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Outline

Kitaev Honeycomb Model

3/27



Kitaev honeycomb model
» Model Hamiltonian [1]

H=—J, Z ofox —Jy Z O'J}-/O'Z—Jz Z ofok

x-links y-links z-links

[1] Kitaev. “Anyons in an exactly solved model and beyond”. 2006. Ann.
Phys. 321 1
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Kitaev honeycomb model: solution
» Majorana decomposition: ¢% = ib%c for a = x,y, z

/:I = Z iJaujkcjck
(kYo

where uj = ib®by is a Z, gauge field which commutes with A.

Fermion parity constraint: b*bYb*c =1
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Loop operators and phase diagram

Phase Diagram

W, = ofo¥o50 00§ = H (—iujk)
(k)ep

Ground state flux configuration is zero flux (Lieb's theorem), i.e.,
Wy, = +1 Vp.
Gapless phase features Dirac excitations.
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Anyonic excitations

» In the gapless phase, on adding appropriate weak magnetic
field peturbation, Kitaev showed that there exist non-Abelian
anyonic excitations (W, = —1) characterized by an anyon
topological spin of 6, = /8 and a Chern number v = +1.

Anyonic gp ‘ CFT primary field a ‘ ha ‘ 0, =27h,
Vacuum I 0 0
Fermion Y 1/2 7r

Non-Abelian Anyon o 1/16 /8

Kitaev's sixteenfold way is a classification of topological orders of a
7, gauge theory coupled to free or weakly interacting fermions
(gapped spectrum) with a spectral Chern number of v.
Classification: ¥ mod 16 into sixteen distinct types.
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Why quantum spin-orbital models?

» Spin-orbital models were first introduced in the context of
Kugel-Khomskii-type models for transition metal oxides (Kugel
and Khomskii 1982).

» SU(4)-symmetric point in the parameter space could possibly
explain the disordered ground state in the spin-orbital system
BazCuSbyOg observed experimentally (Nakatsuji et al.,
Science 336 (2012)).

» Frustrated inter-orbital interactions: The double perovskite
BayYMoOg, which has effective jog = 3/2 moments as a
result of degenerate t, orbitals and spin-orbit coupling, and
does not order down to low temperatures (Vries et al. PRL
104 (2010)).
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Outline

QSOLs: Anyons
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Main Idea

» Combining systems of Chern number 1 (in some non-trivial
way) to obtain systems of higher Chern number.

» A useful mathematical tool for achieving this is the Clifford
Algebra of order n.

{ro.rf}y =25, 1= S[re, )

where «, 8 can take any value form 1 to 2n — 1. In the

simplest representation, I matrices are 2”1 x 2"~1 matrices.

It has a Majorana representation [2] as follows:
re = ip®c r*f = ip*b”

Thus there are 2n Majorana operators.
> Clifford Algebra of order 2 is satisfied by Pauli matrices.

[2] Wu, Arovas and Hung. “I'-matrix generalization of the Kitaev model”.

2009. Phys. Rev. B 79
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A possible way of achieving v = 2,3

» For v = 2,3 we use Clifford Algebra of order 3, which has 5
4 x 4 I matrices and requires six Majorana fermions.

» Coloured dots — Majorana operators, Black rounded square
and triangle — spins. Left diagram could corresponds to v = 2
since it has two itinerant Majorana modes. Similarly right to
v=3.
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Lattice Systems

» Thus, in order to realize sixteenfold way models we need to use
square and honeycomb lattice for even and odd v respectively.

(a) (b)

n; n;
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Model

» Model Hamiltonian (for Chern number v):

2g+3
_ Y BB
SR AR DAy
(i)~ f=ym+1

where v = 2q (29 + 1) and v, = 4 (3) for square
(honeycomb) lattice.
» In Majorana representation, we have:

2943

A= ZJU,J icicj + Z /bﬁbﬁ ,

ﬁ Ym +1

> ltinerant Majorana modes decouple once we fix the static Z»
gauge field configuration.

