Hilbert Space Fragmentation and Commutant Algebras

Sanjay Moudgalya

Walter Burke Institute of Theoretical Physics California Institute of Technology

SM, Olexei I. Motrunich, arXiv: 2108.10824 (2021) [To appear in PRX] SM, Olexei I. Motrunich, (in preparation)

> Benasque 2nd March 2022

Review of ergodicity and its breaking in isolated quantum systems

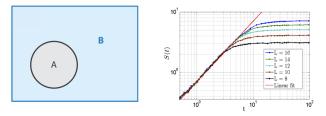
Weak ergodicity breaking

Commutant algebras

Ergodicity in Isolated Quantum Systems

- A quantum Hamiltonian is said to be ergodic if *any* initial state $|\psi(0)\rangle$ evolves into a "thermal" state $|\psi(t)\rangle = e^{-iHt} |\psi(0)\rangle$
- Reduced density matrix of a thermal state is the Gibbs density matrix of the subsystem

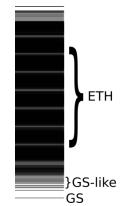
$$ho = \ket{\psi} ra{\psi}, \quad
ho_{\mathcal{A}} = \operatorname{Tr}_{\mathcal{B}}(
ho), \quad
ho_{\mathcal{A}} \sim e^{-eta \mathcal{H}|_{\mathcal{A}}}$$



- Entanglement quantified by the von Neumann entropy $S = -\text{Tr}_A (\rho_A \log \rho_A)$
- Local information gets scrambled throughout the system

Eigenstate Thermalization Hypothesis (ETH)

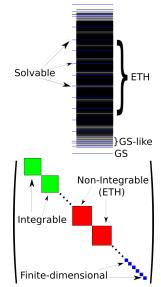
- A fundamental principle governing the thermalization of initial states in a quantum system
- Eigenstate Thermalization:¹ Eigenstates |E_n⟩ in the middle of the spectrum are thermal, entanglement entropy obeys a volume law S ~ log D ~ L
- Strong ETH: ALL eigenstates at finite energy density satisfy ETH *after resolving symmetries*
- Hamiltonians without an extensive number of conserved quantities believed to satisfy strong ETH
- Ergodicity breaking (violation of ETH) was believed to *only* occur in two types of systems
 - Integrable
 - Many-Body Localized



¹M. Srednicki Phys. Rev. E 50, 888 (1994)

Outstanding Questions for Eigenstates in Non-Integrable Systems

- Can ETH be violated in *some* states in the absence of an extensive number of conserved quantities?
- A paradigm of ergodicity breaking beyond integrability and MBL?
- Issues: no good numerical methods to address this problem
- Recent analytical progress has identified two new types of "weak" ergodicity breaking²
 - Quantum Many-Body Scars
 - Hilbert Space Fragmentation

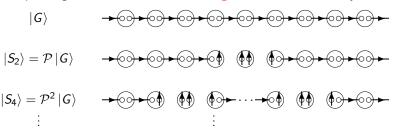


²M.Serbyn, D.A.Abanin, Z.Papic (2020); SM, B.A.Bernevig, N.Regnault (2021)

Weak Ergodicity Breaking: Quantum Many Body Scars

Quantum Many-Body Scars

- Non-integrable models with quasiparticle towers of eigenstates deep in the spectrum have been discovered³
- AKLT spin chain:⁴ $\mathcal{P} = \sum_{j} (-1)^{j} (S_{j}^{+})^{2}$, states with N quasiparticles dispersing with $k = \pi$ are exact eigenstates for finite system sizes L!

