
Matrix product operator intertwiners as dualities

in quantum spin chains

Benasque, Entanglement in Strongly Correlated Systems

Laurens Lootens

February 22 2022



Outline

Symmetries

Dualities

Matrix product operators

Examples

Conclusion

1



References

� Dualities in one-dimensional quantum lattice models with categorical symmetries:

Hamiltonians and intertwiners, 2112.09091, LL, Clement Delcamp, Gerardo Ortiz,

Frank Verstraete

� Matrix product operator symmetries and intertwiners in string-nets with domain

walls, SciPost Phys. 10, 053 (2021), LL, Jürgen Fuchs, Jutho Haegeman,

Christoph Schweigert, Frank Verstraete

2



Symmetries

We are interested in global symmetries, represented by operators that commute with

the Hamiltonian and form a fusion ring:

OaH = HOa, OaOb =
ÿ

c

N c
abOc

If fusion ring is a group, these representations are unitary, O†g = Og−1

Global symmetries decompose the Hilbert space into irreducible representations i:

HA =
n

à

i

HA,i

This includes symmetry twisted boundary conditions → tube algebras
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Dualities

Dualities relate distinct realizations of the same physics; e.g.

� Wave ↔ particule duality in quantum mechanics

� Holographic duality (AdS/CFT, CS/WZW)

� High ↔ low temperature Ising model (Kramers-Wannier)

We characterize a duality as follows:

1. local, symmetric operators → dual local, symmetric operators (HA → HB)

2. local order operators → dual non-local disorder operators

3. implemented as an isometry between dual Hilbert spaces
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Duality as an isometry

Hilbert space and Hamiltonian split into sectors, which have to match between models:

HA =
n

à

i

HA,i and HB =
n

à

i

HB,i ,

HA =
n

à

i

HA,i and HB =
n

à

i

HB,i .

although they need not be the same size (different degeneracies). Dualities are

isometries defined by

Ui : HA,i ×Haux
A,i → HB,i ×Haux

B,i

s.t. Ui(HA,i b 1A,i)U
†
i = HB,i b 1B,i
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Matrix product operators

Defining the Hamiltonian as a sum of local terms

hA,i =
ÿ

k

Aki′l′Ā
k
il |i′, l′〉〈i, l| ≡

Ā

A

Symmetries are represented as MPOs, dualities are represented as MPO intertwiners:

MPO symmetry

A
=

A
→

MPO intertwiner

A
=

B →

dual MPO symmetry

B
=

B
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MPO symmetries

MPO symmetries are described by (C,D)-bimodule category M:

' =

='

1F 1F = 0F 1F 1F 2F 1F = 1F 2F 2F

2F 3F = 3F 2F 2F3F 3F = 4F 3F 3F

0F 0F = 0F 0F 0F

4F 4F = 4F 4F 4F

C describes the symmetries, D describes the representations
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Dual models

� Dual models are characterized by the same fusion category D, with the

same recoupling theory, but different choices of module category M.

� Consequence: algebra of symmetric operators is the same

� Dual models have equivalent but distinct realizations of the symmetries C,

completely determined by the choice of M: C = D∗M
� MPO intertwiners relating dual models can be constructed from the categorical

data
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Example: Ising model

We consider the transverse field Ising model (note half-integer sites):

HA = −J
ÿ

i

(Xi− 1
2
Xi+ 1

2
+ gZi+ 1

2
)

It has a global Z2 symmetry represented by tensor products of Pauli Z operators:

A

Z
=

A

Z

Z

This model has two dualities:

� Kramers-Wannier duality

� Jordan-Wigner transformation
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Kramers-Wannier duality

Gauge the global Z2 symmetry: add Z2 gauge d.o.f. at integer sites in between matter

d.o.f., subject to

Gi+ 1
2

:= ZiZi+ 1
2
Zi+1

!
= 1

Can be written as an MPO[1]:

OKW =

i− 3
2

i− 1
2

i+ 1
2

i−2 i−1 i i+1
PG PG PG

where PG = (1 + G)/2.

