the topological sector of the initial configuration. As
with all dimer models, there are certain “staggered states”
that cannot be reached by applying any number of resonance
moves. An example is given in Fig. 3(a). Acting with the
Hamiltonian on the staggered state gives 0 irrespective of t
and v values. Higher-order moves such as the simultaneous
rearrangement of six trimers caged inside the blue contour in

FIG. 3. (a) Staggered trimer configuration. A nonflippable six-
trimer block inside the blue boundary can be connected to (b) a
flippable configuration through six-trimer resonance moves.
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FIG. 1. (a)–(j) Ten possible configurations of a local tensor to
realize the trimer covering. Known trimer coverings consisting of
linear and bent types only arise as special limits. The numbers 0, 1,
and 2 denote the indices of the site tensor. (k) Red and blue bars
represent all possible L- and B-type trimers, respectively.

Z =
∑

{li ,ri ,ui ,di } Al1r1u1d1δr1l2Al2r2u2d2 · · · gives the number of
trimer coverings.

The efficient calculation of Z proceeds on a cylinder ge-
ometry with the periodic boundary condition (PBC) imposed
along the x direction of length Nx and open ends along the
y direction of length Ny . The largest eigenvalue λ of the
row-to-row transfer matrix (TM) is used to evaluate Z ∼ λNy .
The entropy per site is s = ln Z/N , where N = NxNy counts
the number of lattice sites. We quote below the thermodynamic
extrapolation of the entropy for the mixed (both L- and B-type)
trimer case along with known results for L-only and B-only
types [24,25]:

s∞ =






0.15852(1.17178) for L-type,
0.27693(1.31907) for B-type,
0.41194(1.50974) for L- and B-type.

(1)

The number in the parentheses is x = es∞ , with which one
obtains Z ∼ xN .

Interestingly, we have found from analysis of the adjacency
graph of the transfer matrix that trimer configurations on the
cylinder can be classified into three distinct topological sectors
[26]. The winding number characterizing each sector can be
defined with a string threading the dual lattice. As depicted in
Fig. 2(a), we assign a direction to the string and give a weight
ω = e2π i/3 when the center position of the trimer is seen on
the right side of the path, and ω∗ if seen on the left side. With
this definition, the total weight for the elementary string loop
surrounding a site anticlockwise [Fig. 2(b)] is always ω, and it
can be considered as a locally conserved quantity in the trimer
problem. The winding number % around a single trimer is the
product of three factors of ω as the loop should consist of
three consecutive elementary loops, thus giving % = ω3 = 1.
For noncontractible loops defined on a compact manifold such
as the torus, the allowed winding numbers are % = 1,ω,ω∗,
as readers can easily verify, and cannot be modified by local
rearrangements of the string or of the trimers.

FIG. 2. (a) Assignment of the weight ω = e2π i/3 and its conjugate
ω∗ for the passage through the dual lattice with the center of the trimer
(blue dot) on the right and left side of the path, respectively. (b) For
any elementary loop surrounding a site, the total weight is always
% = ω. For any loop surrounding a single trimer, the total weight is
% = ω3 = 1.

A quantum Hamiltonian with 9g (g = genus of the mani-
fold) topological degeneracy may be constructed in analogy
with the RK Hamiltonian [3,4]:

(2)

The summation over all lattice translations of the blue-dot
site, as well as the 90◦ rotation (R π

2
) of the displayed terms,

are assumed. The v and t terms are the potential and resonating
pieces, respectively, in analogy with the structure of the RK
Hamiltonian for dimers [3,4]. In the potential terms, · · ·
denotes all other possible diagonal terms [26]. Resonating
terms involve only two trimers at one time and are not able
to alter the topological sector of the initial configuration. As
with all dimer models, there are certain “staggered states”
that cannot be reached by applying any number of resonance
moves. An example is given in Fig. 3(a). Acting with the
Hamiltonian on the staggered state gives 0 irrespective of t
and v values. Higher-order moves such as the simultaneous
rearrangement of six trimers caged inside the blue contour in

FIG. 3. (a) Staggered trimer configuration. A nonflippable six-
trimer block inside the blue boundary can be connected to (b) a
flippable configuration through six-trimer resonance moves.

060413-2



Xiao-Yu Dong, Ji-Yao Chen, Hong-Hao Tu

SU(3) trimer resonating-valence-bond state on the square lattice

Phys. Rev. B 98, 205117 (2018).

Tensor networks: Z3 topological order

XIAO-YU DONG, JI-YAO CHEN, AND HONG-HAO TU PHYSICAL REVIEW B 98, 205117 (2018)

(a) (b)

(c) (d)

0

0
0

3

3̄

|E 0

i j

k

0

3̄
α

β

η

γ

FIG. 1. (a) Schematics of the SU(3) trimers. (b) Typical trimer
covering configuration on the square lattice. (c) Projected entangled-
pair state representation of the SU(3) tRVB state. (d) Two kinds of
projectors mapping virtual states to physical states.

with ε123 = 1. For such a trimer, it is convenient to assign an
orientation as i → j → k. For our purpose, we only consider
four kinds of “short-range” bent trimers for which both (i, j )
and (j, k) are nearest neighbors and the angle between two
orientations i → j and j → k is 90◦ [see Fig. 1(a)].

The SU(3) tRVB state of our interest is an equal-weight
superposition of trimer coverings on the square lattice; see
Fig. 1(b) for an example of the trimer covering configuration.
The relative sign of trimer covering configurations is fixed
by the local orientations of the trimers, i.e., only trimers
with orientations shown in Fig. 1(a) are allowed. It is then
straightforward to verify that the tRVB state so obtained
respects the full C4v symmetry of the square lattice. Similar to
the nonorthogonality of SU(2) valence-bond dimer coverings,
the SU(3) trimer covering configurations do not form an
orthogonal basis either. Thus, our tRVB is different from a
recent proposal [22] of a tRVB wave function which consists
of orthogonal trimer configurations in the same sense as the
difference between the spin-1/2 nearest-neighbor RVB state
[23] and the Rokhsar-Kivelson wave function [24]. Due to
the nonorthogonality, there is a priori no reason to suppose
that the correlations of the SU(3) tRVB state are similar to its
classical analog [25].

III. PEPS REPRESENTATION

In order to characterize the SU(3) tRVB state, we switch
to its PEPS representation. Similar strategy has been proven
very successful in characterizing the spin-1/2 RVB [26–
30] and spin-1 resonating Affleck-Kennedy-Lieb-Tasaki loop
states [31,32] on various lattices. Following the projective
construction of PEPS, we introduce at every site four virtual
particles, each of which supports a seven-dimensional auxil-
iary Hilbert space VA with basis vectors |0〉 belonging to the
SU(3) trivial representation and {|1〉, |2〉, |3〉} ({|1̄〉, |2̄〉, |3̄〉})
transforming under the fundamental (antifundamental) rep-
resentation 3 (3̄), respectively. Each pair of virtual particles
between adjacent sites forms a maximally entangled state [see

Fig. 1(c)],

|E〉 = |00〉 + |11̄〉 + |22̄〉 + |33̄〉 + |1̄1〉 + |2̄2〉 + |3̄3〉. (1)

For later purpose we compactly write the maximally entan-
gled state (1) between sites i1 and i2 as

|E〉i1,i2 =
∑

α,β∈VA

Eα,β |α〉i1 |β〉i2 , (2)

where the nonvanishing entries of Eα,β can be obtained
from (1).