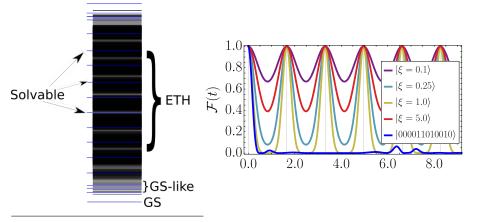


³SM, B.A.Bernevig, N.Regnault (2021)

⁴SM, S. Rachel, B. A. Bernevig, N. Regnault (2017)

Quantum Many-Body Scars

- States have entanglement entropy $S \sim \log L \implies$ Violation of Strong ETH!
- Equally spaced tower: leads to exact revivals from simple initial states⁵

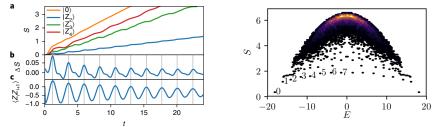


⁵T. ladecola, M. Schecter (2019)

Connections to Recent Experiments: PXP Model

• Rydberg experiment⁶ modelled by the constrained Hamiltonian

$$H_{PXP} = \sum_{n=1}^{L} P_{n-1}^{\circ} X_n P_{n+1}^{\circ} = |\circ \bullet \circ\rangle \langle \circ \circ \circ| + h.c.$$



- Initial charge density wave configuration $|\mathbb{Z}_2\rangle = |\circ \bullet \circ \cdots \bullet \circ \bullet\rangle$ shows anomalous dynamics⁷
- QMBS understood as a consequence of *approximately* disconnected low-entanglement subspace $\operatorname{span}_t \left\{ e^{-iH_{PXP}t} |\mathbb{Z}_2 \right\}^8$

- ⁷C.J. Turner et al. Nature Physics 14, 745-749 (2018)
- ⁸M. Serbyn, D.A.Abanin, Z. Papic (2020)

⁶Bernien et al. Nature 551, 579-584 (2017)

Weak Ergodicity Breaking: Hilbert Space Fragmentation

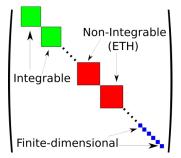
Hilbert Space Fragmentation

- What happens to ETH in constrained systems? Hard constraints typically arise in effective Hamiltonians
- Hilbert space fractures into *exponentially many* dynamically disconnected Krylov subspaces, $|R_i\rangle$ being product states

$$\mathcal{H} = \bigoplus_{i=1}^{K} \mathcal{K}(H, |R_i\rangle), \quad \mathcal{K}(H, |R\rangle) = \operatorname{span}_t \left\{ e^{-iHt} |R
angle
ight\}$$

- Different subspaces are not distinguished by obvious symmetry quantum numbers, can show vastly different properties!⁹
- Violation of conventional ETH due to block-diagonal structure <u>after resolving known symmetries</u>

⁹SM, A. Prem, R. Nandkishore, N. Regnault, B.A. Bernevig (2019)



Dipole-Moment Conserving Models

- Fragmentation *generically* occurs in one dimensional systems conserving dipole moment $(\sum_i jS_i^z \text{ with OBC})^{10,11}$
- Example: spin-1 dipole conserving Hamiltonian that implements the following rules $(H = \sum_{j} (S_{j-1}^{-}(S_{j}^{+})^2 S_{j+1}^{-} + h.c.))$

$$\begin{split} |+-0\rangle \leftrightarrow |0+-\rangle \,, \ |0-+\rangle \leftrightarrow |-+0\rangle \\ |+-+\rangle \leftrightarrow |0+0\rangle \,, \ |-+-\rangle \leftrightarrow |0-0\rangle \end{split}$$

• Exponentially many one-dimensional subspaces ("frozen" eigenstates)

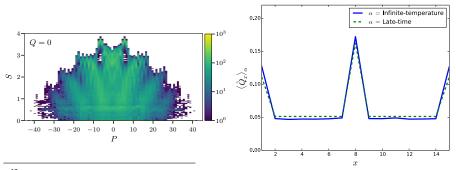
$$|++--\cdots++--\rangle, |0++0++\cdots++\rangle$$

• Subspaces with non-local conserved quantities, e.g. a product state $|0\cdots 0+0\cdots 0\rangle$ can only evolve to states with "string-order" $|0\cdots 0+0\cdots 0-0\cdots 0+\cdots 0\rangle$

¹⁰P. Sala, T. Rakovszky, R. Verresen, M. Knap, F. Pollmann (2019)
 ¹¹V. Khemani, M. Hermele, R. Nandkishore (2019)

