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We are interested in global symmetries, represented by operators that commute with
the Hamiltonian and form a fusion ring:

OH=HO4, 0,0, =) NGO,

If fusion ring is a group, these representations are unitary, (’)g = 0y

Global symmetries decompose the Hilbert space into irreducible representations i:
n
Hy=@PHa,
i

This includes symmetry twisted boundary conditions — tube algebras



Dualities relate distinct realizations of the same physics; e.g.

e Wave <> particule duality in quantum mechanics
e Holographic duality (AdS/CFT, CS/WZW)

e High < low temperature Ising model (Kramers-Wannier)

We characterize a duality as follows:

1. local, symmetric operators — dual local, symmetric operators (H4 — Hp)
2. local order operators — dual non-local disorder operators

3. implemented as an isometry between dual Hilbert spaces



Duality as an isometry

Hilbert space and Hamiltonian split into sectors, which have to match between models:
n n
Hy = (‘BHA,i and Hp = (‘B Hpi»
i i
n n
HA:®HA71' and HB:@HBJ-
i i

although they need not be the same size (different degeneracies). Dualities are
isometries defined by

U HAZXHaux—)HBZXHauX
st. Ui(Hai ® 14Ul =Hp, @15,



Matrix product operators

Defining the Hamiltonian as a sum of local terms

@
ha; = ZA/Z/A [i, 1) (i, 1| =

Symmetries are represented as MPOs, dualities are represented as MPO intertwiners:

MPO symmetry MPO intertwiner dual MPO symmetry

2 B AR A



MPO symmetries

MPO symmetries are described by (C,D)-bimodule category M:

OFOF — OFOFOF lFlF — OFlFlF 2F1F — 1F2F2F
NSNS
\\ Y S N \‘ '} _ k }
| | T
AR = FAPAR SF3F = AFSFSF 2F3F = 3F2F2F

C describes the symmetries, D describes the representations



Dual models

e Dual models are characterized by the same fusion category D, with the
same recoupling theory, but different choices of module category M.

e Consequence: algebra of symmetric operators is the same

e Dual models have equivalent but distinct realizations of the symmetries C,
completely determined by the choice of M: C = D},

e MPO intertwiners relating dual models can be constructed from the categorical

data



Example: Ising model

We consider the transverse field Ising model (note half-integer sites):
Hy = —JZ(XI_%XH% +9Z,1)
I

It has a global Z, symmetry represented by tensor products of Pauli Z operators:

e

This model has two dualities:

e Kramers-Wannier duality

e Jordan-Wigner transformation



Kramers-Wannier duality

Gauge the global Zy symmetry: add Zs gauge d.o.f. at integer sites in between matter
d.o.f., subject to
!
Gii1:= Z;Zi+%ZH_1 =1

2

Can be written as an MPOLI:

Okw =

where Pg = (1 + G)/2.

mHaegeman, Van Acoleyen, Schuch, Cirac, Verstraete, PRX (2015)
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Kramers-Wannier duality

Acting on the Hamiltonian, we find
OkwHa = HpOkw
with
Hp = —JZ(X; +9ZiZiy1), compareto Hy = _JZ(Xi—%XH% + gZi+%)

Hp is the Kramers-Wannier dual of Hp, with dual global Zs symmetry

_
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Jordan-Wigner transformation

Mapping of spins to fermions:

1 1
S =5 (Xi+i¥) = Kicl, 57 = 5(Xi —i¥) = Kiai,
where
i—1
K; = exp (im Z C}Cj)

j=—o0

ensures correct commutation relations. Resulting Hamiltonian is

— _JZ

o
i 1€

l—i—hc —g(2c -+;_1))
+3 T3

N:\»—t
l\)\»—l

2
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Jordan-Wigner transformation

Defining |ni(a)) = (c?)”(a)|@>, we have [ni(a))|n;(b)) = (—=1)%|n;(b))|ni(a)). We
propose the following MPO tensor for the Jordan-Wigner transformation:

ni(b)

Z nif%(a) ni+%(a+b) = Z \nl_%(a)>\ni(b)><ni+%(a—|—b)|<b|

a,b=0,1 a,b=0,1

b

This tensor has even parity, and satisfies

2 g (D) DI, = 3, Kl + @O (b IO

a,b
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Jordan-Wigner transformation

The evenness of these MPO tensors allows us to write

Oy Xi = Ki(cl + &) Oy

where O, has antiperiodic boundary conditions. This allows us to write

OywHA = HcO)yw

Any model with global Z, symmetry admits these Kramers-Wannier and
Jordan-Wigner dualities, and the MPQOs implementing them are universal.
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Recovering well known examples:

1. D =Vecz,: Zy symmetry
e M = Vec: transverse field Ising model
e M = Vec: Kramers-Wannier dual
o M =sVec/(1) ~ 1): free fermion
2. D =Ising: Zy symmetry + Kramers-Wannier self-duality
e M = Ising: critical transverse field Ising model
e M =lsing/ (¢ ~ 1): massless free fermion
3. D = Ising®: (Z; + Kramers-Wannier self-duality)®?
o M = Ising®: two decoupled critical transverse field Ising models
e M = Ising: critical XY model
e M =lsing/{(¢) = 1): massless Dirac fermion
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More exotic exapmles:

1. D = Rep(Uy(slz)): quantum deformed SU(2) symmetry
o M = Rep(U,(sly)): solid-on-solid (SOS) models
e M = Vec: 6-vertex model (XXZ)

2. D = Hg: exotic fusion category, “Haagerup subfactor”

o M =Hs: 70106
e M :Mg_g: ?
e M :M3712 ?

[Z]Vanhove, LL, Van Damme, Wolf, Osborne, Haegeman, Verstraete, A critical lattice model for a

Haagerup conformal field theory , 2110.03532
BlHuang, Lin, Ohmori, Tachikawa, Tezuka, Numerical evidence for a Haagerup conformal field theory,

2110.03008
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Conclusion

Quantum lattice models have 2 aspects:
Topological Geometrical

e Symmetries, sectors Correlation functions

e (String) order parameters e Criticality, scaling dimensions
e Dualities e Integrability
o .. o ...

Outlook:

e Higher dimensions[*/bl

[IHaegeman, Van Acoleyen, Schuch, Cirac, Verstraete, Gauging quantum states, PRX (2015)
[5]De|camp, Tensor network approach to electromagnetic duality in (3+1)d topological gauge models,

2112.08324
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Symmetric tensor networks

Take a three-leg tensor A that is symmetric under some (finite) group G
@ @@@
=

with Ug representations of G. These representations decompose into irreps as

Uy = @ D% (9)
Ji

The Wigner-Eckart theorem then states that A must be built from Clebsch-Gordan
coefficients:

(jzm
A3 3) @ Ajmcjmjs

(]1m1) ijz mi1mams
Ji€U?
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Symmetric tensor networks

Clebsch-Gordan coefficients are recoupled using F-symbols:

ZCqJﬁgiﬁgmGCﬁ]W — Z (Fﬂlms)ﬂﬁcjljzjo (CJrdeda

mimema mimoms ~ m1mema
me Js,ms

which up to a phase are the 65 symbols; as a picture,

\\ / (FMJS " \ / /

F-symbols allow arbitrary symmetric tensor network contractions;
Clebsch-Gordan coefficients only required to translate to normal tensors
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Bond algebra

Application of this: consider the algebra of symmetric operators generated by

boi = D ba(i1, 2, 3, jasds) 95
{7} 3/?’ J&

that we refer to as the bond algebra, with elements

{id, by i, by bk, Baibp bk - - .}

i.e. we consider all possible products of b, ; on different sites. This bond algebra
contains all symmetric Hamiltonians.
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Bond algebra

Going to some basis {O,} of the bond algebra, we get the following operator product
expansion:

0:0y = f2,(F)O.,
z
with a structure factor that only depends on F'.

Claim: there exist distinct sets of “Clebsch-Gordan coefficients” that are recoupled by
the same F-symbol, that generate isomorphic bond algebrass, which define dual
Hamiltonians!

How do we find these different generalized Clebsch-Gordan coefficients?
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Category theory

Fusion category D
e Simple objects o, 5,y € D
e Fusion rules: a® 8 =@, N)
e F'-symbol that generalize 65's
e Usual pentagon: FIF' =) FFF

Right D-module category M
e Simple objects A, B,C € M
e Action rules: Ada =@z N B
e ‘F-symbol that generalize CG's
e Mixed pentagon: “FF = > FFF

B ¥

N/ \/
¢ =IRE /
| Booal

z,l

A

I 7%
A =SSy ol
“ |
B
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Generalized Clebsch-Gordan coefficients

Define generalized Clebsch-Gordan coefficients as

C
[y l
@ « W L <1 Aaﬁ V,jk \{? Fuaﬁ) v,k
A 7+ B B Czl v 6,3l
k

Their recoupling condition is the mixed/usual pentagon equation:

\{*
\)/ aﬂ’y o \[/
M,zl
> U
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MPO intertwiners

. QF (6% ,l‘
7 > J = ( BC /Y)ﬁ !

Ak

The intertwining condition is again the mixed pentagon equation:
B

\/\/ le
kﬂl o G YoM :
52‘ m/ jC iD—’_j 0]
a 9
W Sl

S—|—>— 3
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MPO symmetries

Given some generalized CG coefficients, MPO symmetry tensors can be constructed as

Ajk
D,il

i a fl — (MFgCoz)

where "F can be computed from F' and “F', such that
C

- - 7w
AT SlE
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