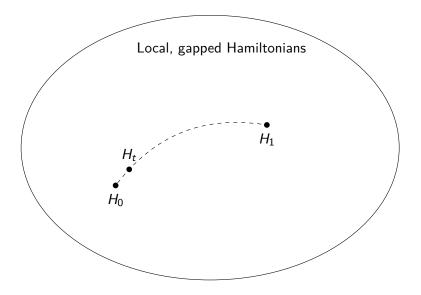
A classification of 1D mixed states

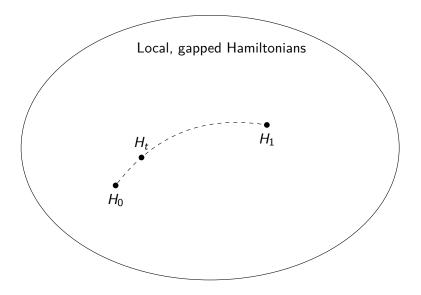
Alberto Ruiz de Alarcón, José Garre Rubio, <u>András Molnár</u>, David Pérez-García

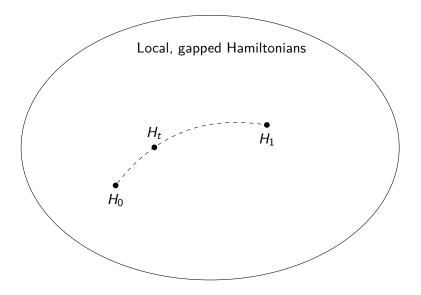
March 3, 2022

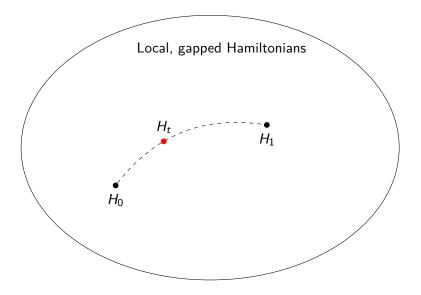
This work was funded by the ERC (grant agreement No. 648913).

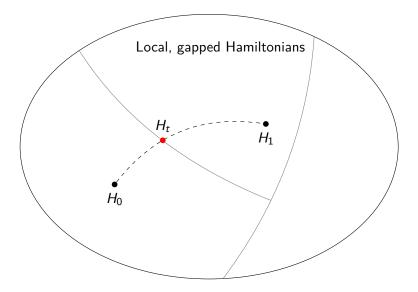
- Phases in open systems
- Matrix product density operators (MPDO)
- Renormalization fixed point MPDO
- Results:
 - Examples for RFP MPDO
 - Some of the examples are in the trivial phase



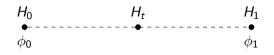




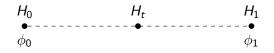




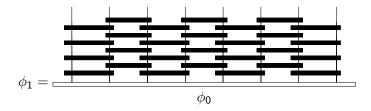
Phases: operational definition



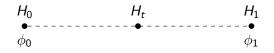
Phases: operational definition



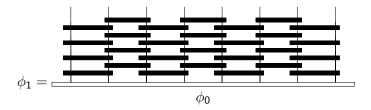
Shallow circuit of local unitaries:



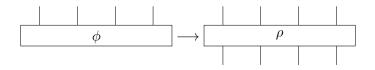
Phases: operational definition

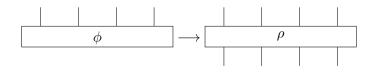


Shallow circuit of local unitaries:

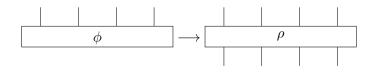


- States, not Hamiltonians
- Same phase = equally hard to prepare



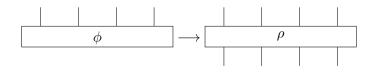


 Operational definition: classification of states Coser, Perez-Garcia, Quantum. 3, 174 (2019)

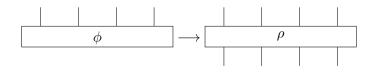


 Operational definition: classification of states Coser, Perez-Garcia, Quantum. 3, 174 (2019)

► Same phase ⇔ equally hard to prepare

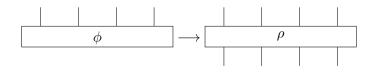


- Operational definition: classification of states Coser, Perez-Garcia, Quantum. 3, 174 (2019)
- ► Same phase ⇔ equally hard to prepare
- Operations: local Lindbladian for short time



