Entanglement scaling for $\lambda \phi_2^4$ @ Benasque 2022

Bram Vanhecke

University of Vienna

February 28, 2022

1

¹based on 'A scaling hypothesis for matrix product states' by BV, Jutho Haegeman, Karel Van Acoleyen, Laurens Vanderstraeten, Frank Verstraete Phys.Rev.Lett. 123 (2019) no.25, 250604 and 'Entanglement scaling for $\lambda \phi_2^4$ '. by BV, Frank Verstraete, Karel Van Acoleyen arXiv:

2104.10564 [hep-lat]

Bram Vanhecke (University of Vienna)

• Describe IR of lattice models

メロト メタト メヨト メヨト

- Describe IR of lattice models
- Standard model

▶ < ∃ >

< □ > < 同 >

- Describe IR of lattice models
- Standard model
- Generally easy

- Describe IR of lattice models
- Standard model
- Generally easy
 - Free theories

- Describe IR of lattice models
- Standard model
- Generally easy
 - Free theories
 - Weekly interacting theories (qed, etc)

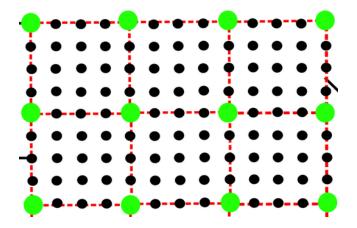
- Describe IR of lattice models
- Standard model
- Generally easy
 - Free theories
 - Weekly interacting theories (qed, etc)
- Sometimes hard -> numerics needed

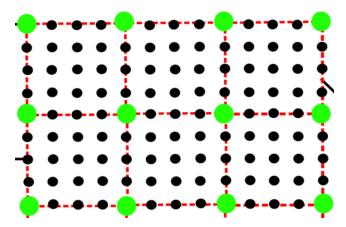
- Describe IR of lattice models
- Standard model
- Generally easy
 - Free theories
 - Weekly interacting theories (qed, etc)
- Sometimes hard -> numerics needed
 - Conceptual problems

(ex: how to define the lattice model, see Gertian's talk)

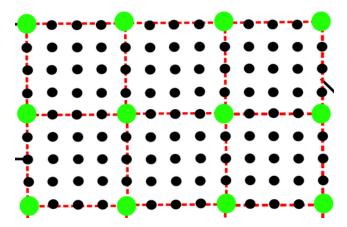
- Describe IR of lattice models
- Standard model
- Generally easy
 - Free theories
 - Weekly interacting theories (qed, etc)
- Sometimes hard -> numerics needed
 - Conceptual problems (ex: how to define the lattice model, see Gertian's talk)
 - Numerical problems

Bram Vanhecke (University of Vienna)





• Sequence of lattice models



- Sequence of lattice models
- Lattice spacing a is a UV-regulator

Continuum limit - practically

• Lattice model with couplings g_i

- Lattice model with couplings g_i
- Determine dependence on a lattice spacing a
 → g_i(a)
 (β-function: ∂g_i(a))

- Lattice model with couplings g_i
- Determine dependence on a lattice spacing a
 → g_i(a)
 (β-function: ∂g_i(a))
- All Length scales should scale appropriately with a

- Lattice model with couplings g_i
- Determine dependence on a lattice spacing a
 → g_i(a)
 (β-function: ∂g_i(a))
- All Length scales should scale appropriately with a
- There must be a 2nd order phase transition at a = 0 (A CFT describes this point)

- Lattice model with couplings g_i
- Determine dependence on a lattice spacing a
 → g_i(a)
 (β-function: ∂g_i(a))
- All Length scales should scale appropriately with a
- There must be a 2nd order phase transition at a = 0 (A CFT describes this point)
- Determined by UV physics

- Lattice model with couplings g_i
- Determine dependence on a lattice spacing a
 → g_i(a)
 (β-function: ∂g_i(a))
- All Length scales should scale appropriately with a
- There must be a 2nd order phase transition at a = 0 (A CFT describes this point)
- Determined by UV physics
 - Universal

- Lattice model with couplings g_i
- Determine dependence on a lattice spacing a
 → g_i(a)
 (β-function: ∂g_i(a))
- All Length scales should scale appropriately with a
- There must be a 2nd order phase transition at a = 0 (A CFT describes this point)
- Determined by UV physics
 - Universal
 - can be calculated with perturbation theory for asymptotically free theories

QFT with second order phase transition?