To recover the physical Hilbert space, the four virtual states
at each site are projected back to the physical state by a
projector P̂ , defined by

P̂ =
∑

a∈V

∑

α,β,η,γ∈VA

Pa
α,β,η,γ |a〉〈α,β, η, γ |, (3)

where α, β, η, and γ are assigned for the virtual states at left,
right, up, and down positions [see Fig. 1(c)], V is the physical
Hilbert space on each site, and Pa

α,β,η,γ is a tensor to be
specified below. To reproduce the tRVB state, we decompose
the projector P̂ into two parts,

P̂ = P̂1 + P̂2, (4)

where P̂1 identifies one of the virtual states in 3 as the physical
state [the rest three virtual particles are in the trivial represen-
tation; see the upper panel in Fig. 1(d) for an example],

P̂1 =
∑

a∈V

∑

α,β,η,γ∈VA

[(δα,aδβ,0 + δα,0δβ,a )δη,0δγ ,0

− δα,0δβ,0(δη,aδγ ,0 + δη,0δγ ,a )]|a〉〈α,β, η, γ |, (5)

and P̂2 maps two adjacent virtual states in 3̄ into the physical
state [the rest two virtual particles are in the trivial represen-
tation; see the lower panel in Fig. 1(d)],

P̂2 =
∑

a∈V

∑

α,β,η,γ∈VA

∑

M̄,N̄∈(1̄,2̄,3̄)

εaMN (δα,M̄δβ,0δη,N̄δγ ,0

+ δα,M̄δβ,0δη,0δγ ,N̄ + δα,0δβ,M̄δη,N̄δγ ,0

+ δα,0δβ,M̄δη,0δγ ,N̄ )|a〉〈α,β, η, γ |. (6)

The tensor Pa
α,β,η,γ in (3) is thus defined through the sum

of tensor entries in (5) and (6). It is also easy to verify that
both P̂1 and P̂2 belong to the B1 irreducible representation of
the C4v point-group symmetry [33]. Here we would like to
mention that the linear trimer configuration where the three
neighboring sites forming the singlet are on a straight line
is excluded since it does not belong to the B1 irreducible
representation of C4v .

With the PEPS projector and the virtual bonds in hand, the
PEPS for the SU(3) tRVB state is obtained by applying the
product of projectors to the virtual bonds,

|ψ〉 =
N⊗

i=1

P̂ (i)
⊗

〈i1,i2〉
|E〉i1,i2 , (7)

which is shown in Fig. 1(c). By construction, each trimer
consists of three sites with P̂2 acting on the middle site
and P̂1 acting on the two end sites. Only the configurations
of trimer coverings in which each site belongs to one and
only one trimer have nonzero weight in |ψ〉, and all trimer
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FIG. 1. (a) Schematics of the SU(3) trimers. (b) Typical trimer
covering configuration on the square lattice. (c) Projected entangled-
pair state representation of the SU(3) tRVB state. (d) Two kinds of
projectors mapping virtual states to physical states.

with ε123 = 1. For such a trimer, it is convenient to assign an
orientation as i → j → k. For our purpose, we only consider
four kinds of “short-range” bent trimers for which both (i, j )
and (j, k) are nearest neighbors and the angle between two
orientations i → j and j → k is 90◦ [see Fig. 1(a)].

The SU(3) tRVB state of our interest is an equal-weight
superposition of trimer coverings on the square lattice; see
Fig. 1(b) for an example of the trimer covering configuration.
The relative sign of trimer covering configurations is fixed
by the local orientations of the trimers, i.e., only trimers
with orientations shown in Fig. 1(a) are allowed. It is then
straightforward to verify that the tRVB state so obtained
respects the full C4v symmetry of the square lattice. Similar to
the nonorthogonality of SU(2) valence-bond dimer coverings,
the SU(3) trimer covering configurations do not form an
orthogonal basis either. Thus, our tRVB is different from a
recent proposal [22] of a tRVB wave function which consists
of orthogonal trimer configurations in the same sense as the
difference between the spin-1/2 nearest-neighbor RVB state
[23] and the Rokhsar-Kivelson wave function [24]. Due to
the nonorthogonality, there is a priori no reason to suppose
that the correlations of the SU(3) tRVB state are similar to its
classical analog [25].

III. PEPS REPRESENTATION

In order to characterize the SU(3) tRVB state, we switch
to its PEPS representation. Similar strategy has been proven
very successful in characterizing the spin-1/2 RVB [26–
30] and spin-1 resonating Affleck-Kennedy-Lieb-Tasaki loop
states [31,32] on various lattices. Following the projective
construction of PEPS, we introduce at every site four virtual
particles, each of which supports a seven-dimensional auxil-
iary Hilbert space VA with basis vectors |0〉 belonging to the
SU(3) trivial representation and {|1〉, |2〉, |3〉} ({|1̄〉, |2̄〉, |3̄〉})
transforming under the fundamental (antifundamental) rep-
resentation 3 (3̄), respectively. Each pair of virtual particles
between adjacent sites forms a maximally entangled state [see

Fig. 1(c)],

|E〉 = |00〉 + |11̄〉 + |22̄〉 + |33̄〉 + |1̄1〉 + |2̄2〉 + |3̄3〉. (1)

For later purpose we compactly write the maximally entan-
gled state (1) between sites i1 and i2 as

|E〉i1,i2 =
∑

α,β∈VA

Eα,β |α〉i1 |β〉i2 , (2)

where the nonvanishing entries of Eα,β can be obtained
from (1).

To recover the physical Hilbert space, the four virtual states
at each site are projected back to the physical state by a
projector P̂ , defined by

P̂ =
∑

a∈V

∑

α,β,η,γ∈VA

Pa
α,β,η,γ |a〉〈α,β, η, γ |, (3)

where α, β, η, and γ are assigned for the virtual states at left,
right, up, and down positions [see Fig. 1(c)], V is the physical
Hilbert space on each site, and Pa

α,β,η,γ is a tensor to be
specified below. To reproduce the tRVB state, we decompose
the projector P̂ into two parts,

P̂ = P̂1 + P̂2, (4)

where P̂1 identifies one of the virtual states in 3 as the physical
state [the rest three virtual particles are in the trivial represen-
tation; see the upper panel in Fig. 1(d) for an example],

P̂1 =
∑

a∈V

∑

α,β,η,γ∈VA

[(δα,aδβ,0 + δα,0δβ,a )δη,0δγ ,0

− δα,0δβ,0(δη,aδγ ,0 + δη,0δγ ,a )]|a〉〈α,β, η, γ |, (5)

and P̂2 maps two adjacent virtual states in 3̄ into the physical
state [the rest two virtual particles are in the trivial represen-
tation; see the lower panel in Fig. 1(d)],

P̂2 =
∑

a∈V

∑

α,β,η,γ∈VA

∑

M̄,N̄∈(1̄,2̄,3̄)

εaMN (δα,M̄δβ,0δη,N̄δγ ,0

+ δα,M̄δβ,0δη,0δγ ,N̄ + δα,0δβ,M̄δη,N̄δγ ,0

+ δα,0δβ,M̄δη,0δγ ,N̄ )|a〉〈α,β, η, γ |. (6)

The tensor Pa
α,β,η,γ in (3) is thus defined through the sum

of tensor entries in (5) and (6). It is also easy to verify that
both P̂1 and P̂2 belong to the B1 irreducible representation of
the C4v point-group symmetry [33]. Here we would like to
mention that the linear trimer configuration where the three
neighboring sites forming the singlet are on a straight line
is excluded since it does not belong to the B1 irreducible
representation of C4v .