Violation of conventional ETH

- Initial product states never thermalize w.r.t. the full Hilbert space^{12,13}
- Eigenstate entanglement entropy within in the blocks satisfy S ~ log D (S ~ L if D ~ exp(L), S ~ log L if D ~ L^α)
- Krylov-restricted ETH principle: **ETH** or its absence holds only within each subspace $\mathcal{K}(H, |R_i\rangle)^{14}$



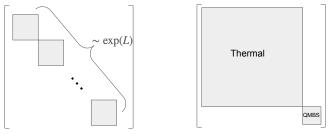
¹²P.Sala, T.Rakovszky, R.Verresen, M.Knap, F.Pollmann (2019)

¹³V.Khemani, M.Hermele, R.Nandkishore (2019)

¹⁴SM, A.Prem, R.Nandkishore, N.Regnault, B.A.Bernevig (2019)

Dynamically Disconnected Subspaces

• These phenomena of weak ergodicity breaking are essentially the existence of unexpected "dynamically disconnected subspaces" in the Hilbert space



- Basis? Product state basis \implies "classical" phenomenon (most of the fragmentation literature)
- Dynamically disconnected subspaces always exist in the presence of symmetries (usual quantum number sectors)

How do these sectors differ from symmetry sectors?

Symmetries in Quantum Many-Body Systems

 Conventional symmetries: usually on-site unitary representations of a group G

$$\hat{U}(g) = \hat{u}(g) \otimes \hat{u}(g) \otimes \cdots \otimes \hat{u}(g), \quad \text{e.g. } \hat{u}(g) = \begin{cases} e^{i\alpha Z} & \text{if } G = U(1) \\ \\ e^{i\vec{\alpha}\cdot\vec{\sigma}} & \text{if } G = SU(2) \end{cases}$$

- Conserved quantities are typically sums of local operators, e.g. total charge, number of domain walls, etc.
- Issue: These conserved quantities do not explain dynamically disconnected subspaces in QMBS or fragmentation
- Allow arbitrary commuting operators to be conserved quantities every finite-dimensional Hamiltonian is fragmented?!

 $[H, |E_n\rangle \langle E_n|] = 0 \implies$ exponentially many conserved quantities

What is an appropriate definition of a conserved quantity?¹⁵

¹⁵Similar problems exist in defining integrability in finite-dimensional systems: E.A.Yuzbashyan, B.S.Shastry (2013)

Commutant Algebras

Commutant algebras

- Key observation: Same fragmentation structure appears for entire classes of Hamiltonians { ∑_i J_jh_{j,j+1}}
- Natural to look for operators that commute with this entire family.

$$[\widehat{O}, \sum_{j} J_{j} h_{j,j+1}] = 0 \quad \forall \{J_{j}\}.$$

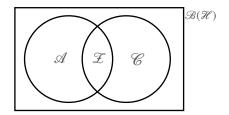
• Commutant Algebra C: algebra of operators \widehat{O} (not necessarily local) such that $[h_{j,j+1}, \widehat{O}] = 0 \quad \forall j$

$$\widehat{O}_1 \in \mathcal{C}, \ \widehat{O}_2 \in \mathcal{C} \implies \begin{cases} \alpha_1 \widehat{O}_1 + \alpha_2 \widehat{O}_2 \in \mathcal{C} \text{ for any } \alpha_1, \alpha_2 \in \mathbb{C} \\ \widehat{O}_1 \widehat{O}_2, \widehat{O}_2 \widehat{O}_1 \in \mathcal{C} \end{cases}$$

• C commutes with the full "bond algebra" A generated by $\{h_{j,j+1}\}$ $(A = \langle\!\langle \{h_{j,j+1}\} \rangle\!\rangle).$

Commutant Algebras

- *A* and *C* are unital †-closed (von Neumann) algebras
- They are centralizers of each other in the algebra of all operators on *H* (Double commutant theorem)