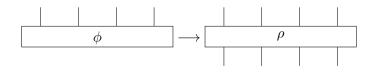
- Operational definition: classification of states Coser, Perez-Garcia, Quantum. 3, 174 (2019)
- ► Same phase ⇔ equally hard to prepare
- Operations: local Lindbladian for short time

$$ho_1
ightarrow
ho_2$$
 if $ho_2 pprox e^{t \cdot \mathcal{L}_1}(
ho_1)$



- Operational definition: classification of states Coser, Perez-Garcia, Quantum. 3, 174 (2019)
- ► Same phase ⇔ equally hard to prepare
- Operations: local Lindbladian for short time

$$\rho_1 \to \rho_2 \quad \text{if} \quad \rho_2 \approx e^{t \cdot \mathcal{L}_1}(\rho_1)$$
$$\rho_1 \leftarrow \rho_2 \quad \text{if} \quad \rho_1 \approx e^{t \cdot \mathcal{L}_2}(\rho_2)$$

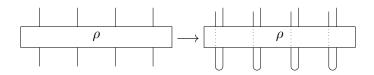


- Operational definition: classification of states Coser, Perez-Garcia, Quantum. 3, 174 (2019)
- ► Same phase ⇔ equally hard to prepare
- Operations: local Lindbladian for short time

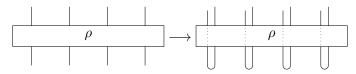
$$\begin{array}{ll} \rho_1 \to \rho_2 & \text{if} & \rho_2 \approx e^{t \cdot \mathcal{L}_1}(\rho_1) \\ \rho_1 \leftarrow \rho_2 & \text{if} & \rho_1 \approx e^{t \cdot \mathcal{L}_2}(\rho_2) \end{array}$$

Same phase: $\rho_1 \leftrightarrow \rho_2$

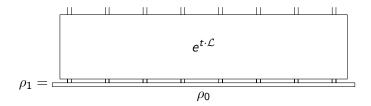
Phases in open systems: circuit of channels



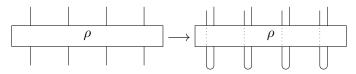
Phases in open systems: circuit of channels



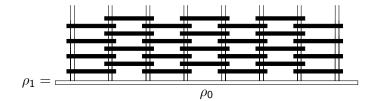
 $\rho_{\rm 0} \rightarrow \rho_{\rm 1}$ if with a local Lindbladian for short time



Phases in open systems: circuit of channels



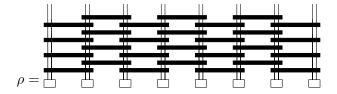
 $ho_0
ightarrow
ho_1$ if with a shallow circuit of local channels



•
$$\rho \to (\mathrm{Id}/d)^{\otimes N}$$
 for all ρ :
 $\mathrm{Id}^{\otimes n}/d^n = T^{\otimes n}(\rho)$ with $T(X) = \mathrm{Tr}\{X\} \cdot \mathrm{Id}/d$.

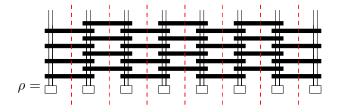
$$\rho \to (\mathrm{Id}/d)^{\otimes N} \text{ for all } \rho:$$
$$\mathrm{Id}^{\otimes n}/d^n = T^{\otimes n}(\rho) \quad \text{with} \quad T(X) = \mathrm{Tr}\{X\} \cdot \mathrm{Id}/d.$$

• If $(\mathrm{Id}/d)^{\otimes N} \to \rho$, then ρ is MPDO:



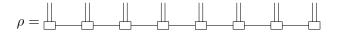
$$\rho \to (\mathrm{Id}/d)^{\otimes N} \text{ for all } \rho:$$
$$\mathrm{Id}^{\otimes n}/d^n = T^{\otimes n}(\rho) \quad \text{with} \quad T(X) = \mathrm{Tr}\{X\} \cdot \mathrm{Id}/d.$$

▶ If $(Id/d)^{\otimes N} \rightarrow \rho$, then ρ is MPDO:



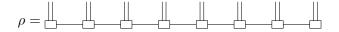
•
$$\rho \to (\mathrm{Id}/d)^{\otimes N}$$
 for all ρ :
 $\mathrm{Id}^{\otimes n}/d^n = T^{\otimes n}(\rho)$ with $T(X) = \mathrm{Tr}\{X\} \cdot \mathrm{Id}/d$.

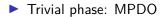
• If $(\mathrm{Id}/d)^{\otimes N} \to \rho$, then ρ is MPDO:



•
$$\rho \to (\mathrm{Id}/d)^{\otimes N}$$
 for all ρ :
 $\mathrm{Id}^{\otimes n}/d^n = T^{\otimes n}(\rho)$ with $T(X) = \mathrm{Tr}\{X\} \cdot \mathrm{Id}/d$.