• UV criticality

- UV criticality
- IR criticality

- UV criticality
- IR criticality
- 2 CFT's involved

- UV criticality
- IR criticality
- 2 CFT's involved
- Signature in entanglement entropy?

$\lambda \phi^{\rm 4}$ - Model

æ

イロト イヨト イヨト イヨト

• Action:

$$\int d^2 x \qquad \frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \frac{1}{2} \mu^2 \phi + \frac{1}{4} \lambda \phi^4 \,.$$

Ξ.

• Action:

$$\int d^2 x \qquad \frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \frac{1}{2} \mu^2 \phi + \frac{1}{4} \lambda \phi^4 \,.$$

• Lattice model:

$$\sum_{\langle i,j\rangle} \frac{1}{2} (\phi_i - \phi_j)^2 + \frac{1}{4} \mu^2 (\phi_i^2 + \phi_j^2) + \frac{1}{8} \lambda (\phi_i^4 + \phi_j^4) \,.$$

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• Action:

$$\int d^2x \qquad \frac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi + \frac{1}{2}\mu^2\phi + \frac{1}{4}\lambda\phi^4.$$

• Lattice model:

$$\sum_{\langle i,j\rangle} \frac{1}{2} (\phi_i - \phi_j)^2 + \frac{1}{4} \mu^2 (\phi_i^2 + \phi_j^2) + \frac{1}{8} \lambda (\phi_i^4 + \phi_j^4) \,.$$

• Global \mathbb{Z}_2 symmetry $(\phi
ightarrow -\phi)$

→ < ∃ →</p>

< □ > < 同 >

• Action:

$$\int d^2x \qquad \frac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi + \frac{1}{2}\mu^2\phi + \frac{1}{4}\lambda\phi^4.$$

Lattice model:

$$\sum_{\langle i,j\rangle} \frac{1}{2} (\phi_i - \phi_j)^2 + \frac{1}{4} \mu^2 (\phi_i^2 + \phi_j^2) + \frac{1}{8} \lambda (\phi_i^4 + \phi_j^4) \,.$$

- Global \mathbb{Z}_2 symmetry $(\phi
 ightarrow -\phi)$
- Continuum limit for fixed α :

$$\lambda = a^2 \tag{1}$$

$$\mu^2 = a^2 \alpha - 3a^2 A(a^2 \alpha) \tag{2}$$

$$\phi(\alpha) = \phi(\mu^2, \lambda) \propto \phi^3(\mu^2, \lambda) - \frac{3}{4\pi} \log(\lambda) \phi(\mu^2, \lambda)$$
(3)

э

• Phase transition outside range of perturbative calculations

• Action:

$$\int d^2x \qquad \frac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi + \frac{1}{2}\mu^2\phi + \frac{1}{4}\lambda\phi^4.$$

Lattice model:

$$\sum_{\langle i,j\rangle} \frac{1}{2} (\phi_i - \phi_j)^2 + \frac{1}{4} \mu^2 (\phi_i^2 + \phi_j^2) + \frac{1}{8} \lambda (\phi_i^4 + \phi_j^4) \,.$$

- Global \mathbb{Z}_2 symmetry $(\phi \rightarrow -\phi)$
- Continuum limit for fixed α :

$$\lambda = a^2 \tag{1}$$

$$\mu^2 = a^2 \alpha - 3a^2 A(a^2 \alpha) \tag{2}$$

$$\phi(\alpha) = \phi(\mu^2, \lambda) \propto \phi^3(\mu^2, \lambda) - \frac{3}{4\pi} \log(\lambda) \phi(\mu^2, \lambda)$$
(3)

Image: Image:

• Action:

$$\int d^2x \qquad \frac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi + \frac{1}{2}\mu^2\phi + \frac{1}{4}\lambda\phi^4.$$

Lattice model:

$$\sum_{\langle i,j\rangle} \frac{1}{2} (\phi_i - \phi_j)^2 + \frac{1}{4} \mu^2 (\phi_i^2 + \phi_j^2) + \frac{1}{8} \lambda (\phi_i^4 + \phi_j^4) \,.$$

