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Local Hamiltonians and Marginal States
H =

∑
i∈I hai ai local patches on a lattice Λ

E0 = min〈ψ|H|ψ〉 = min
∑
i∈I

〈ψ|hai |ψ〉 =

s.t.||ψ|| = 1 s.t.||ψ|| = 1

= min
∑
i∈I

Tr (haiρai )

s.t.{ρai}i∈I are all marginals of some ψ ∈ HΛ

Tr(ρai ) = 1

This is known as the quantum marginal problem.
(for electrons “N-representability”)
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Convex Sets of Quantum States
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{ρai ≥ 0}i∈I ←→ ~ρ ∈ S

H =
∑
i∈I

hai ←→ ~H∑
i∈I

Tr(haiρai ) ←→ ~H · ~ρ
S

Smarginal



It’s Hard. . .
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I Local energy problem is QMA-complete
[Aharonov et al. Comm Math Phys (2009)]

I Variational Methods:
EV = min

~ρ∈V
~H · ~ρ =⇒ E0 ≤ EV

I Relaxation methods:
ER = min

~ρ∈R
~H · ~ρ =⇒ E0 ≥ ER

S
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In this Talk
I Our relaxation method

I expand exact constraint into a hierarchy of constraints

I coarse-grain and compress the variables

I use tensor networks for coarse-graining maps

I Results for 1D translation-invariant models
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How to relax?

E0 = min〈ψ|H|ψ〉 = min
∑
i∈I

Tr (haiρai ) ≥ min
∑
i∈I

Tr (haiρai )

s.t.||ψ|| = 1 s.t.{ρai}i∈I ∈ Smarginal s.t. . . . ???
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Which constraints NOT to relax?

I Nearest neighbors in 1D: H =
∑

i hi,i+1

I {ρi,i+1}i marginals of ψ ∈ HΛ⇒{ρi,i+1}i mutually compatible

Tr1(ρ1,2) = ρ2 = Tr1,3,4,...,N(|ψ〉〈ψ|) = Tr3(ρ2,3)

I Keep the conditions Tri (ρi,i+1) = Tri+2(ρi+1,i+2)
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Ingredient 1: a hierarchy of constraints
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Ingredient 2: relaxation via coarse-graining and compression
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minF(ρ1,2,3, ρ2,3,4)

s.t. ρ1,2,3 = ω1,2,3,4

ρ2,3,4 = ω1,2,3,4

{
ω̃1,O,4 ≥ 0

}
⊇

 ω1,2,3,4

∣∣∣∣∣∣∣∣ ω1,2,3,4 ≥ 0
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The last ingredient: composable coarse-graining maps
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ρ1,2,3 = ω1,2,3,4

ρ2,3,4 = ω1,2,3,4

ω1,2,3,4 = σ1,2,3,4,5

!
=

X
=

But which tensor to use??
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Method overview
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Application:
The 1D Translation-Invariant

Local Energy Problem
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The translation-invariant problem
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H =
∞∑

i=−∞

hi,i+1 , hi,i+1 ≡ h ∀i

eTI := minTr
(
hρ{1,2}

)
s.t.ρ{1,2} ∈ STImarginal

Relax
=⇒ enLTI := minTr

(
hρ{1,2}

)
s.t.Trρ{1,2} = 1 ,
ρ{1,2} = Tr{3,4,...n}σ{1,2,...n} ,
σ ≥ 0 ,
Tr{1}σ = Tr{n}σ

σ1,2,3,4,5 = σ1,2,3,4,5

Models:
I HTFI (hz) = −

∑
i XiXi+1 − hz

∑
i Zi (Transverse field Ising )

I HS
XXZ (∆) =

∑
i XiXi+1 + YiYi+1 + ∆ZiZi+1 (XXZ S = 1/2 and S = 1 )
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Translation invariant relaxation scheme

Exact 5-body Relxation due to Compressed
Loc.T.I. problem applied C.G. maps relaxation

ρ1,2 = σ1,2,3 ρ1,2 = σ1,2,3 ρ1,2 = σ1,2,3

ρ1,2 = σ1,2,3 ρ1,2 = σ1,2,3 ρ1,2 = σ1,2,3

σ1,2,3 = σ1,2,3,4 σ1,2,3 = σ1,2,3,4 σ1,2,3 = σ̃1,OL,OR ,4

σ1,2,3 = σ1,2,3,4 σ1,2,3 = σ1,2,3,4 σ1,2,3 = σ̃1,OL,OR ,4

σ1,2,3,4 = σ1,2,3,4,5 σ1,2,3,4 = σ1,2,3,4,5 σ̃1,OL,OR ,4 = σ̃1,OL,OR ,5

σ1,2,3,4 = σ1,2,3,4,5 σ1,2,3,4 = σ1,2,3,4,5 σ̃1,OL,OR ,4 = σ̃1,OL,OR ,5

The MPS tensor is the VUMPS solution for the same Hamiltonian
[Zauner-Stauber et al. PRB (2018)].
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Results
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Results: transverse field Ising model
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Results: XXZ models for S=1/2 and S=1 systems
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Results: memory scaling vs. precision
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Results: Memory scaling vs. precision
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Discussion
Why does this work?
I we enforce the constraints only in subspaces spanned by MPS tensors

I keep constraints relevant to the given Hamiltonian

I optimal variational MPS< optimal coarse-graining for relaxation
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Not in this talk
I Works also for finite systems

I One can optimize over the coarse-graining maps

I Issues with SDP solvers: memory scaling is not everything

I Ideas beyond 1D and beyond lattice spin systems
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Results: Relaxation precision vs. VUMPS precision
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Near phase boundary

Moradmard et al. J Supercond Nov Magn 27, (2014).
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