» Fermion parity constraint:
o q24142 2g4+3
Di=i bjbj...bj ¢ =—1,
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Anyons in quantum spin-orbital liquid

H==> 4(@-3)e (), (1)
(if)~

Spin-orbital model on a honeycomb lattice with Heisenberg

coupling in the spin sector and a Kitaev coupling in the orbital

sector (Yao and Lee, PRL 107 (2011)).

Four dimensional representation of Clifford Algebra:

(M)a=1,. 5 =(0Y @7, 0¥ @7,0Y @ 77,0 Q1,07 ®1).

Majorana representation: [* = ib%c.

A =>" Jyuy (icig + ib} b} + ib7b?) ,
(i)

3 Dirac cones in the gapless B phase.
= v = 3 after breaking TRS.
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Anyons in quantum spin-orbital liquid

Anyonic gp ‘ CFT primary field a ‘ ha ‘ 0, =27mh,
Vacuum I 0 0
Fermion Y 1/2 T

Non-Abelian Anyon o 1/16 /8

Table: Kitaev Spin Liquid

Anyonic gp ‘ CFT primary field a ‘ h, ‘ 0, =2mh,
Vacuum I 0 0
Fermion Y 1/2 7r

Non-Abelian Anyon o 3/16 3r/8

Table: v = 3 Quantum Spin-Orbital Liquid

Odd v theories have non-abelian anyons while even v theories have
abelian anyons. (For more details, see Phys. Rev. B 102,
201111(R) (2020)).
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Spin-orbital liquid on a square lattice with v = 2

A spin-orbital model on the square
lattice with an XY coupling in the spin (a)
sector and a Kitaev coupling in the orbital
sector (Nakai et al., PRB 85 (2012)).

H=- ZJ ofof + o J)®(7'77'7),

(T )y=1,...4 = (7%, 77,77, 1).
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Outline

QSOLs: Flux Crystals
Onsite spin magnetic field
Nearest neighbour interactions
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Onsite spin magnetic field
(Chulliparambil et al., Phys. Rev. B 103, 075144 (2021))

Plaquette operators (Z; flux operator): W, =1 ® 7 T TET TinTE.

Coupling only spin to magnetic field.

1 |
(3):__'_ =3 i koo 2 1 ee
Hh h ZO’,®]1- \Z./o\../o\
| » 3]
Majorana representation: i oo eom
/ \..{ \../
75123) = Z (R cf + Wik + hcicl) . I I

1

Dispersion relation depends only on |H] Ground state flux
configuration?
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Onsite spin magnetic field: Ground state flux configuration

S0 S o

(a) Flux free (b) 7 flux (c) 1/2-flux stripy (d) 1/3-flux crystal

SEBT L% A S

(e) 2/3-flux crystal (f) 1/4-flux crystal (g) 3/4-flux crystal (h) 1/3-flux stripy

(i) 2/3-flux stripy (j) 1/4-flux stripy (k) 2/4-flux stripy (1) 3/4-flux stripy



Onsite spin magnetic field: Average magnetization per site

Majorana fermi surfaces, Dirac cones,..

1.0 y T
"""" Flux-free sector !
0.8 m-flux sector e
’ === 1/3flux sector
— Ground-state sector S
= 0.6 S
1S (L) i
= con L]
Il .
& 04 @
0.2
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0
|hl/J
- A
1L/2 I 0 max £(k)
c=3 o Cc= c=1
"T v 9:/ Trivial gap Iy v
0 | 084 | 121 | 175186 [, 300 | Ry
Flux-free sector  1/3-flux sector m-flux sector Flux-free sector
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Nearest neighbour interactions:

1. Spatially isotropic T interaction

7‘1(;) = FZ [0’ o; +ola i+ +ajof +ofo] —|-O'7O'J-B —l—a?a}] Q1T

Majorana representation:

7:[53)+7-Nl(r —ZUU[JZCQ & I'Z(c G +c )