[1]Haegeman, Van Acoleyen, Schuch, Cirac, Verstraete, PRX (2015)
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Kramers-Wannier duality

Acting on the Hamiltonian, we find

OKWHA = HBOKW

with

HB = −J
ÿ

i

(Xi + gZiZi+1), compare to HA = −J
ÿ

i

(Xi− 1
2
Xi+ 1

2
+ gZi+ 1

2
)

HB is the Kramers-Wannier dual of HB, with dual global Z2 symmetry

B

X
=

B
X

X
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Jordan-Wigner transformation

Mapping of spins to fermions:

S+
i =

1

2
(Xi + iYi) 7→ Kic

†
i , S−i =

1

2
(Xi − iYi) 7→ Kici ,

where

Ki = exp
(
iπ

i−1
ÿ

j=−∞
c†j cj
)

ensures correct commutation relations. Resulting Hamiltonian is

HC = −J
ÿ

i

(
c†
i− 1

2

c
i+ 1

2

+ c†
i− 1

2

c†
i+ 1

2

+ h.c.− g(2c†
i+ 1

2

c
i+ 1

2

− 1)
)
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Jordan-Wigner transformation

Defining |ni(a)〉 ≡ (c†i )
n(a)|∅〉, we have |ni(a)〉|nj(b)〉 = (−1)ab|nj(b)〉|ni(a)〉. We

propose the following MPO tensor for the Jordan-Wigner transformation:

ÿ

a,b=0,1

n
i− 1

2
(a)

b

n
i+1

2
(a+b)

ni(b)

≡
ÿ

a,b=0,1

|ni− 1
2
(a)〉|ni(b)〉〈ni+ 1

2
(a+ b)|〈b|

This tensor has even parity, and satisfies

ÿ

a,b

|ni− 1
2
(a)〉|ni(b)〉〈ni+ 1

2
(a+b)|〈b|Xi =

ÿ

a,b

Ki(c
†
i +ci)|ni− 1

2
(a)〉|ni(b)〉〈ni+ 1

2
(a+b+1)|〈b|
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Jordan-Wigner transformation

The evenness of these MPO tensors allows us to write

OJWXi = Ki(c
†
i + ci)O

′
JW

where O′JW has antiperiodic boundary conditions. This allows us to write

OJWHA = HCOJW

Any model with global Z2 symmetry admits these Kramers-Wannier and

Jordan-Wigner dualities, and the MPOs implementing them are universal.
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Examples

Recovering well known examples:

1. D = VecZ2 : Z2 symmetry

� M = Vec: transverse field Ising model

� M = Vec: Kramers-Wannier dual

� M = sVec/〈ψ ' 1〉: free fermion

2. D = Ising: Z2 symmetry + Kramers-Wannier self-duality

� M = Ising: critical transverse field Ising model

� M = Ising/〈ψ ' 1〉: massless free fermion

3. D = Isingb2: (Z2 + Kramers-Wannier self-duality)b2

� M = Ising2: two decoupled critical transverse field Ising models

� M = Ising: critical XY model

� M = Ising/〈ψ ' 1〉: massless Dirac fermion
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Examples

More exotic exapmles:

1. D = Rep(Uq(sl2)): quantum deformed SU(2) symmetry

� M = Rep(Uq(sl2)): solid-on-solid (SOS) models

� M = Vec: 6-vertex model (XXZ)

2. D = H3: exotic fusion category, “Haagerup subfactor”

� M = H3: ?[2][3]

� M =M3,2: ?

� M =M3,1: ?

[2]Vanhove, LL, Van Damme, Wolf, Osborne, Haegeman, Verstraete, A critical lattice model for a

Haagerup conformal field theory , 2110.03532
[3]Huang, Lin, Ohmori, Tachikawa, Tezuka, Numerical evidence for a Haagerup conformal field theory,

2110.03008
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Conclusion

Quantum lattice models have 2 aspects:

Topological

� Symmetries, sectors

� (String) order parameters

� Dualities

� ...

Geometrical

� Correlation functions

� Criticality, scaling dimensions

� Integrability

� ...