With the PEPS projector and the virtual bonds in hand, the
PEPS for the SU(3) tRVB state is obtained by applying the
product of projectors to the virtual bonds,

|ψ〉 =
N⊗

i=1

P̂ (i)
⊗

〈i1,i2〉
|E〉i1,i2 , (7)

which is shown in Fig. 1(c). By construction, each trimer
consists of three sites with P̂2 acting on the middle site
and P̂1 acting on the two end sites. Only the configurations
of trimer coverings in which each site belongs to one and
only one trimer have nonzero weight in |ψ〉, and all trimer
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with ε123 = 1. For such a trimer, it is convenient to assign an
orientation as i → j → k. For our purpose, we only consider
four kinds of “short-range” bent trimers for which both (i, j )
and (j, k) are nearest neighbors and the angle between two
orientations i → j and j → k is 90◦ [see Fig. 1(a)].

The SU(3) tRVB state of our interest is an equal-weight
superposition of trimer coverings on the square lattice; see
Fig. 1(b) for an example of the trimer covering configuration.
The relative sign of trimer covering configurations is fixed
by the local orientations of the trimers, i.e., only trimers
with orientations shown in Fig. 1(a) are allowed. It is then
straightforward to verify that the tRVB state so obtained
respects the full C4v symmetry of the square lattice. Similar to
the nonorthogonality of SU(2) valence-bond dimer coverings,
the SU(3) trimer covering configurations do not form an
orthogonal basis either. Thus, our tRVB is different from a
recent proposal [22] of a tRVB wave function which consists
of orthogonal trimer configurations in the same sense as the
difference between the spin-1/2 nearest-neighbor RVB state
[23] and the Rokhsar-Kivelson wave function [24]. Due to
the nonorthogonality, there is a priori no reason to suppose
that the correlations of the SU(3) tRVB state are similar to its
classical analog [25].

III. PEPS REPRESENTATION

In order to characterize the SU(3) tRVB state, we switch
to its PEPS representation. Similar strategy has been proven
very successful in characterizing the spin-1/2 RVB [26–
30] and spin-1 resonating Affleck-Kennedy-Lieb-Tasaki loop
states [31,32] on various lattices. Following the projective
construction of PEPS, we introduce at every site four virtual
particles, each of which supports a seven-dimensional auxil-
iary Hilbert space VA with basis vectors |0〉 belonging to the
SU(3) trivial representation and {|1〉, |2〉, |3〉} ({|1̄〉, |2̄〉, |3̄〉})
transforming under the fundamental (antifundamental) rep-
resentation 3 (3̄), respectively. Each pair of virtual particles
between adjacent sites forms a maximally entangled state [see
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Hilbert space on each site, and Pa
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specified below. To reproduce the tRVB state, we decompose
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The tensor Pa
α,β,η,γ in (3) is thus defined through the sum

of tensor entries in (5) and (6). It is also easy to verify that
both P̂1 and P̂2 belong to the B1 irreducible representation of
the C4v point-group symmetry [33]. Here we would like to
mention that the linear trimer configuration where the three
neighboring sites forming the singlet are on a straight line
is excluded since it does not belong to the B1 irreducible
representation of C4v .

With the PEPS projector and the virtual bonds in hand, the
PEPS for the SU(3) tRVB state is obtained by applying the
product of projectors to the virtual bonds,

|ψ〉 =
N⊗

i=1

P̂ (i)
⊗

〈i1,i2〉
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which is shown in Fig. 1(c). By construction, each trimer
consists of three sites with P̂2 acting on the middle site
and P̂1 acting on the two end sites. Only the configurations
of trimer coverings in which each site belongs to one and
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FIG. 4. The correlation functions (a) |〈λ3(0)λ3(d )〉|, (b)
|〈λ8(0)λ8(d )〉|, (c) C1(d ) = |〈B1(0)B1(d )〉 − 〈B1(0)〉〈B1(d )〉|, and
(d) C2(d ) = |〈B1(0)B2(d )〉 − 〈B1(0)〉〈B2(d )〉| versus distance d ,
respectively. The black dashed lines correspond to the plot of the
exponentially decaying function ∝exp(−d/ξ ) with correlation
length ξ = 1.23 estimated from the gap of the transfer matrix.

These correlation functions also decay exponentially at
long distances, and the correlation lengths for χ = 147 are
ξ t

1 ∼ 1.1 and ξ t
2 ∼ 1.2, respectively. As a comparison, the

upper bound of the correlation length obtained from the
TM spectrum (with χ = 147) is given by ξ ∼ 1.23 (see the
dashed lines in Fig. 4). Thus, the correlation of one B1-type
and one B2-type trimer is dominant in the tRVB state.

V. CHARACTERIZING TOPOLOGICAL ORDER

The fact that the SU(3) tRVB state does not break C4v

and translation symmetries and has only short-range corre-
lations indicates that it is a gapped symmetric ground state
of a local SU(3) spin Hamiltonian (e.g., the parent Hamilto-
nian constructed from the PEPS representation). According
to a straightforward SU(3) generalization of the celebrated
Lieb-Schultz-Mattis-Hastings-Oshikawa (LSMHO) theorem
[37–39], the SU(3) spin model on the square lattice with
fundamental representation 3 on each site cannot have a
nondegenerate gapped ground state preserving both SU(3)
and translation symmetries. In other words, a gapped ground
state with both SU(3) and translational symmetries must be
topologically ordered. Based on this LSMHO argument, the
SU(3) tRVB state must be a topological spin liquid.

Let us now analyze the topological properties of
the tRVB state. An important observation is that the
SU(3) tRVB state has a Z3 gauge symmetry in its
PEPS representation. By defining the Z3-symmetry gener-
ator v = diag(1,ω,ω,ω,ω2,ω2,ω2) with ω = ei2π/3 (the
vectors in the virtual Hilbert space are arranged as
|0〉, |1〉, |2〉, |3〉, |1̄〉, |2̄〉, and |3̄〉 so that v plays the role
of counting the Z3 charge), the local tensor A defining the
PEPS, given by (8), satisfies the following Z3-injectivity

=

h
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h

h h
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FIG. 5. (a) Z3 gauge symmetry of the PEPS local tensor. (b)
Constructing nine states by inserting gauge flux along two non-
contractible loops on a torus. (c) and (d) A 3 × 1 torus formed
by double tensors and the Z3 gauge symmetry elements is used to
compute modular S and T matrices.

condition [40]:

(gl ⊗ gr ⊗ gu ⊗ gd )A = ωA, (9)

where A is now viewed as a matrix mapping from physical to
virtual spaces and gl = gd = v and gr = gu = v2, indicating
that the left/down/right/up virtual space in each site has a Z3
gauge symmetry. The symmetry condition (9) is graphically
shown in Fig. 5(a). Note that, glgr = gugd = I (I is an identity
matrix in the virtual space VA), as required from the gauge
symmetry condition in PEPS [40].