- Global \mathbb{Z}_2 symmetry $(\phi \rightarrow -\phi)$
- Continuum limit for fixed α :

$$\lambda = a^2 \tag{1}$$

$$\mu^2 = a^2 \alpha - 3a^2 A(a^2 \alpha) \tag{2}$$

$$\phi(\alpha) = \phi(\mu^2, \lambda) \propto \phi^3(\mu^2, \lambda) - \frac{3}{4\pi} \log(\lambda) \phi(\mu^2, \lambda)$$
(3)

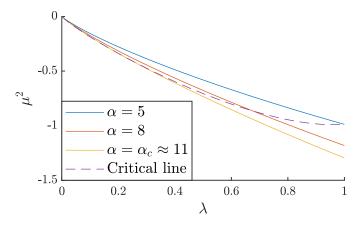
• Phase transition outside range of perturbative calculations

$\lambda \phi^4$ - Phase Diagram

Bram Vanhecke (University of Vienna)

3

$\lambda \phi^4$ - Phase Diagram



²Daisuke Kadoh, Yoshinobu Kuramashi, Yoshifumi Nakamura, Ryo Sakai, Shinji Takeda, and Yusuke Yoshimura, "Tensor network analysis of critical coupling in two dimensional 4 theory," JHEP 2019, 184 (2019).

Usual practice

• Fix the lattice spacing a

Bram Vanhecke (University of Vienna)

²Daisuke Kadoh, Yoshinobu Kuramashi, Yoshifumi Nakamura, Ryo Sakai, Shinji Takeda, and Yusuke Yoshimura, "Tensor network analysis of critical coupling in two dimensional 4 theory," JHEP 2019, 184 (2019).

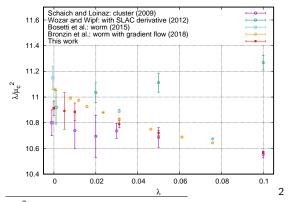
Usual practice

- Fix the lattice spacing a
- Determine critical point

²Daisuke Kadoh, Yoshinobu Kuramashi, Yoshifumi Nakamura, Ryo Sakai, Shinji Takeda, and Yusuke Yoshimura, "Tensor network analysis of critical coupling in two dimensional 4 theory," JHEP 2019, 184 (2019).

Usual practice

- Fix the lattice spacing a
- Determine critical point
- Extrapolate



²Daisuke Kadoh, Yoshinobu Kuramashi, Yoshifumi Nakamura, Ryo Sakai, Shinji Takeda, and Yusuke Yoshimura, "Tensor network analysis of critical coupling in two dimensional 4 theory," JHEP 2019, 184 (2019).

Bram Vanhecke (University of Vienna)

9/20

Bram Vanhecke (University of Vienna)

3

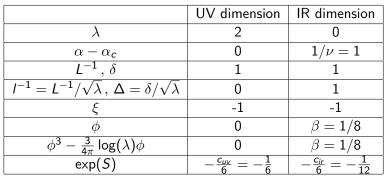
• Two independent scaling properties (UV-)continuum limit, IR→critical point in QFT)

Image: Image:

- Two independent scaling properties (UV \rightarrow continuum limit, IR \rightarrow critical point in QFT)
- Two regulators introduced (UVightarrow *a*, IR $ightarrow \chi/L$)

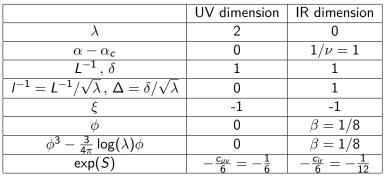
Image: Image:

- Two independent scaling properties (UV \rightarrow continuum limit, IR \rightarrow critical point in QFT)
- Two regulators introduced (UV \rightarrow a, IR $\rightarrow \chi/L$)
- Scaling properties summarized:



イロト 不得 トイヨト イヨト

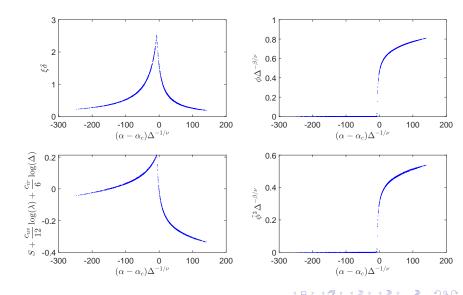
- Two independent scaling properties (UV \rightarrow continuum limit, IR \rightarrow critical point in QFT)
- Two regulators introduced (UV \rightarrow a, IR $\rightarrow \chi/L$)
- Scaling properties summarized:



Corrections to these properties must be taken into account

< □ > < 凸

Double collapse plots



Method	$f_{\rm c}^{\rm cont.}$	Year	Ref.	_
Tensor network coarse-graining	10.913(56)	2019	[9]	
Borel resummation	11.23(14)	2018	[6]	
Renormalized Hamil. Trunc.	11.04(12)	2017	[5]	
Matrix Product States	11.064(20)	2013	[7]	
Monte Carlo	11.055(20)	2019	[15]	
This work	11.0861(90)	2020		3

 $\alpha_{c} = 11,09698(31)$

³Clement Delcamp and Antoine Tilloy, "Computing the renormalization group flow of two-dimensional 4 theory with tensor networks," Phys. Rev. Research 2, 033278 (2020) ~

Conclusion

Bram Vanhecke (University of Vienna)

メロト メタト メヨト メヨト

3

• We explored the double scaling properties of $\lambda \phi^4$

Image: Image:

æ

- \bullet We explored the double scaling properties of $\lambda\phi^4$
- Making use of this led to improved precision

- \bullet We explored the double scaling properties of $\lambda\phi^4$
- Making use of this led to improved precision
- The technique is method independent

- \bullet We explored the double scaling properties of $\lambda\phi^4$
- Making use of this led to improved precision
- The technique is method independent

Questions?

▶ < ∃ >

æ

イロト イヨト イヨト イヨト

• Action after lattice regularization:

$$\sum_{\langle i,j\rangle} \frac{1}{2} (\phi_i - \phi_j)^2 + \frac{1}{4} \mu^2 (\phi_i^2 + \phi_j^2) + \frac{1}{8} \lambda (\phi_i^4 + \phi_j^4) \,.$$

→

< □ > < 同 >

æ

• Action after lattice regularization:

$$\sum_{\langle i,j\rangle} \frac{1}{2} (\phi_i - \phi_j)^2 + \frac{1}{4} \mu^2 (\phi_i^2 + \phi_j^2) + \frac{1}{8} \lambda (\phi_i^4 + \phi_j^4) \,.$$

 $\bullet\,$ Similar to Ising-like interaction, except for continuous variable $\phi\,$

• Action after lattice regularization:

$$\sum_{\langle i,j\rangle} \frac{1}{2} (\phi_i - \phi_j)^2 + \frac{1}{4} \mu^2 (\phi_i^2 + \phi_j^2) + \frac{1}{8} \lambda (\phi_i^4 + \phi_j^4) \,.$$

- ${f \circ}$ Similar to Ising-like interaction, except for continuous variable ϕ
- Ising-type partition function is made with GHZ-tensors on all sites representing the local degrees of freedom:

$$T(i,j,k,p) = \delta_{ij}\delta_{jk}\delta_{kp},$$

• Action after lattice regularization:

$$\sum_{\langle i,j\rangle} \frac{1}{2} (\phi_i - \phi_j)^2 + \frac{1}{4} \mu^2 (\phi_i^2 + \phi_j^2) + \frac{1}{8} \lambda (\phi_i^4 + \phi_j^4) \,.$$

- ${f \circ}$ Similar to Ising-like interaction, except for continuous variable ϕ
- Ising-type partition function is made with GHZ-tensors on all sites representing the local degrees of freedom:

$$T(i,j,k,p) = \delta_{ij}\delta_{jk}\delta_{kp},$$

and matrices with the Boltzmann weights for all the interactions:

$$t(i,j)=e^{-\beta H(i,j)}$$

 $\bullet\,\, {\rm For}\,\,\lambda\phi^4$ this becomes

$$T=\int d\phi ~~ \left|\phi
ight
angle \left|\phi
ight
angle \left\langle\phi
ight|\left\langle\phi
ight|\,,$$

3

イロン イ理 とくほとう ほとう

 $\bullet\,\, {\rm For}\,\,\lambda\phi^4$ this becomes

$$\mathcal{T} = \int d\phi ~~ \left| \phi
ight
angle \left| \phi
ight
angle \left\langle \phi
ight| \left\langle \phi
ight| \, ,$$

and

$$t=\int d\phi d\phi' \quad \left|\phi
ight
angle \left\langle\phi
ight| \, e^{rac{1}{2}(\phi-\phi')^2+rac{1}{4}\mu^2(\phi^2+\phi'^2)+rac{1}{8}\lambda(\phi^4+\phi'^4)}\,.$$