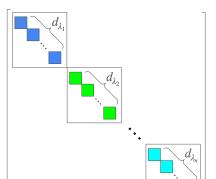
• Representation theory: There exists a basis in which operators $\hat{h}_{A} \in A$ and $\hat{h}_{C} \in C$ have the matrix representations

$$\widehat{h}_{\mathcal{A}} = igoplus_{\lambda} (M_{D_{\lambda}} \otimes \mathbb{1}_{d_{\lambda}}), \quad \widehat{h}_{\mathcal{C}} = igoplus_{\lambda} (\mathbb{1}_{D_{\lambda}} \otimes N_{d_{\lambda}})$$

- $\{D_{\lambda}\}$ and $\{d_{\lambda}\}$: dimensions of irreducible representations of \mathcal{A} and \mathcal{C} .
- \bullet Alternately: Basis in which all elements of ${\cal A}$ are maximally block diagonal

Dynamically Disconnected Subspaces

- Hamiltonian H in A, block diagonal form defines dynamically disconnected subspaces.
- For each λ: d_λ number of degenerate D_λ-dimensional Krylov subspaces.
- Number of Krylov subspaces $K = \sum_{\lambda} d_{\lambda}$, bounded using $\dim(\mathcal{C}) = \sum_{\lambda} d_{\lambda}^{2}$



 $\frac{1}{2}\log(\dim(\mathcal{C})) \leq \log K \leq \log(\dim(\mathcal{C}))$

$\log(\dim(\mathcal{C}))$	Example
$\sim {\cal O}(1)$	Discrete Global Symmetry
$\sim \log L$	Continuous Global Symmetry
\sim L	Fragmentation

Simple Examples: Abelian C

- Abelian $\mathcal{C} \implies d_{\lambda} = 1, \ \mathcal{K} = \dim(\mathcal{C})$
- Generic Hamiltonians $\sum_{j} J_{j} h_{j,j+1}$ with no symmetries

$$[h_{j,j+1},\widehat{O}] = 0 \implies \mathcal{C} = \{\mathbb{1}\}, \ \mathcal{K} = \dim(\mathcal{C}) = 1.$$

• Example: Ising models $H = \sum_{j=1}^{L} [J_j X_j X_{j+1} + h_j Z_j]$, solve for $[X_j X_{j+1}, \widehat{O}] = 0$ and $[Z_j, \widehat{O}] = 0$

$$\mathcal{C} = \operatorname{span}\{\mathbb{1}, \prod_j Z_j\} = \mathbb{C}[\mathbb{Z}_2], \quad \mathcal{K} = \dim(\mathcal{C}) = 2.$$

• Example: Spin- $\frac{1}{2}$ XX models $H = \sum_{j=1}^{L} [J_j(X_j X_{j+1} + Y_j Y_{j+1}) + h_j Z_j]$, solve for $[X_j X_{j+1} + Y_j Y_{j+1}, \widehat{O}] = 0$ and $[Z_j, \widehat{O}] = 0$

$$\begin{split} \mathcal{C} = \langle\!\langle \widehat{Z} \rangle\!\rangle = \mathsf{span}\{\mathbb{1}, \widehat{Z}, (\widehat{Z})^2, \cdots, (\widehat{Z})^L\}, \ \ \mathcal{K} = \mathsf{dim}(\mathcal{C}) = L + 1 \\ \widehat{Z} = \sum_j Z_j \end{split}$$

Simple Examples: Non-Abelian C

• Example: spin- $\frac{1}{2}$ Heisenberg model $H = \sum_{j} J_{j} \vec{S}_{j} \cdot \vec{S}_{j+1}, \ \mathcal{A} = \langle\!\langle \vec{S}_{j} \cdot \vec{S}_{j+1} \rangle\!\rangle = \mathbb{C}[S_{L}]$

$$\begin{split} [\vec{S}_j \cdot \vec{S}_{j+1}, \hat{X}] &= 0, \ [\vec{S}_j \cdot \vec{S}_{j+1}, \hat{Y}] = 0, \ [\vec{S}_j \cdot \vec{S}_{j+1}, \hat{Z}] = 0 \ \forall \ j \\ \mathcal{C} &= \langle\!\langle \hat{X}, \hat{Y}, \hat{Z} \rangle\!\rangle = \operatorname{span}_{\alpha, \beta, \gamma} \{ (\hat{X})^{\alpha} (\hat{Y})^{\beta} (\hat{Z})^{\gamma} \} = U(\mathfrak{su}(2)) \end{split}$$