(ij) a<p

Using appropriate unitary transformation:

I

|

HO 4+ 1O =3 iy ((J — 2F)dpd? + (J + P)(d2d? + ddP)),

(i

Majorana flat bands at J = 2l and J = —T!
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Nearest neighbour interactions:
2. Bond-dependent diagonal K interaction

e
GO IE
(i)
Majorana representation:

WD = S |0+ K05 G + X |

(i) BFy

» Finite K spoils SO(3) symmetry. As K/J — oo, 7-type
Majoranas are localized on ~-type bonds leading to gapped
dispersion and flat bands.

> (k) = +|f(K) + 2Ke K% | with 8, = iy, s, 0 for
o = X, y, z respectively.
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Outline

QSOLs: Emergent Fractionalized Quasiparitcles

23 /27



Néel antiferromagent on a honeycomb lattice
Seifert et al. PRL 125,257202 (2020)

QSOL: Hi ==Y Jy(5;- ) @ (7]7)).

W,=1® Tf@yT,foT,{,Tﬁ.
Antiferromagnetic 1 I

interactions in the spin degree of freedom : \j /k'.'\Q 1/'.'\
... ... l
Hy=JY & ¢eLl, J>0. j.l. p 3.|.m
(if) 7 \“{ Noo”
| |

[Hy, W] =0V p, = static

Z, gauge fields. In the Majorana form,
Hy — %ZUD(CI-TLC;) . (cJ-TLcJ-), with the SO(3) generators
Lz, = —ie*BY. Not exactly solvable!
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Continuous phase transition

1
0.5 A-A-lrA-A-A-*-+-A-lr*-A-A-t-A-A-A 1.0
i 7'y
0.4 | ad
i R
03 i L _
=~ i ') S
T'g 02 i N 05 =
= L. x
0.1 | N
]
1
0.0 M“

! 0.0
0.1 03 05 07 09 L1 13 1.5 17 19
J/K

» For J << K semimetal with three flavours of gapless Dirac
excitations corresponding to v = 3 Kitaev spin-orbital liquid.

» For J>> K — <ﬁ> = <5i,A —5j75>/2 75 0, a flavour of
gapless Dirac excitation (v = 1 Kitaev spin-orbital liquid)
along with anti-ferromagnetic Néel order.
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Fractionalized fermionic quantum criticality

1
GN-SO(3)"
@
0 vy =3KitaevSOL 0.9(2) wy =1 Kitaev SOL J/K
with Néel order

The criticality was studied using e—expansion, large N methods and
DMRG to reveal Gross-Neveu-SO(3)* criticality. (Phys. Rev. Lett.
125, 257202 (2020)).
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Thank you for your attention..

» QSOLs, in addition to Kitaev Spin Liquids are also excellent
starting points for the study of anyons (both Abelian and
non-Abelian) and exotic topological orders (Phys. Rev. B 102,
201111(R) (2020)).

» On adding onsite magnetic fields and nearest neighbour
interactions, we observe first order phase transition into
non-trivial flux crystals featuring Majorana fermi surfaces,
quadratic band touching points and flat bands (Phys. Rev. B
103, 075144 (2021)).

» Nearest neighbour antiferromagnetic spin interactions lead to
novel continuous phase transition characterized by novel Gross
Neveu* quantum criticalities (Phys. Rev. Lett. 125, 257202
(2020)).
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Characterising Topological Order

Edge States and Topological Spin of Anyons

On solving the QSOL models on a cylinder one can show that there
exist exactly v pairs of gapless Majorana edge modes in the gapless
phase in presence of weak magnetic field perturbation that gaps the
system.