イロト イヨト イヨト イヨト

3

 $\bullet\,\, {\rm For}\,\,\lambda\phi^4$ this becomes

$$T=\int d\phi ~~ \left|\phi
ight
angle \left|\phi
ight
angle \left\langle\phi
ight|\left\langle\phi
ight|\,,$$

and

$$t = \int d\phi d\phi' \quad |\phi\rangle \langle \phi| \, e^{rac{1}{2}(\phi-\phi')^2 + rac{1}{4}\mu^2(\phi^2+\phi'^2) + rac{1}{8}\lambda(\phi^4+\phi'^4)} \, .$$

• t has a discrete (quickly decreasing) spectrum:

$$t = \sum_{i} \ket{v_i} ig v_i ig \Lambda_i$$

 $\bullet~{\rm For}~\lambda\phi^4$ this becomes

$$\mathcal{T} = \int d\phi ~~ \ket{\phi} \ket{\phi} ra{\phi} ra{\phi} \ ,$$

and

$$t = \int d\phi d\phi' ~~ |\phi\rangle \langle \phi| \, e^{rac{1}{2}(\phi-\phi')^2 + rac{1}{4}\mu^2(\phi^2+\phi'^2) + rac{1}{8}\lambda(\phi^4+\phi'^4)} \, .$$

• t has a discrete (quickly decreasing) spectrum:

$$t = \sum_{i} \ket{v_i} \bra{v_i} \Lambda_i$$

• An efficient, arbitrarily precise MPO is thus:

$$MPO(i,j,k,p) = \int d\phi \quad \langle \mathbf{v}_i | \phi \rangle \langle \mathbf{v}_j | \phi \rangle \langle \phi | \mathbf{v}_k \rangle \langle \phi | \mathbf{v}_p \rangle \sqrt{\Lambda_i \Lambda_j \Lambda_k \Lambda_p} \,.$$

• The approximations made are optimal (in a certain sense)

∃ ⇒

< □ > < 同 >

æ

- The approximations made are optimal (in a certain sense)
- MPO can be efficiently made

æ

- The approximations made are optimal (in a certain sense)
- MPO can be efficiently made
- Construction can be readily generalized
 - \rightarrow fermions, weird constraints on fields, topological terms,...

Bram Vanhecke (University of Vienna)

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

•
$$(g-g_c) \rightarrow s^{\nu_g}(g-g_c)$$

•
$$\langle O \rangle \quad o \quad s^{eta_O} \langle O \rangle$$

•
$$(g-g_c) \rightarrow s^{\nu_g}(g-g_c)$$

•
$$\langle O \rangle \quad o \quad s^{eta_O} \langle O
angle$$

•
$$1/L \rightarrow s/L$$
 (finite size calculations)

•
$$(g-g_c) \rightarrow s^{\nu_g}(g-g_c)$$

- $\langle O
 angle o s^{eta_O} \langle O
 angle$
- $1/L \rightarrow s/L$ (finite size calculations)
- $\log(\lambda_i) \rightarrow s \log(\lambda_i)$ (finite MPS bond dimension calculations)

•
$$(g-g_c) \rightarrow s^{\nu_g}(g-g_c)$$

•
$$\langle O
angle o s^{eta_O} \langle O
angle$$

- $1/L \rightarrow s/L$ (finite size calculations)
- $\log(\lambda_i) \rightarrow s \log(\lambda_i)$ (finite MPS bond dimension calculations)
- $S \rightarrow S + \frac{c}{6} \log(s)$

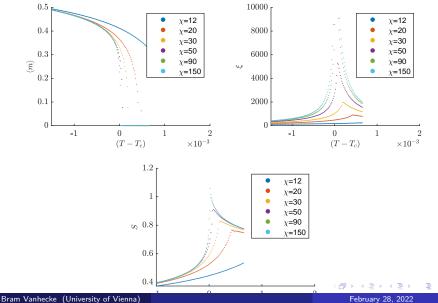
•
$$(g-g_c) \rightarrow s^{\nu_g}(g-g_c)$$

•
$$\langle O \rangle \quad o \quad s^{eta_O} \langle O
angle$$

- $1/L \rightarrow s/L$ (finite size calculations)
- $\log(\lambda_i) \rightarrow s \log(\lambda_i)$ (finite MPS bond dimension calculations) • $S \rightarrow S + \frac{c}{6} \log(s)$

Construct RG-invariant quantities to make a collapse

lsing model example



Ising model example