Outlook:

� Higher dimensions[4][5]

[4]Haegeman, Van Acoleyen, Schuch, Cirac, Verstraete, Gauging quantum states, PRX (2015)
[5]Delcamp, Tensor network approach to electromagnetic duality in (3+1)d topological gauge models,

2112.08324
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Symmetric tensor networks

Take a three-leg tensor A that is symmetric under some (finite) group G

A

U3
g

= A

U
2gU

1
g

with U ig representations of G. These representations decompose into irreps as

U ig =
à

ji

Dji(g)

The Wigner-Eckart theorem then states that A must be built from Clebsch-Gordan

coefficients:

A
(j3m3)
(j1m1)(j2m2) =

à

ji∈U i

Aj3j1j2C
j1j2j3
m1m2m3
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Symmetric tensor networks

Clebsch-Gordan coefficients are recoupled using F -symbols:
ÿ

m6

Cj2j3j6m2m3m6
Cj1j6j4m1m6m4

=
ÿ

j5,m5

(
F j1j2j3j4

)j6
j5
Cj1j2j5m1m2m5

Cj1j6j4m1m6m4

which up to a phase are the 6j symbols; as a picture,

j6

j1 j2 j3

j4

=
ÿ

j5

(
F j1j2j3j4

)j6
j5

j5

j1 j2 j3

j4

F -symbols allow arbitrary symmetric tensor network contractions;

Clebsch-Gordan coefficients only required to translate to normal tensors
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Bond algebra

Application of this: consider the algebra of symmetric operators generated by

ba,i ≡
ÿ

{ji}
ba(j1, j2, j3, j4, j5)

j1 j2

j3 j4

j5

that we refer to as the bond algebra, with elements

{id,ba,i,bb,jbc,k,ba,ibb,jbc,k . . .}

i.e. we consider all possible products of ba,i on different sites. This bond algebra

contains all symmetric Hamiltonians.
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Bond algebra

Going to some basis {Ox} of the bond algebra, we get the following operator product

expansion:

OxOy =
ÿ

z

fzxy(F )Oz,

with a structure factor that only depends on F .

Claim: there exist distinct sets of “Clebsch-Gordan coefficients” that are recoupled by

the same F -symbol, that generate isomorphic bond algebrass, which define dual

Hamiltonians!

How do we find these different generalized Clebsch-Gordan coefficients?
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Category theory

Fusion category D
� Simple objects α, β, γ ∈ D
� Fusion rules: α b β =

À

γ N
γ
αβγ

� F -symbol that generalize 6j’s

� Usual pentagon: FF =
ř

FFF

k

j

ν

α β γ

δ

=
ÿ

µ

ÿ

i,l

(
Fαβγδ

)ν,jk
µ,il

i

l
µ

α β γ

δ

Right D-module category M
� Simple objects A,B,C ∈M
� Action rules: A/α =

À

B N
B
AαB

�
/F -symbol that generalize CG’s

� Mixed pentagon: /F /F =
ř

F /F /F

j

k
γ

A α β

B

=
ÿ

C

ÿ

i,l

(
/FAαβB

)γ,jk
C,il

i

l
C

A α β

B
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Generalized Clebsch-Gordan coefficients

Define generalized Clebsch-Gordan coefficients as

B ←
γ

α β

A B

C

j

k

i l

:=
(
/FAαβB

)γ,jk
C,il

/
A ←

γ

α β

µ ν

δ

j

k

i l

:=
(
Fµαβν

)γ,jk
δ,il

Their recoupling condition is the mixed/usual pentagon equation:

ν

β γ

B D

C

j

b c

δ

α ν

A D

B

k

d

a
=

ÿ

µ

ÿ

i,l

(
Fαβγδ

)ν,jk
µ,il

µ

α β

A C

B

i

a b

δ

µ γ

A D

C

l

d

c
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MPO intertwiners

Define the MPO intertwiner tensors as

C

γ

l

k

i j

A B

α β

:=
(
/FCαγB

)β,lj
A,ik

The intertwining condition is again the mixed pentagon equation:

ν

β γ

D

B

m

µ

α δ

A C

n

i

k

j

l
=

β γ

D

ν

m

α δ

A C

B

n

k l

i j

⇔ A
=

B
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MPO symmetries

Given some generalized CG coefficients, MPO symmetry tensors can be constructed as

a

α

l

k

i j

A B

C D

=
(
./F aCαB

)A,jk
D,il

where ./F can be computed from F and /F , such that

γ

α β

a

C

m

F

A E

B D

n

i

k

j

l
=

α β

a

γ

m

A E

B D

C

n

k l

i j

⇔ A
=

A
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