Entanglement- and Operator Spreading in a Thermalizing Spin Chain with Long-Range Interactions

D. Wanisch and J. D. Arias Espinoza

February 24, 2022

HI JENA HELMHOLTZ Helmholtz-Institut Jena

Darvin Wanisch

Benasque 2022

< □ > < □ > < □ > < Ξ > < Ξ >
 February 24, 2022

1/14

Overview

- **1** Quantum Information Scrambling
- 2 Mixed Field Ising Model
- **3** Entanglement-, and Operator Spreading
- **4** Conclusion and Outlook

Э

イロト イボト イヨト イヨト

Quantum Information Scrambling

- Mechanism behind thermalization is *quantum information scrambling*
- $\rightarrow\,$ Quantum information spreads under time-evolution such that **local measurements** are not sufficient to reconstruct it at later times
- $\rightarrow\,$ Information is $\mathit{scrambled},\, stored$ in global d.o.f., and seems lost for a local observer
 - Linked to a variety of fields, e.g., thermalization, MBL, AdS/CFT, QI-processing,...
 - Here: Interactions $\sim 1/r^{\alpha}$; Interplay between entanglement-, and operator spreading

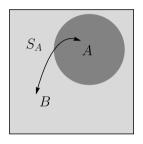
Quantum Information Scrambling		
000		

How to Diagnose Scrambling?

- Entanglement: Quantified via entropy in pure states
- Von Neumann entropy $S_A = -\operatorname{Tr}\left[\rho_A \log\left(\rho_A\right)\right]$
- $\rightarrow\,$ Probes how information 'leaks out' of region A
 - Monotonic growth until saturation
 - Local: Linear growth; Entanglement velocity $v_{\rm E}$
 - LR: Slowdown of growth¹²; no constant velocity

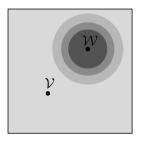
 1 Schachenmayer, Lanyon, Roos, Daley, \mathbf{PRX} 3 031015 (2013) 2 Lerose, Pappalardi, \mathbf{PRR} 2 012041 (2020)

Darvin Wanisch



Quantum Information Scrambling		
000		

How to Diagnose Scrambling?



- **Operator spreading**: $W(t) = \sum_{k=0}^{\infty} \frac{(it)^k}{k!} [\mathcal{H}, \dots [\mathcal{H}, \mathcal{W}] \dots]$
- Take another (local) operator \mathcal{V} , where $[\mathcal{V}, \mathcal{W}] = 0$
- Squared commutator: $C(t) = \left\langle \left[\mathcal{V}, \mathcal{W}(t)\right]^{\dagger} \left[\mathcal{V}, \mathcal{W}(t)\right] \right\rangle$
- $\rightarrow\,$ Probes how support of operator ${\cal W}$ grows with time
- Local: Linear lightcone; Butterfly velocity $v_{\rm B}$
- LR: Nonlinear lightcone³⁴; fast operator spreading

³Colmenarez, Luitz, **PRR** 2 043047 (2020)

⁴Zhou, Xu, Chen, Guo, Swingle, **PRL** 124 180601 (2020)

Darvin Wanisch

Benasque 2022

Mixed Field Ising Model	
••••	

Hamiltonian and Initial State

Long-Range MFI Model

$$\mathcal{H} = -\sum_{m < n} J_{mn} \mathcal{Z}_m \mathcal{Z}_n - h_x \sum_m \mathcal{X}_m - h_z \sum_m \mathcal{Z}_m$$

- Interaction strength follows powerlaw: $J_{mn} = \frac{J}{\mathcal{N}(\alpha)|m-n|^{\alpha}}$
- System initially in a fully polarized state $|\Psi_0\rangle = |Y+\rangle$, $h_x = -1.05$, and $h_z = 0.5$
- Model thermalizes; infinite temperature ensemble $(\rho_{\rm th} \sim 1)$, for $\alpha \to \infty^5$

 5Bañuls, Cirac, Hastings, **PRL** 106 050405 (2011)

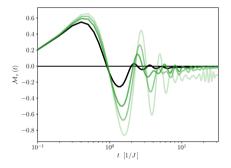
Darvin Wanisch

イロト 人間ト イヨト イヨト

Mixed Field Ising Model 0●0	Conclusion and Outlook

Thermalization Behavior

- Thermal ensemble affected by LR interactions?
- Exact simulations up to N = 24 indicate that the effective thermal ensemble is not altered for $\alpha \gtrsim 1$
- For $\alpha \leq 1$, not clear \rightarrow finite size effect?

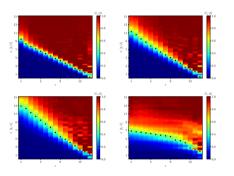


イロト イヨト イヨト

Figure: Magnetization \mathcal{M}_z for $\alpha = \{\infty, 2.3, 1.5, 0.5\}$, darker colors indicate larger values

Mixed Field Ising Model ∞	

Operator Spreading: Lightcones



- $\alpha \gtrsim 2$: System **effectively local**⁶; Linear lightcone
- $\rightarrow\,$ Broadening of the wavefront with decreasing α
- \rightarrow LR-interactions slow down entanglment-, and operator spreading; **Similar renormalization**
- $\alpha \lesssim 2$: Nonlinear regime

Figure: Squared commutator for various values of α (upper left: $\alpha = \infty$, upper right: $\alpha = 3.0$, lower left: $\alpha = 2.3$, lower right: $\alpha = 1.2$).