- Block-diagonal form (Schur-Weyl duality): $0 \le \lambda \le L/2$: S^2 eigenvalues, $d_{\lambda} = 2\lambda + 1$: irreps of $\mathfrak{su}(2)$ D_{λ} : irreps of S_L
- Double Commutant Theorem: Any SU(2)-symmetric operator is within the algebra $\mathcal{A} = \langle\!\langle \{\vec{S}_j \cdot \vec{S}_{j+1}\} \rangle\!\rangle$.

In these simple cases, the full commutant is generated by "conventional" conserved quantities, but not always the case

¹⁵SM, O. I. Motrunich (2021)

Hilbert space fragmentation

"Classical" fragmentation: $t - J_z$ model

• Consider the $t - J_z$ Hamiltonian: hopping with two species of particles $|\uparrow 0\rangle \leftrightarrow |0\uparrow\rangle$, $|\downarrow 0\rangle \leftrightarrow |0\downarrow\rangle$

$$egin{aligned} \mathcal{H}_{t-J_z} &\equiv \sum\limits_{j} (-t_{j,j+1} \sum\limits_{\sigma \in \{\uparrow,\downarrow\}} \left(ilde{c}_{i,\sigma} ilde{c}_{j,\sigma}^{\dagger} + h.c.
ight) + J_{j,j+1}^z S_i^z S_j^z) \ & ilde{c}_{j,\sigma} &\equiv c_{j,\sigma} \left(1 - c_{j,-\sigma}^{\dagger} c_{j,-\sigma}
ight) \end{aligned}$$

- Has two U(1) symmetries $N^{\uparrow}\equiv\sum_{j}N_{j}^{\uparrow}$ and $N^{\downarrow}\equiv\sum_{j}N_{j}^{\downarrow}$
- Full pattern of spins (\uparrow or \downarrow) preserved in one dimension with OBC

$$|0\uparrow\downarrow 0\downarrow\uparrow 0\rangle \longleftrightarrow |0\uparrow\uparrow 0\downarrow\downarrow 0\rangle$$

• Fragmentation in the product state basis, number of Krylov subspaces $K = \sum_{j=0}^{L} 2^j = 2^{L+1} - 1.$

"Classical" fragmentation: $t - J_z$ model

• Local operators N_j^{\uparrow} and N_j^{\downarrow} satisfy the relations

 $[h_{j,j+1}, N_j^{\alpha} + N_{j+1}^{\alpha}] = 0, \quad [h_{j,j+1}, N_j^{\alpha} N_{j+1}^{\beta}] = 0, \quad \alpha, \beta \in \{\uparrow, \downarrow\}$

• The full commutant algebra C can be explicitly constructed, $\dim(C) = 2^{L+1} - 1 \sim \exp(L)$

$$N^{\sigma_1\sigma_2\cdots\sigma_k} = \sum_{j_1 < j_2 < \cdots < j_k} N_{j_1}^{\sigma_1} N_{j_2}^{\sigma_2} \cdots N_{j_k}^{\sigma_k}, \ \sigma_j \in \{\uparrow,\downarrow\}$$

- Most of these are functionally independent from the conventional conserved quantities N^{\uparrow} and $N^{\downarrow} \implies$ new dynamically disconnected subspaces
- Similar construction works for dipole-conserving models, exact results in some cases (e.g. dim $(C) \sim (1 + \sqrt{2})^L$ for range-3 spin-1 model)
- \bullet Classical fragmentation: All operators in ${\mathcal C}$ are diagonal in the product state basis