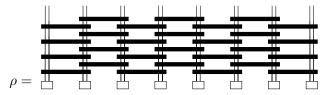
▶ If
$$(Id/d)^{\otimes N} \rightarrow \rho$$
, then ρ is MPDO:





So far...

Phase: shallow circuit of local channels

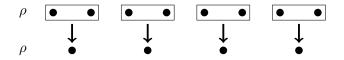


What are the MPDOs in the trivial phase?

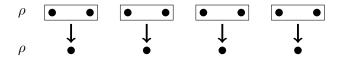
Pure systems: RFP captures relevant physics.

$\rho \quad \bullet \quad \bullet$

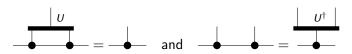
Pure systems: RFP captures relevant physics.



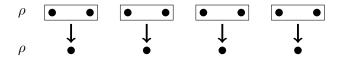
Pure systems: RFP captures relevant physics.



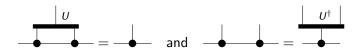
An MPS is a RFP if \exists isometry U:



Pure systems: RFP captures relevant physics.



An MPS is a RFP if \exists isometry U:



Cirac, Perez-Garcia, Schuch, Verstraete, Ann. Phys. 378:

 $\mathsf{RFP} = \mathsf{ZCL} = \mathsf{GS}$ of commuting PH

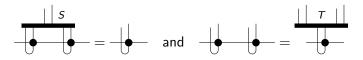
Cirac, Perez-Garcia, Schuch, Verstraete, Ann. Phys. 378:

 $\mathsf{ZCL} \neq \mathsf{No} \; \mathsf{length} \; \mathsf{scale} \approx \mathsf{RFP}$

Cirac, Perez-Garcia, Schuch, Verstraete, Ann. Phys. 378:

 $\mathsf{ZCL} \neq \mathsf{No} \; \mathsf{length} \; \mathsf{scale} \approx \mathsf{RFP}$

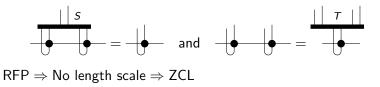
Def.: an MPDO is a RFP if \exists CPTP maps T, S:



Cirac, Perez-Garcia, Schuch, Verstraete, Ann. Phys. 378:

 $\mathsf{ZCL} \neq \mathsf{No} \; \mathsf{length} \; \mathsf{scale} \approx \mathsf{RFP}$

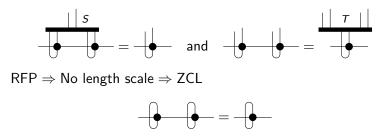
Def.: an MPDO is a RFP if \exists CPTP maps T, S:



Cirac, Perez-Garcia, Schuch, Verstraete, Ann. Phys. 378:

 $\mathsf{ZCL} \neq \mathsf{No} \; \mathsf{length} \; \mathsf{scale} \approx \mathsf{RFP}$

Def.: an MPDO is a RFP if \exists CPTP maps T, S:

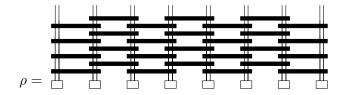


So far...

▶ RFP MPDO: \exists CPTP maps T, S:

What are the RFP MPDOs in the trivial phase?

Prepare w/ shallow circuit of local channels



Renormalization fixed point MPDO: Examples

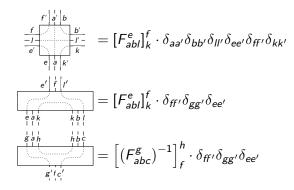
Boundaries of topological order

Renormalization fixed point MPDO: Examples

- Boundaries of topological order
- String-net: Unitary fusion category

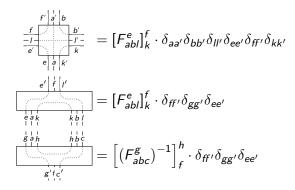
Renormalization fixed point MPDO: Examples

- Boundaries of topological order
- String-net: Unitary fusion category
- MPO tensors: Sahinoglu, et. al., 1409.2150



Renormalization fixed point MPDO: Examples

- Boundaries of topological order
- String-net: Unitary fusion category
- MPO tensors: Sahinoglu, et. al., 1409.2150



Bimodule categories: Lootens et al., Scipost Physics, 10, 3

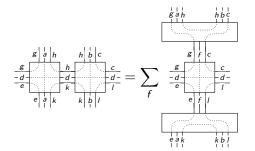
Pentagon equation:

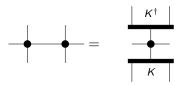
$$[F_{ahd}^{e}]_{k}^{g}\left[F_{bcd}^{k}\right]_{l}^{h} = \sum_{f}\left[F_{fcd}^{e}\right]_{l}^{g}\left[F_{abl}^{e}\right]_{k}^{f}\left[\left(F_{abc}^{g}\right)^{-1}\right]_{f}^{h}.$$

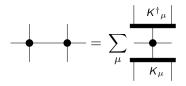
Pentagon equation:

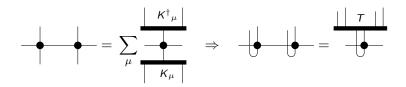
$$[F_{ahd}^{e}]_{k}^{g}\left[F_{bcd}^{k}\right]_{l}^{h} = \sum_{f} [F_{fcd}^{e}]_{l}^{g} [F_{abl}^{e}]_{k}^{f} \left[(F_{abc}^{g})^{-1} \right]_{f}^{h}$$

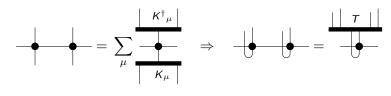
With the MPO tensors:



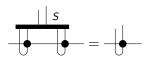


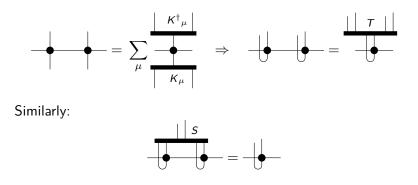






Similarly:

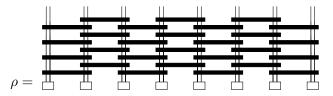




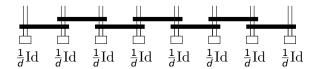
- S and T are CP, but not TP
- The MPO is not ZCL
- After normalization, MPO is ZCL, and S,T are CPTP

So far...

- ▶ RFP MPDO from string-nets
- Which ones are in the trivial phase?
- Which ones can be prepared w/ shallow circuit of local channels?

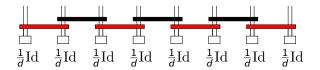


Depth-2 channel



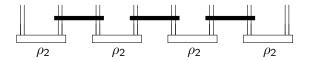
Depth-2 channel

• Throw away and prepare: $X \mapsto \text{Tr}X \cdot \rho_2$



Depth-2 channel

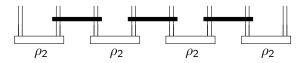
• Throw away and prepare: $X \mapsto \text{Tr}X \cdot \rho_2$



Depth-2 channel

• Throw away and prepare: $X \mapsto \text{Tr} X \cdot \rho_2$

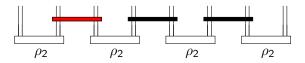
Glue

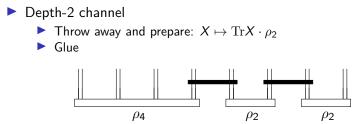


Depth-2 channel

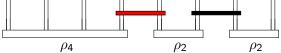
• Throw away and prepare: $X \mapsto \text{Tr} X \cdot \rho_2$

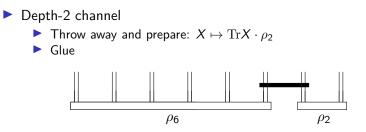
Glue

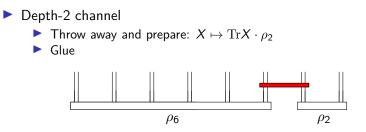




▶ Depth-2 channel
▶ Throw away and prepare: X → TrX · ρ₂
▶ Glue

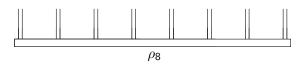


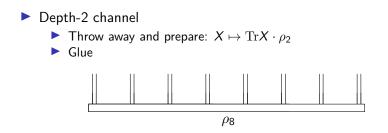




Depth-2 channel

- Throw away and prepare: $X \mapsto \text{Tr}X \cdot \rho_2$
- Glue





- Gluing only works in special cases:
 - 1D vacuum sector
 - Only vacuum sector

$$\underbrace{\stackrel{f'|a'|b}{\stackrel{f'}{\stackrel{f'}{\stackrel{f'}{\stackrel{h'}{h'}{\stackrel{h'}}{\stackrel{h'}{\stackrel{h'}{\stackrel{h'}{\stackrel{h'}{\stackrel{h'}{\stackrel{h'}{\stackrel{h'}}{\stackrel{h'}}{\stackrel{h'}{\stackrel{h'}{\stackrel{$$

$$\underbrace{\begin{smallmatrix} f' & a' \\ -l \\ e' & b' \\ e & a \\ k' \end{smallmatrix}}_{e' a & k'} = [F^e_{abl}]^f_k \cdot \delta_{aa'} \delta_{bb'} \delta_{ll'} \delta_{ee'} \delta_{ff'} \delta_{kk'}$$