The Z3 gauge symmetry, together with the absence of
any symmetry breaking order (as revealed from correlation
functions), finite correlation length, and the LSMHO argu-
ment, give an indication that the tRVB state has Z3 topo-
logical order. Indeed, when the PEPS is defined on a torus,
inserting gauge transformations (g, h) on virtual indices in
both horizontal and vertical directions [see Fig. 5(b)] leads
to nine states |ψ (g, h)〉 in total (g and h can separately
take the choice of I, v, and v2), which form the nine-fold
degeneracy of Z3 topological order on a torus. However, the
linear independence of the nine states is not guaranteed and
requires a careful numerical check, which we address below.

To verify the nine-fold ground-state degeneracy and char-
acterize the topological order, we utilize the tensor renormal-
ization group (TRG) method [41] to compute the modular S
and T matrices, which can be viewed as order parameters
for topological phases [42]. The TRG process is essentially
to compute the overlap of the nine states by first real-space
coarse graining the double tensor to a fixed-point tensor, and
then contracting a small cluster formed by the fixed-point
tensor and gauge transformations [see Figs. 5(c) and 5(d)].
At each renormalization group (RG) step, a truncation has
to be introduced to avoid the exponential growth of bond
dimensions, which is achieved by keeping χ singular values
in each RG step.

In order to compute the modular matrices, it is important to
keep track of the Z3 gauge symmetry in each layer, which can
be achieved through a simple block singular-value decomposi-
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FIG. 1. (a) Schematics of the SU(3) trimers. (b) Typical trimer
covering configuration on the square lattice. (c) Projected entangled-
pair state representation of the SU(3) tRVB state. (d) Two kinds of
projectors mapping virtual states to physical states.

with ε123 = 1. For such a trimer, it is convenient to assign an
orientation as i → j → k. For our purpose, we only consider
four kinds of “short-range” bent trimers for which both (i, j )
and (j, k) are nearest neighbors and the angle between two
orientations i → j and j → k is 90◦ [see Fig. 1(a)].

The SU(3) tRVB state of our interest is an equal-weight
superposition of trimer coverings on the square lattice; see
Fig. 1(b) for an example of the trimer covering configuration.
The relative sign of trimer covering configurations is fixed
by the local orientations of the trimers, i.e., only trimers
with orientations shown in Fig. 1(a) are allowed. It is then
straightforward to verify that the tRVB state so obtained
respects the full C4v symmetry of the square lattice. Similar to
the nonorthogonality of SU(2) valence-bond dimer coverings,
the SU(3) trimer covering configurations do not form an
orthogonal basis either. Thus, our tRVB is different from a
recent proposal [22] of a tRVB wave function which consists
of orthogonal trimer configurations in the same sense as the
difference between the spin-1/2 nearest-neighbor RVB state
[23] and the Rokhsar-Kivelson wave function [24]. Due to
the nonorthogonality, there is a priori no reason to suppose
that the correlations of the SU(3) tRVB state are similar to its
classical analog [25].

III. PEPS REPRESENTATION

In order to characterize the SU(3) tRVB state, we switch
to its PEPS representation. Similar strategy has been proven
very successful in characterizing the spin-1/2 RVB [26–
30] and spin-1 resonating Affleck-Kennedy-Lieb-Tasaki loop
states [31,32] on various lattices. Following the projective
construction of PEPS, we introduce at every site four virtual
particles, each of which supports a seven-dimensional auxil-
iary Hilbert space VA with basis vectors |0〉 belonging to the
SU(3) trivial representation and {|1〉, |2〉, |3〉} ({|1̄〉, |2̄〉, |3̄〉})
transforming under the fundamental (antifundamental) rep-
resentation 3 (3̄), respectively. Each pair of virtual particles
between adjacent sites forms a maximally entangled state [see

Fig. 1(c)],

|E〉 = |00〉 + |11̄〉 + |22̄〉 + |33̄〉 + |1̄1〉 + |2̄2〉 + |3̄3〉. (1)

For later purpose we compactly write the maximally entan-
gled state (1) between sites i1 and i2 as

|E〉i1,i2 =
∑

α,β∈VA

Eα,β |α〉i1 |β〉i2 , (2)

where the nonvanishing entries of Eα,β can be obtained
from (1).

To recover the physical Hilbert space, the four virtual states
at each site are projected back to the physical state by a
projector P̂ , defined by

P̂ =
∑

a∈V

∑

α,β,η,γ∈VA

Pa
α,β,η,γ |a〉〈α,β, η, γ |, (3)

where α, β, η, and γ are assigned for the virtual states at left,
right, up, and down positions [see Fig. 1(c)], V is the physical
Hilbert space on each site, and Pa

α,β,η,γ is a tensor to be
specified below. To reproduce the tRVB state, we decompose
the projector P̂ into two parts,

P̂ = P̂1 + P̂2, (4)

where P̂1 identifies one of the virtual states in 3 as the physical
state [the rest three virtual particles are in the trivial represen-
tation; see the upper panel in Fig. 1(d) for an example],

P̂1 =
∑

a∈V

∑

α,β,η,γ∈VA

[(δα,aδβ,0 + δα,0δβ,a )δη,0δγ ,0

− δα,0δβ,0(δη,aδγ ,0 + δη,0δγ ,a )]|a〉〈α,β, η, γ |, (5)

and P̂2 maps two adjacent virtual states in 3̄ into the physical
state [the rest two virtual particles are in the trivial represen-
tation; see the lower panel in Fig. 1(d)],

P̂2 =
∑

a∈V

∑

α,β,η,γ∈VA

∑

M̄,N̄∈(1̄,2̄,3̄)

εaMN (δα,M̄δβ,0δη,N̄δγ ,0

+ δα,M̄δβ,0δη,0δγ ,N̄ + δα,0δβ,M̄δη,N̄δγ ,0

+ δα,0δβ,M̄δη,0δγ ,N̄ )|a〉〈α,β, η, γ |. (6)

The tensor Pa
α,β,η,γ in (3) is thus defined through the sum

of tensor entries in (5) and (6). It is also easy to verify that
both P̂1 and P̂2 belong to the B1 irreducible representation of
the C4v point-group symmetry [33]. Here we would like to
mention that the linear trimer configuration where the three
neighboring sites forming the singlet are on a straight line
is excluded since it does not belong to the B1 irreducible
representation of C4v .