5

0 x’— zero modes

'
o

0 /2 ™ 3r/2 2
ki -my
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Types of Anyonic Quasiparticles [3]

Anyonic gp ‘ CFT primary field a ‘ h, ‘ 0, = 2mh,
Vacuum I 0 0
Fermion W 1/2 T

Non-Abelian Anyon o v/16 /8

Table: Odd v theories and SO(v); CFT

Anyonic qp ‘ CFT primary field a ‘ h, ‘ 0, =2mh,

Vacuum I 0 0
Fermion (% 1/2 T
Abelian Anyons A1, A2 v/16 /8

Table: Even v theories and SO(v); CFT

[3] Francesco, Mathieu and Sénéchal. Conformal Field Theory. 1997
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Topological Spin of Anyon Quasiparticle
» Contribution to energy from edge states:
2y

Es—Eo = Tl(ha + hs)

» The topological spin of the anyonic quasiparticle § = 27h, [1];

[4].
» Our results match with the CFT predicted value of anyonic
topological spin of § = v7/8.

10 0.4
0.35 * v=2
5 ) O v=3
QLR T '
~ 125
% 0 e '.z’zemmades S 021K Q@@ e Do orens
H 5
St e
0.05 \1/8
-10 0
0 /2 ™ 3m/2 2 0 6 12 18 24 30 36 42
k| -my Ly

[4] Tu, Zhang and Qi. “Momentum polarization: An entanglement
measure of topological spin and chiral central charge”. 2013. Phys. Rev. B 88
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Topological Ground State Degeneracy On A Torus

» Four candidate degenerate states:

QVe({ug™ 1)) ® {ug™}) = [We({ug™}) ® [{ug™}),
» Fermion parity

QVe({yy ) @Huy™h) = We({ug 1) @ [{ug 1),
QVe({uy ") @ Hug ™} = [Ve({ug ") @ {ug T},
QVe({ug ) @ Hug 1) = We({ug 1) @ H{ug 1),
QVe({ug ") @ {ug 1) = (1) We({ug 1) @ {ug ")
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Onsite spin magnetic field on honeycomb: Ground state flux

configuration

..... 0 (K0) 2/3 (K6)
0209 —< — (K1) — 1/4 (K10)
— 1/2 (K2) 3/4 (K11)
0.15 4 — 1/3 (K5)
o 0.104
u3
1
m
0.05 4
0.00 1
—-0.05 A

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
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Onsite spin magnetic field: Flux free sector (|h|/J < 0.84)
> Ath=0, C=3
> As we increase |f1], two of the three Dirac cones are shifted
away from zero energy — Fermi surface. (Majorana metall)
era(k) = 20| £ [F(K)],  esa(k) = —2/h| & [F(K)],
and esg(k) = £|f(K)|.

where f(k) = 2J(1 + eikm 4 gik "2), where iy » = (£3, ?)
are the honeycomb lattice vectors.

» C=1
L/2 M

M 1/ M M_K 0 max e(k)

c=3 o Cc=4 c=1

r
K 92/2 Trivial ¢ h
T 4 T rivial gap 2 \ 4 r

0 | 084 | 121 | 175186 | 300 | |hl/g

Flux-free sector  1/3-flux sector m-flux sector Flux-free sector
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Onsite spin magnetic field: 1/3- flux sector

> Trivial gap for all three Majoranas.

- .
1/2 M 0 max e(k)
= =4 C=1
9:/2 Trivial gap
0.84 1.21 1.751.86 | 300 | Jhl/g
Flux- free sector  1/3- ﬂux sector - ﬂux sector Flux-free sector
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Onsite spin magnetic field: 7- flux sector

» Gapless spectrum features two Dirac cones and a Fermi
surface resulting in C = 2.

» This Fermi surface is formed by the intersection of a Dirac
node at M’/2 = (m,7/\/3)/2, centered at some nonzero

elevated energy with its particle-hole-symmetric counterpart.

> At |h| = 1.75J, at which the Fermi surface shrinks to an
isolated point.

» All four Dirac cones now give rise to C = 4.