• $\{a, b, c, ...\}$: objects in unitary fusion category. Fusion rules:

$$a \times b = \sum_{c} N_{ab}^{c} c$$

$$\underbrace{\begin{smallmatrix} f' & a' \\ -l \\ e' & b' \\ e & a \\ k' \end{smallmatrix}}_{e' a & k'} = [F^e_{abl}]^f_k \cdot \delta_{aa'} \delta_{bb'} \delta_{ll'} \delta_{ee'} \delta_{ff'} \delta_{kk'}$$

• $\{a, b, c, ...\}$: objects in unitary fusion category. Fusion rules:

$$a \times b = \sum_{c} N_{ab}^{c} c$$

Vacuum:

 $e \times a = a \times e = a$

$$\underbrace{\stackrel{f'|a'|b}{\stackrel{f'}}{\stackrel{f'}{\stackrel{f'}{\stackrel{$$

• $\{a, b, c, ...\}$: objects in unitary fusion category. Fusion rules:

$$a \times b = \sum_{c} N_{ab}^{c} c$$

Vacuum:

 $e \times a = a \times e = a$

MPO is block-diagonal, each block is injective

$$- \oint = \bigoplus_{a} - \oint^{a} \oint^{a} \Rightarrow O_{a}$$

$$\underbrace{\stackrel{f'|a'|b}{\stackrel{f'}}{\stackrel{f'}{\stackrel{f'}{\stackrel{$$

• $\{a, b, c, ...\}$: objects in unitary fusion category. Fusion rules:

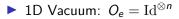
$$a \times b = \sum_{c} N_{ab}^{c} c$$

Vacuum:

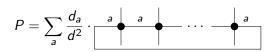
 $e \times a = a \times e = a$

MPO is block-diagonal, each block is injective

$$- \oint_{a} = \bigoplus_{a} - \oint_{a} - \bigoplus_{a} - \bigoplus_{a} - O_{a}$$



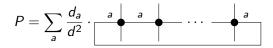
► Special MPO:



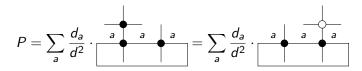
Special self-adjoint projector MPO:

$$P = \sum_{a} \frac{d_{a}}{d^{2}} \cdot \boxed{\begin{array}{c} a \\ \end{array}} \xrightarrow{a} \begin{array}{c} a \\ \end{array}} \xrightarrow{a} \begin{array}{c} a \\ \end{array} \xrightarrow{a} \end{array} \xrightarrow{a} \begin{array}{c} a \\ \end{array} \xrightarrow{a} \begin{array}{c} a \\ \end{array} \xrightarrow{a} \end{array} \xrightarrow{a} \begin{array}{c} a \\ \end{array} \xrightarrow{a} \begin{array}{c} a \\ \end{array} \xrightarrow{a} \end{array} \xrightarrow{a} \end{array} \xrightarrow{a} \begin{array}{c} a \\ \end{array} \xrightarrow{a} \end{array} \xrightarrow{a} \end{array} \xrightarrow{a} \begin{array}{c} a \\ \end{array} \xrightarrow{a} \end{array} \xrightarrow{a} \end{array} \xrightarrow{a} \end{array} \xrightarrow{a} \begin{array}{c} a \\ \end{array} \xrightarrow{a} \end{array} \xrightarrow{a}$$

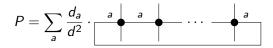
Special self-adjoint projector MPO:



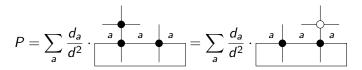
Pulling-through equation:



Special self-adjoint projector MPO:



Pulling-through equation:

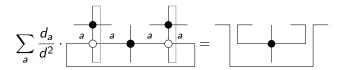


Bultinck et al., Ann. Phys. 378 183-233

The gluing map:

$$T(X \otimes Y) \approx \sum_{a} \frac{d_{a}}{d^{2}} \cdot \underbrace{X \bullet}_{a} \underbrace{Y \bullet}_$$

The way it works:



Conclusion

- Phase classification for mixed state
- Renormalization fixed point MPDO
- Examples from string-net
- A subset of them is in the trivial phase
- Conjecture: MPDO from Fibonacci is not in the trivial phase