With the PEPS projector and the virtual bonds in hand, the
PEPS for the SU(3) tRVB state is obtained by applying the
product of projectors to the virtual bonds,

|ψ〉 =
N⊗

i=1

P̂ (i)
⊗

〈i1,i2〉
|E〉i1,i2 , (7)

which is shown in Fig. 1(c). By construction, each trimer
consists of three sites with P̂2 acting on the middle site
and P̂1 acting on the two end sites. Only the configurations
of trimer coverings in which each site belongs to one and
only one trimer have nonzero weight in |ψ〉, and all trimer

205117-2

XIAO-YU DONG, JI-YAO CHEN, AND HONG-HAO TU PHYSICAL REVIEW B 98, 205117 (2018)

(a) (b)

(c) (d)

0

0
0

3

3̄

|E 0

i j

k

0

3̄
α

β

η

γ
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pair state representation of the SU(3) tRVB state. (d) Two kinds of
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with ε123 = 1. For such a trimer, it is convenient to assign an
orientation as i → j → k. For our purpose, we only consider
four kinds of “short-range” bent trimers for which both (i, j )
and (j, k) are nearest neighbors and the angle between two
orientations i → j and j → k is 90◦ [see Fig. 1(a)].

The SU(3) tRVB state of our interest is an equal-weight
superposition of trimer coverings on the square lattice; see
Fig. 1(b) for an example of the trimer covering configuration.
The relative sign of trimer covering configurations is fixed
by the local orientations of the trimers, i.e., only trimers
with orientations shown in Fig. 1(a) are allowed. It is then
straightforward to verify that the tRVB state so obtained
respects the full C4v symmetry of the square lattice. Similar to
the nonorthogonality of SU(2) valence-bond dimer coverings,
the SU(3) trimer covering configurations do not form an
orthogonal basis either. Thus, our tRVB is different from a
recent proposal [22] of a tRVB wave function which consists
of orthogonal trimer configurations in the same sense as the
difference between the spin-1/2 nearest-neighbor RVB state
[23] and the Rokhsar-Kivelson wave function [24]. Due to
the nonorthogonality, there is a priori no reason to suppose
that the correlations of the SU(3) tRVB state are similar to its
classical analog [25].

III. PEPS REPRESENTATION

In order to characterize the SU(3) tRVB state, we switch
to its PEPS representation. Similar strategy has been proven
very successful in characterizing the spin-1/2 RVB [26–
30] and spin-1 resonating Affleck-Kennedy-Lieb-Tasaki loop
states [31,32] on various lattices. Following the projective
construction of PEPS, we introduce at every site four virtual
particles, each of which supports a seven-dimensional auxil-
iary Hilbert space VA with basis vectors |0〉 belonging to the
SU(3) trivial representation and {|1〉, |2〉, |3〉} ({|1̄〉, |2̄〉, |3̄〉})
transforming under the fundamental (antifundamental) rep-
resentation 3 (3̄), respectively. Each pair of virtual particles
between adjacent sites forms a maximally entangled state [see

Fig. 1(c)],

|E〉 = |00〉 + |11̄〉 + |22̄〉 + |33̄〉 + |1̄1〉 + |2̄2〉 + |3̄3〉. (1)

For later purpose we compactly write the maximally entan-
gled state (1) between sites i1 and i2 as

|E〉i1,i2 =
∑

α,β∈VA

Eα,β |α〉i1 |β〉i2 , (2)

where the nonvanishing entries of Eα,β can be obtained
from (1).

To recover the physical Hilbert space, the four virtual states
at each site are projected back to the physical state by a
projector P̂ , defined by

P̂ =
∑

a∈V

∑

α,β,η,γ∈VA

Pa
α,β,η,γ |a〉〈α,β, η, γ |, (3)

where α, β, η, and γ are assigned for the virtual states at left,
right, up, and down positions [see Fig. 1(c)], V is the physical
Hilbert space on each site, and Pa

α,β,η,γ is a tensor to be
specified below. To reproduce the tRVB state, we decompose
the projector P̂ into two parts,

P̂ = P̂1 + P̂2, (4)

where P̂1 identifies one of the virtual states in 3 as the physical
state [the rest three virtual particles are in the trivial represen-
tation; see the upper panel in Fig. 1(d) for an example],

P̂1 =
∑

a∈V

∑

α,β,η,γ∈VA

[(δα,aδβ,0 + δα,0δβ,a )δη,0δγ ,0

− δα,0δβ,0(δη,aδγ ,0 + δη,0δγ ,a )]|a〉〈α,β, η, γ |, (5)

and P̂2 maps two adjacent virtual states in 3̄ into the physical
state [the rest two virtual particles are in the trivial represen-
tation; see the lower panel in Fig. 1(d)],
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of tensor entries in (5) and (6). It is also easy to verify that
both P̂1 and P̂2 belong to the B1 irreducible representation of
the C4v point-group symmetry [33]. Here we would like to
mention that the linear trimer configuration where the three
neighboring sites forming the singlet are on a straight line
is excluded since it does not belong to the B1 irreducible
representation of C4v .

With the PEPS projector and the virtual bonds in hand, the
PEPS for the SU(3) tRVB state is obtained by applying the
product of projectors to the virtual bonds,

|ψ〉 =
N⊗

i=1

P̂ (i)
⊗

〈i1,i2〉
|E〉i1,i2 , (7)

which is shown in Fig. 1(c). By construction, each trimer
consists of three sites with P̂2 acting on the middle site
and P̂1 acting on the two end sites. Only the configurations
of trimer coverings in which each site belongs to one and
only one trimer have nonzero weight in |ψ〉, and all trimer
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FIG. 4. The correlation functions (a) |〈λ3(0)λ3(d )〉|, (b)
|〈λ8(0)λ8(d )〉|, (c) C1(d ) = |〈B1(0)B1(d )〉 − 〈B1(0)〉〈B1(d )〉|, and
(d) C2(d ) = |〈B1(0)B2(d )〉 − 〈B1(0)〉〈B2(d )〉| versus distance d ,
respectively. The black dashed lines correspond to the plot of the
exponentially decaying function ∝exp(−d/ξ ) with correlation
length ξ = 1.23 estimated from the gap of the transfer matrix.

These correlation functions also decay exponentially at
long distances, and the correlation lengths for χ = 147 are
ξ t

1 ∼ 1.1 and ξ t
2 ∼ 1.2, respectively. As a comparison, the

upper bound of the correlation length obtained from the
TM spectrum (with χ = 147) is given by ξ ∼ 1.23 (see the
dashed lines in Fig. 4). Thus, the correlation of one B1-type
and one B2-type trimer is dominant in the tRVB state.

V. CHARACTERIZING TOPOLOGICAL ORDER

The fact that the SU(3) tRVB state does not break C4v

and translation symmetries and has only short-range corre-
lations indicates that it is a gapped symmetric ground state
of a local SU(3) spin Hamiltonian (e.g., the parent Hamilto-
nian constructed from the PEPS representation). According
to a straightforward SU(3) generalization of the celebrated
Lieb-Schultz-Mattis-Hastings-Oshikawa (LSMHO) theorem
[37–39], the SU(3) spin model on the square lattice with
fundamental representation 3 on each site cannot have a
nondegenerate gapped ground state preserving both SU(3)
and translation symmetries. In other words, a gapped ground
state with both SU(3) and translational symmetries must be
topologically ordered. Based on this LSMHO argument, the
SU(3) tRVB state must be a topological spin liquid.