⁶Kuwahara, Saito, **PRX** 10 031010 (2020)

Mixed Field Ising Mode

Entanglement-, and Operator Spreading $_{\odot OO}$

Conclusion and Outlook

Linear Regime: Entanglement-, and Operator Spreading

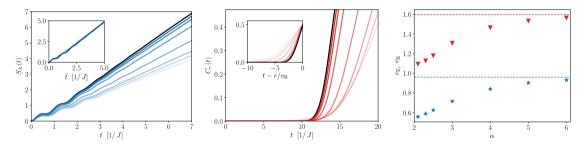
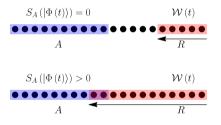


Figure: Left/Center: Entropy, and squared commutator for $\alpha = \{\infty, 6.0, 5.0, 4.0, 3.0, 2.5, 2.3, 2.1\}$. Darker colors indicate larger values. Right: Entanglement velocity $v_{\rm E}$, and butterfly velocity $v_{\rm B}$. Dashed lines indicate asymptotic values in the local limit, $\alpha \to \infty$.

Wanisch

Connecting Entanglement-, and Operator Spreading

- It is useful to define the state $|\Phi(t)\rangle := \mathcal{W}(t) |\Psi_0\rangle$
- At a given t^* , approximate $\mathcal{W}(t^*) \approx \mathbf{1}_{\Omega/R} \otimes \mathcal{W}_R$
- $\rightarrow S_{A}\left(\left| \Phi\left(t\right) \right\rangle
 ight) pprox 0$ as long as $A\cap R=\emptyset$
- \rightarrow Entanglement in $|\Phi(t)\rangle$ is a result of operator spreading!



3

イロト イボト イヨト イヨト

Quantum Information Scrambling 000

Mixed Field Ising Mod 000 Entanglement-, and Operator Spreading $\circ \circ \bullet$

Conclusion and Outlook

Connecting Entanglement-, and Operator Spreading

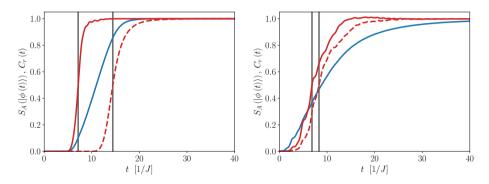


Figure: Blue: Entanglement entropy of the state $|\Phi(t)\rangle$. Red: Squared commutator $C_r(t)$, where the operator \mathcal{W} is located at the right boundary of the system, and \mathcal{V}_r at the right (solid) or left (dashed) boundary of A. Left plot is data for $\alpha = \infty$, and right for $\alpha = 1.1$.

Connecting Entanglement-, and Operator Spreading

- In the linear regime, most of the entanglement growth happens while the wavefront propagates through the region A
- In the nonlinear regime, however, entanglement continues to grow **after** the operator has spread over the entire system (as measured by the squared commutator)
- Idea: Expand operator in Pauli strings $\mathcal{W}(t) = \sum_{\nu} c_{\nu}(t) S_{\nu}$

 $\rightarrow Operator \ density^{78}: \ \rho_l(t) = \sum_{\nu,L(\nu)=l} |c_{\nu}(t)|^2, \ \text{where} \ \sum_l \rho_l(t) = 1, \ \forall t$

⁷Roberts, Stanford, Susskind, **JHEP** 51 (2015)

⁸Keyserlingk, Rakovszky, Pollmann, Sondhi, **PRX** 8 021013 (2018)

Darvin Wanisch

Benasque 2022

Connecting Entanglement-, and Operator Spreading

 \rightarrow First results: Small operators have high weight for a longer time in LR systems!

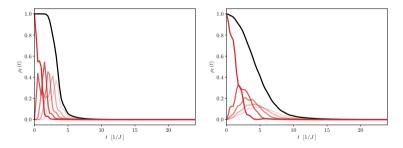


Figure: Operator density: Black curves correspond to the total weight of all operators up to l = 5. Red curves correspond to total weight of all operators with particular length l. Darker colors indicate smaller values. Left plot is data for $\alpha = \infty$, and right for $\alpha = 1.1$.

Darvin Wanisch	

		Conclusion and Outlook 000
Conclusion and Ou	tlook	

- System effectively local for $\alpha \gtrsim 2$; Velocities $v_{\rm E}$, and $v_{\rm B}$ are similarly renormalized
- \rightarrow Local dynamics accessible in systems of trapped ions for a wider range of α
- \rightarrow TDVP seems to work well for intermediate timescales
- For $\alpha \leq 2$, operator structure changes
- \rightarrow Connection between slow entanglement growth and operator structure!
- More quantitative analysis needed...; interplay is important!
- \rightarrow Might give insights into different models, e.g., MBL, or fast scrambling