"Quantum" fragmentation: Spin-1 biquadratic model

- Disordered SU(3)-symmetric spin-1 "ferromagnetic" biquadratic model $H = \sum_{j=1}^{L} J_j (\vec{S}_j \cdot \vec{S}_{j+1})^2$, ground state degeneracy grows exponentially with $L \implies$ hidden symmetries
- Bond algebra $\mathcal{A} = \langle\!\langle \vec{S_j} \cdot \vec{S_{j+1}} \rangle\!\rangle$ is the Temperley-Lieb Algebra $TL_L(q = \frac{3+\sqrt{5}}{2})$
- Commutant C can be explicitly constructed,¹⁶ not generated by local operators, dim(C) ~ exp(L)

$$[(\vec{S_{j}}\cdot\vec{S_{j+1}})^2,(\textit{M}^{\alpha}_{\beta})_j+(\textit{M}^{\alpha}_{\beta})_{j+1}]=0, \quad [(\vec{S_{j}}\cdot\vec{S_{j+1}})^2,(\textit{M}^{\alpha}_{\beta})_j(\textit{M}^{\gamma}_{\delta})_{j+1}]=0,$$

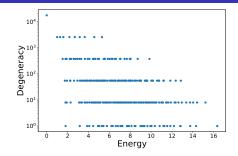
$$\mathcal{M}_{eta_1eta_2\cdotseta_k}^{lpha_1lpha_2\cdotslpha_k} = \sum_{j_1 < j_2 < \cdots < j_k} (\mathcal{M}_{eta_1}^{lpha_1})_{j_1} (\mathcal{M}_{eta_2}^{lpha_2})_{j_2} \cdots (\mathcal{M}_{eta_k}^{lpha_k})_{j_k}.$$

• Quantum fragmentation: Block-diagonal structure of the Hamiltonian understood in the spin-1 singlet basis, not the product state basis

¹⁶N. Read, H. Saleur (2007)

"Quantum" fragmentation: Spin-1 biquadratic model

- Non-abelian C leads to large degeneracies in the spectrum
- Violates conventional ETH if only the SU(3) symmetry is resolved



 Hamiltonian restricted to a Krylov subspace is the XXZ model with SU(2)_q symmetry

$$\sum_{j=1}^{L-1} J_j \left[X_j X_{j+1} + Y_j Y_{j+1} + \frac{q+q^{-1}}{2} Z_j Z_{j+1} + \frac{q-q^{-1}}{4} \left(Z_j - Z_{j+1} \right) \right]$$

• Satisfies Krylov-Restricted ETH¹⁷ (equivalent to resolving non-local conserved quantities)

¹⁷SM, A. Prem, R. Nandkishore, N. Regnault, B. A. Bernevig (2019)

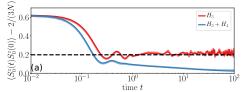
Application: Mazur bounds

• Autocorrelation functions of local operators can be bounded using the "conserved quantities" $\{Q_{\alpha}\}$ of the system

$$\lim_{ au
ightarrow\infty}rac{1}{ au}\int_{0}^{ au}dt\,\,\langle A(t)A(0)
angle\geq\sum_{lpha}rac{(A|Q_{lpha})\,(Q_{lpha}|A)}{(Q_{lpha}|Q_{lpha})},\,\,\,(A|B):=rac{1}{D} ext{Tr}(A^{\dagger}B)$$

- "Measure" of operator spreading, expected to decay to 0 as $L \to \infty$ (e.g., as $\sim 1/L$ for U(1)-symmetric systems)
- Fragmentation associated with anomalous saturation of autocorrelation functions¹⁸
- Puzzles resolved if all the operators in the commutant are incorporated in the Mazur bound¹⁹

¹⁸P.Sala, T.Rakovszky, R.Verresen, M.Knap, F.Pollmann (2019)
 ¹⁹SM, O. I. Motrunich (2021)



Summary

- Commutant algebras natural language for dynamically disconnected subspaces, gives a concrete definition for fragmentation dim(C) ~ exp(L)
- Conventional symmetries: C generated by conventional conserved quantities, dim(C) ~ O(1) or dim(C) ~ poly(L)
- "Classical" fragmentation in the product state basis v/s "Quantum" fragmentation in an entangled basis
- Systematic consideration explains numerical observations of autocorrelation functions/operator spreading, leads to new Mazur bounds

Details in:

SM, O. I. Motrunich, arXiv: 2108.10324