Let us now analyze the topological properties of
the tRVB state. An important observation is that the
SU(3) tRVB state has a Z3 gauge symmetry in its
PEPS representation. By defining the Z3-symmetry gener-
ator v = diag(1,ω,ω,ω,ω2,ω2,ω2) with ω = ei2π/3 (the
vectors in the virtual Hilbert space are arranged as
|0〉, |1〉, |2〉, |3〉, |1̄〉, |2̄〉, and |3̄〉 so that v plays the role
of counting the Z3 charge), the local tensor A defining the
PEPS, given by (8), satisfies the following Z3-injectivity

=

h

(a) (b)

(c) (d)

h

h h

g

ggg g−1 gh

ω·A A
gl gr

gu

gd

FIG. 5. (a) Z3 gauge symmetry of the PEPS local tensor. (b)
Constructing nine states by inserting gauge flux along two non-
contractible loops on a torus. (c) and (d) A 3 × 1 torus formed
by double tensors and the Z3 gauge symmetry elements is used to
compute modular S and T matrices.

condition [40]:

(gl ⊗ gr ⊗ gu ⊗ gd )A = ωA, (9)

where A is now viewed as a matrix mapping from physical to
virtual spaces and gl = gd = v and gr = gu = v2, indicating
that the left/down/right/up virtual space in each site has a Z3
gauge symmetry. The symmetry condition (9) is graphically
shown in Fig. 5(a). Note that, glgr = gugd = I (I is an identity
matrix in the virtual space VA), as required from the gauge
symmetry condition in PEPS [40].

The Z3 gauge symmetry, together with the absence of
any symmetry breaking order (as revealed from correlation
functions), finite correlation length, and the LSMHO argu-
ment, give an indication that the tRVB state has Z3 topo-
logical order. Indeed, when the PEPS is defined on a torus,
inserting gauge transformations (g, h) on virtual indices in
both horizontal and vertical directions [see Fig. 5(b)] leads
to nine states |ψ (g, h)〉 in total (g and h can separately
take the choice of I, v, and v2), which form the nine-fold
degeneracy of Z3 topological order on a torus. However, the
linear independence of the nine states is not guaranteed and
requires a careful numerical check, which we address below.

To verify the nine-fold ground-state degeneracy and char-
acterize the topological order, we utilize the tensor renormal-
ization group (TRG) method [41] to compute the modular S
and T matrices, which can be viewed as order parameters
for topological phases [42]. The TRG process is essentially
to compute the overlap of the nine states by first real-space
coarse graining the double tensor to a fixed-point tensor, and
then contracting a small cluster formed by the fixed-point
tensor and gauge transformations [see Figs. 5(c) and 5(d)].
At each renormalization group (RG) step, a truncation has
to be introduced to avoid the exponential growth of bond
dimensions, which is achieved by keeping χ singular values
in each RG step.

In order to compute the modular matrices, it is important to
keep track of the Z3 gauge symmetry in each layer, which can
be achieved through a simple block singular-value decomposi-
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FIG. 1. (a)–(j) Ten possible configurations of a local tensor to
realize the trimer covering. Known trimer coverings consisting of
linear and bent types only arise as special limits. The numbers 0, 1,
and 2 denote the indices of the site tensor. (k) Red and blue bars
represent all possible L- and B-type trimers, respectively.

Z =
∑

{li ,ri ,ui ,di } Al1r1u1d1δr1l2Al2r2u2d2 · · · gives the number of
trimer coverings.

The efficient calculation of Z proceeds on a cylinder ge-
ometry with the periodic boundary condition (PBC) imposed
along the x direction of length Nx and open ends along the
y direction of length Ny . The largest eigenvalue λ of the
row-to-row transfer matrix (TM) is used to evaluate Z ∼ λNy .
The entropy per site is s = ln Z/N , where N = NxNy counts
the number of lattice sites. We quote below the thermodynamic
extrapolation of the entropy for the mixed (both L- and B-type)
trimer case along with known results for L-only and B-only
types [24,25]:

s∞ =






0.15852(1.17178) for L-type,
0.27693(1.31907) for B-type,
0.41194(1.50974) for L- and B-type.

(1)

The number in the parentheses is x = es∞ , with which one
obtains Z ∼ xN .

Interestingly, we have found from analysis of the adjacency
graph of the transfer matrix that trimer configurations on the
cylinder can be classified into three distinct topological sectors
[26]. The winding number characterizing each sector can be
defined with a string threading the dual lattice. As depicted in
Fig. 2(a), we assign a direction to the string and give a weight
ω = e2π i/3 when the center position of the trimer is seen on
the right side of the path, and ω∗ if seen on the left side. With
this definition, the total weight for the elementary string loop
surrounding a site anticlockwise [Fig. 2(b)] is always ω, and it
can be considered as a locally conserved quantity in the trimer
problem. The winding number % around a single trimer is the
product of three factors of ω as the loop should consist of
three consecutive elementary loops, thus giving % = ω3 = 1.
For noncontractible loops defined on a compact manifold such
as the torus, the allowed winding numbers are % = 1,ω,ω∗,
as readers can easily verify, and cannot be modified by local
rearrangements of the string or of the trimers.

FIG. 2. (a) Assignment of the weight ω = e2π i/3 and its conjugate
ω∗ for the passage through the dual lattice with the center of the trimer
(blue dot) on the right and left side of the path, respectively. (b) For
any elementary loop surrounding a site, the total weight is always
% = ω. For any loop surrounding a single trimer, the total weight is
% = ω3 = 1.

A quantum Hamiltonian with 9g (g = genus of the mani-
fold) topological degeneracy may be constructed in analogy
with the RK Hamiltonian [3,4]:

(2)

The summation over all lattice translations of the blue-dot
site, as well as the 90◦ rotation (R π

2
) of the displayed terms,

are assumed. The v and t terms are the potential and resonating
pieces, respectively, in analogy with the structure of the RK
Hamiltonian for dimers [3,4]. In the potential terms, · · ·
denotes all other possible diagonal terms [26]. Resonating
terms involve only two trimers at one time and are not able
to alter the topological sector of the initial configuration. As
with all dimer models, there are certain “staggered states”
that cannot be reached by applying any number of resonance
moves. An example is given in Fig. 3(a). Acting with the
Hamiltonian on the staggered state gives 0 irrespective of t
and v values. Higher-order moves such as the simultaneous
rearrangement of six trimers caged inside the blue contour in

FIG. 3. (a) Staggered trimer configuration. A nonflippable six-
trimer block inside the blue boundary can be connected to (b) a
flippable configuration through six-trimer resonance moves.
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FIG. 1. (a) Schematics of the SU(3) trimers. (b) Typical trimer
covering configuration on the square lattice. (c) Projected entangled-
pair state representation of the SU(3) tRVB state. (d) Two kinds of
projectors mapping virtual states to physical states.

with ε123 = 1. For such a trimer, it is convenient to assign an
orientation as i → j → k. For our purpose, we only consider
four kinds of “short-range” bent trimers for which both (i, j )
and (j, k) are nearest neighbors and the angle between two
orientations i → j and j → k is 90◦ [see Fig. 1(a)].