M - A
M /2 M M % 0 max (k)
c=3 o Cc=4 c=1
T
92/2

"T T Trivial gap 1 \ 4 r
0 | 084 | 121 | 175186 | 300 | A/
Flux-free sector  1/3-flux sector m-flux sector Flux-free sector
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Onsite spin magnetic field: Flux free sector for large |H\/J

> At || = 3J two Fermi surfaces shrink to isolated points with
quadratic dispersion at the ' = (0,0) point in BZ/2.

» At h* > 3J, two of the three bands are completely filled and
empty, respectively, and only the Dirac cone at K remains,

yielding C = 1.
M A

M 1/2 M M_K 0 max (k)

c=3 9 C=4 c=1

9 T
"T 92/ T Trivial gap 1y \ 4 r

0 | 084 | 121 | 175186 | 300 | |hl/g

Flux-free sector  1/3-flux sector n-flux sector Flux-free sector
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Nearest neighbour interactions on a honeycomb lattice:
3. Bond-dependent off-diagonal T interaction

i

H(r3) = r[ <U70J‘?‘ + J?‘U] + 0’70'_1-6 + U?O’]) } ® TF’T}, (2)
(i)~

Majorana representation:

W+ u? = Sy [l —r(e )] @

» 0O-flux is the ground state flux configuration except at ['/J =1
where several other fluxes are close in energy.
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Nearest neighbour interactions on a honeycomb lattice:
3. Bond-dependent off-diagonal T interaction

Ground state flux configuration study and nodal lines at ' = 1.0:

0 *x 1/3 3/4 . (1/4):
*x =% 2/3 xx (1/3). x=x (2/4). —
o (12 ex 14 ex (23, % (3/4). 8 (C)F — 10 v
020 0.0020 G+
0.0015 1] [ 41
0.15 7 0.0010 X1 [
~ i K 0.0005 P [ — 2
= 010\ /AN 0.0000 - I S O
\ i \-0.0005 4 | W _
8 W )001; X 2
0.05 "\ —4+
0.00 —8 | L
20 15 1.0 =05 00 05 1.0 15 20
o r M K r
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Nearest neighbour interactions on a honeycomb lattice:

3. Bond-dependent off-diagonal T interaction

e(k)
0.0 1.0 2.0 3.0 4.0
o e—

()T =067 (b)

()T =157

—6
T M K I' 6-4-20 2 46

T

The spectrum becomes fully gapped at ' = 1.6J.
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QSOL on a square lattice

This model has a chiral gapless quantum spin orbital liquid with
v =2 when J, = 1 ((Phys. Rev. B 102, 201111(R) (2020))).

H=-— ZJ ofof + o) @ (r]T]),

where v = 1,2, 3,4 denotes the four inequivalent bonds in a
two-site unit cell and (77) = (7,7, 7%,1) for v = 3.

A= ZJ u,J( X X—Hc,ycj’)

Conserved Plaquette operators:

W, = ofor @ 1i° kaT )

Wy = oror @ Tk T TN,
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Flux crystals on a square lattice: Onsite spin magnetic field

These terms couple the spin degree of freedom to magnetic field [5].

,ng) = —hzZaiz ® 1.

Majorana representation:

D =y e,

[5] Chulliparambil andothers. “Flux crystals, Majorana metals, and flat
bands in exactly solvable spin-orbital liquids”. 2021. Phys. Rev. B 103
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Onsite spin magnetic field: Average magnetization per site

1.0F 5
3
0.8} ©
: 7y EaA
gb: 0.6 r ot
I s
g 04
"""" Flux-free sector
o
02l & m-flux sector
. '_f'" ==-  Checkerboard-flux sector
jf — Ground-state sector
0.0
0.0 1.0 2.0 3.0 4.0
h)J
X -]
v2/2 v2 0 max (k)
M Py
c=2 U uy Ly C-=2 M Trivial,
i v1/2 empty (filled) bands
R 4 o
2.002.03 Flux-free sector 400" Fluxes “hi )
degenerate

I

0 m-flux sector 1.15
Checkerboard-flux sector
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