The SU(3) tRVB state of our interest is an equal-weight
superposition of trimer coverings on the square lattice; see
Fig. 1(b) for an example of the trimer covering configuration.
The relative sign of trimer covering configurations is fixed
by the local orientations of the trimers, i.e., only trimers
with orientations shown in Fig. 1(a) are allowed. It is then
straightforward to verify that the tRVB state so obtained
respects the full C4v symmetry of the square lattice. Similar to
the nonorthogonality of SU(2) valence-bond dimer coverings,
the SU(3) trimer covering configurations do not form an
orthogonal basis either. Thus, our tRVB is different from a
recent proposal [22] of a tRVB wave function which consists
of orthogonal trimer configurations in the same sense as the
difference between the spin-1/2 nearest-neighbor RVB state
[23] and the Rokhsar-Kivelson wave function [24]. Due to
the nonorthogonality, there is a priori no reason to suppose
that the correlations of the SU(3) tRVB state are similar to its
classical analog [25].

III. PEPS REPRESENTATION

In order to characterize the SU(3) tRVB state, we switch
to its PEPS representation. Similar strategy has been proven
very successful in characterizing the spin-1/2 RVB [26–
30] and spin-1 resonating Affleck-Kennedy-Lieb-Tasaki loop
states [31,32] on various lattices. Following the projective
construction of PEPS, we introduce at every site four virtual
particles, each of which supports a seven-dimensional auxil-
iary Hilbert space VA with basis vectors |0〉 belonging to the
SU(3) trivial representation and {|1〉, |2〉, |3〉} ({|1̄〉, |2̄〉, |3̄〉})
transforming under the fundamental (antifundamental) rep-
resentation 3 (3̄), respectively. Each pair of virtual particles
between adjacent sites forms a maximally entangled state [see

Fig. 1(c)],

|E〉 = |00〉 + |11̄〉 + |22̄〉 + |33̄〉 + |1̄1〉 + |2̄2〉 + |3̄3〉. (1)

For later purpose we compactly write the maximally entan-
gled state (1) between sites i1 and i2 as

|E〉i1,i2 =
∑

α,β∈VA

Eα,β |α〉i1 |β〉i2 , (2)

where the nonvanishing entries of Eα,β can be obtained
from (1).

To recover the physical Hilbert space, the four virtual states
at each site are projected back to the physical state by a
projector P̂ , defined by

P̂ =
∑

a∈V

∑

α,β,η,γ∈VA

Pa
α,β,η,γ |a〉〈α,β, η, γ |, (3)

where α, β, η, and γ are assigned for the virtual states at left,
right, up, and down positions [see Fig. 1(c)], V is the physical
Hilbert space on each site, and Pa

α,β,η,γ is a tensor to be
specified below. To reproduce the tRVB state, we decompose
the projector P̂ into two parts,

P̂ = P̂1 + P̂2, (4)

where P̂1 identifies one of the virtual states in 3 as the physical
state [the rest three virtual particles are in the trivial represen-
tation; see the upper panel in Fig. 1(d) for an example],

P̂1 =
∑

a∈V

∑

α,β,η,γ∈VA

[(δα,aδβ,0 + δα,0δβ,a )δη,0δγ ,0

− δα,0δβ,0(δη,aδγ ,0 + δη,0δγ ,a )]|a〉〈α,β, η, γ |, (5)

and P̂2 maps two adjacent virtual states in 3̄ into the physical
state [the rest two virtual particles are in the trivial represen-
tation; see the lower panel in Fig. 1(d)],

P̂2 =
∑

a∈V

∑

α,β,η,γ∈VA

∑

M̄,N̄∈(1̄,2̄,3̄)

εaMN (δα,M̄δβ,0δη,N̄δγ ,0

+ δα,M̄δβ,0δη,0δγ ,N̄ + δα,0δβ,M̄δη,N̄δγ ,0

+ δα,0δβ,M̄δη,0δγ ,N̄ )|a〉〈α,β, η, γ |. (6)

The tensor Pa
α,β,η,γ in (3) is thus defined through the sum

of tensor entries in (5) and (6). It is also easy to verify that
both P̂1 and P̂2 belong to the B1 irreducible representation of
the C4v point-group symmetry [33]. Here we would like to
mention that the linear trimer configuration where the three
neighboring sites forming the singlet are on a straight line
is excluded since it does not belong to the B1 irreducible
representation of C4v .

With the PEPS projector and the virtual bonds in hand, the
PEPS for the SU(3) tRVB state is obtained by applying the
product of projectors to the virtual bonds,

|ψ〉 =
N⊗

i=1

P̂ (i)
⊗

〈i1,i2〉
|E〉i1,i2 , (7)

which is shown in Fig. 1(c). By construction, each trimer
consists of three sites with P̂2 acting on the middle site
and P̂1 acting on the two end sites. Only the configurations
of trimer coverings in which each site belongs to one and
only one trimer have nonzero weight in |ψ〉, and all trimer
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FIG. 1. (a) The model is constructed from trimers |τ 〉 which are
in a singlet state with representation Hv ≡ 1 ⊕ 3 ⊕ 3̄ at each site
(green dots), to which a map P• is applied which selects the physical
degrees of freedom from Hv ⊗ Hv . (b) Mapping to a Z3 topological
model: Each site holds a Z3 degree of freedom: one of two arrows or
no arrow. The arrows are pointing towards the 3 representation and
satisfy a Gauss law across each vertex due to the fusion rules of the
SU(3) irreps.

indeed exhibits left- and right-propagating modes with very
different velocities, and the slow mode in the trivial sector
displays a level counting clearly matching that of a chiral
SU(3)1 Conformal Field Theory (CFT). Yet, we find clear
evidence that the modes couple and the ES is gapped. How-
ever, under a specific deformation the chiral features become
more pronounced, and it is well conceivable that the ES
becomes chiral for instance as the deformation drives the
system through a phase transition.

II. SU(3) MODEL

We start by providing the construction of the model, illus-
trated in Fig. 1(a). We start from trimers |τ 〉 built of three “vir-
tual” particles, |τ 〉 ∈ H⊗3

v , where each of the virtual particles
lives in Hv = 1 ⊕ 3 ⊕ 3̄. Here, the boldface numbers denote
representations of SU(3), that is Hv decays into a direct sum
C1 ⊕ C3 ⊕ C3, with u ∈ SU(3) acting with the trivial action
(1), the fundamental action u (3), and the antifundamental
action ū (3̄), respectively. We will choose |τ 〉 to be an SU(3)
singlet. H⊗3

v supports a total of nine singlets, namely one in
each of the spaces 1 ⊗ 1 ⊗ 1, 3 ⊗ 3 ⊗ 3, and 3̄ ⊗ 3̄ ⊗ 3̄, and
the six permutations of 1 ⊗ 3 ⊗ 3̄. We choose |τ 〉 to be an
equal weight superposition of all singlets, with the follow-
ing convention: The six states 1 ⊗ 3 ⊗ 3̄ together with the
1 ⊗ 1 ⊗ 1 singlet are combined with amplitudes ±1 to form
a fully symmetric state |S〉, the remaining states 3 ⊗ 3 ⊗ 3
and 3̄ ⊗ 3̄ ⊗ 3̄ are combined with amplitudes +1 to form a
fully antisymmetric state |A〉, and |τ 〉 = |S〉 + i|A〉. The state
|τ 〉 thus has a chiral symmetry: It transforms trivially under
translation and rotation and as |τ 〉 &→ |τ̄ 〉 under reflection.

We now arrange the trimers |τ 〉 as shown in Fig. 1(a) and
apply maps P(α,β ) to pairs of adjacent virtual sites, where the
parameters α,β ∈ [0, 1] will allow us to interpolate between
the fixed-point model and the SU(3) spin liquid. We first de-
fine the map P⊥ ≡ P(1,1) which projects the two adjacent sites
H⊗2

v = (1 ⊕ 3 ⊕ 3̄)⊗2 onto the union of the three components
Hω = 1 ⊗ 3, Hω̄ = 3 ⊗ 1, and H1 = 3̄ ⊗ 3̄. We will show in
a moment that the resulting wave function is a fixed-point
wave function with Z3 topological order.

The interpolation in α is now obtained by adiabati-
cally removing the 6̄ component in H1 = 3̄ ⊗ 3̄ = 3 ⊕ 6̄,

that is,

P(α,1) =
{
1Hω

⊕ 1Hω̄
⊕

[
α1H1 + (1 − α)!H3

1

]}
P⊥, (1)

where we have decomposed H1 = 3 ⊕ 6̄ ≡ H3
1 ⊕ H6̄

1, and
!H denotes the orthogonal projector onto H.

At α = 0, we are left with P333 = P(0,1) which maps
into H333 = Hω ⊕ Hω̄ ⊕ H3

1
∼= 3 ⊗ C3, where the first ten-

sor component transforms as 3, while the second compo-
nent labels which representation we consider, and thus trans-
forms trivially under SU(3). We can now remove the C3

adiabatically,

P(0,β ) = {13 ⊗ [β 1C3 + (1 − β )|e〉〈e|C3 ]} P(0,1), (2)

by projecting the label onto the equal weight superposition
|e〉 of the three components (with the phases of Hω, Hω̄

chosen opposite, leaving P(0,β ) antisymmetric). For (α,β ) =
(0, 0), we can factor out the |e〉 and are thus left with an
SU(3)-invariant wave function [as the building blocks are
SU(3)-invariant] with the fundamental representation at each
site. Clearly, the two interpolations can be combined into a
two-parameter family, though in the following we will only
consider the presented sequence of interpolations (1, 1) →
(0, 1) → (0, 0).

Let us now show how to map the model with P(1,1) =
P⊥ : H⊗2

v → Hω ⊕ Hω̄ ⊕ H1 to a topological Z3 fixed-point
model by local unitaries. To this end, let us first add an
extra qutrit (“indicator”) {|−〉t , | →〉t , | ←〉t } at each vertex,
onto which we copy the information whether the system
at that vertex is in the space H1 = 3̄ ⊗ 3̄, Hω = 1 ⊗ 3, or
Hω̄ = 3 ⊗ 1, as shown in Fig. 1(b) (the arrow always points
towards the 3 irrep). Now consider for a moment the scenario
where we project all indicator qutrits onto this basis (“classical
configurations”). Given any such classical configuration, the
states of the virtual system factorize into singlet states of the
corresponding irreps on the individual triangles, and can thus
be brought into a fiducial state by local unitaries controlled by
the state of the indicator qutrits, and thus effectively removed.

This operation can be done coherently, leaving us with
the indicator qutrits in a superposition of all allowed con-
figurations. The construction of |τ 〉 ensures that around each
vertex of the dual honeycomb lattice, the number of 3 (i.e.,
ingoing arrows) minus the number of 1 (i.e., outgoing ar-
rows) is 0 mod 3. Associating the indicator qutrits with Z3
variables (with arrows pointing from the A to the B sublattice
corresponding to ω = e2π i/3, the other arrows to ω̄, and “no
arrow” to 1), it follows that the indicator qutrits which live
on the edges of the honeycomb lattice satisfy a Z3 Gauss’
law. In addition, all allowed configurations appear with equal
weight. Thus, the wave function given by the indicator qutrits
is the wave function of a quantum double model D(Z3), i.e.,
a fixed-point wave function with Z3 topological order.1

1Observe that our model is not a “resonating trimer state” as, e.g.,
in Ref. [17], since projecting 3̄ ⊗ 3̄ creates large entangled clusters
(e.g., for the vacuum of the Z3 model). Placing the model of Ref. [17]
on the kagome lattice in fact yields a variant of our model with a
modified |τ 〉 which we found to be in a trivial phase.
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K - J2 model : comparing diagonal energies

In[353]:= ediag = {2 / 3 j2 - 2 / 9 j1 - 4 / 9 k,
2 / 9 j2 - 2 / 9 j1 - 4 / 9 k, 1 / 2 j2 - 2 / 3 k, 2 / 3 j2 - 2 / 3 j1 + 20 / 27 k};

In[354]:= eind = MapIndexed[{#1, #2[[1]]} &, ediag /. j1 → 1]

Out[354]= -
2

9
+
2 j2

3
-
4 k

9
, 1, -

2

9
+
2 j2

9
-
4 k

9
, 2, 

j2

2
-
2 k

3
, 3, -

2

3
+
2 j2

3
+
20 k

27
, 4

In[359]:= ListContourPlot[Flatten[Map[{#[[1]], #[[2]], Last[First[Sort[#[[3]]]]]} &,
Table[{k, j2, eind}, {k, 0, 1.8, 0.02}, {j2, -0.6, 0.6, 0.02}], {2}], 1],

AspectRatio → Automatic, FrameLabel → {"K/J1", "J2/J1"}]

Out[359]=

In[358]:= Union[Flatten[ediag // Outer[Solve[#1 ⩵ #2] &, #, #] &]]

Out[358]= j2 → 0, k →
3 j1

8
, k → j1 -

3 j2

4
, k →

3 j1

8
-
3 j2

8
, k →

9 j1

19
-
9 j2

76
, k → j1 +

5 j2

4


3 ��333 � (b)(a)
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 modelK − J1 − J2
ED in the Hilbert space spanned by singlets
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Conclusions

• Designed an exact AKLT-like ground state with a simple 
parent Hamiltonian.


• For special cases, a macroscopically large number of states 
become degenerate.


• Gauss law, states characterized by topological (?) quantum 
numbers (sectors)


• Phases emanate from a quantum multicritical point 

• many open questions: Coulomb phase, fractional 

excitations, origin of non-singlet states,…



