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Problem: MFE folding with pseudoknots, from sequence
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textbook problem: folding from sequence
without pseudo-knots: RnaFold, mfold, RNAstructure...
with PK and a general energy model: NP-hard [Sheikh et al., 2012, Lyngsg, 2004]
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But a variety of polynomial DP algorithms developped for specific cases: PKnots,
NUPACK, gfold, CCJ, Knotty...
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State of the art: DP algorithms for tractable cases

Tool Reference space comp. | time comp. restriction
Pknots-RE [Rivas and Eddy, 1999] o(n*) 0(n®) “one-hole structures”
NUPACK [Dirks and Pierce, 2003] O(n%) o(n®) “2 interleaved helices”
gfold [Reidys et al., 2011] O(n%) O(n®) genus <1
ccJ [Chen et al., 2009] O(n%) o(n®) “3 groups of bands”
Knotty [Jabbari et al., 2018] o(n®+ 2) o(n®) “CCJ-type + optims”
Pknots—-RG | [Reeder and Giegerich, 2004] 0o(n?) Oo(n*) “simple recursive PK"”

> all based on DP tables indexed by positions on the sequence

» designed either with a specific target structure family or a complexity
constraint in mind
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Example of recursive diagram and overall idea
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Figure: Examples of DP recursion rules from [Jabbari et al., 2018] and [Reidys et al., 2011]

» Our contribution: a method for, given an input PK pattern, automatically
deriving such rules while minimizing the number of used indices
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Overall pipeline

PK pattern(s) of interest

abstracted as

m
fatgraph(s)

S D —

algo for folding - O(ntv+1)
or partition function computation

/;’;’,22%3:‘ treewidth solver
i

(or heuristic) o
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minimal expansion

» fatgraph: describes a family of structures following a PK pattern
» 1 band = 1 helix with arbitrary length/bulges

tree decomposition
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Example: kissing hairpins

» Input, this fatgraph: m (&

» OQutput of our program, these equations:

possible expansions:

A

A= min ( B [a,d|d, !/])

' / o
B [0, |’ g) = min B [a,d—1|d',g], ifd—1,¢ {a,d g} @' [d,glb, ] = min C [dg—1b,c], §|>_,,_ 1, ¢ {d,b,c}
Bla+1,d-1|d,g]+AG(a,d) if {a+1,d=1}N{d g} =0 Cld+1,9—1[b,c] + AG(d,g) if{d+1,9—1}N{bc} =0
Bla+1,dd,g), ifat+1¢{dd, g} Cld+1,glb.c, ifd+1¢{g,b.c}
’ / .
- )IB [a,d 1|, g), ifd—1,¢ {a,d g} i€ d g~ 1fb.d], ifg—1,¢ {dbc}
B a,d|d ) = € [d. g|b, ] = min § .
[a,d|d’, g] = min Bla+1,d—1|d g + AG(a,d) if {a+1,d -1} {d,g} =0, Cld+1,9=1b,d + AG(d.g) if {d+1,9=1}N{bc} =0,

g
&'(d gla.d) Cg'bre—1,dg+1-1]

» Qutput equations solve folding problem restricted to the family of structures
specified by the fatgraph
» can support stacking and interior loop/bulge energy terms

» allow for recursive substructures



Inner engine: tree decompositions
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representative

treewidth solver

(or heuristic) >

fatgraph(s)

minimal expansion
| DP equations |<—

tree decomposition

» treewidth: integer quantifying tree-likeness of a graph ///5\\\
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Figure: RNA structure

» tree decomposition: gives you the tree structure /”
» we apply it to a representative fatgraph expansion

» essentially gives the parse tree of the DP
graph

™
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Tree decomposition: ~ graph parsing tree

Given a graph, tree of bags of vertices following:
> for each vertex: represented in connected set of bags
> for each edge, there is a bag containing both ends
> width: size of biggest bag minus one

best possible width of
a valid tree dec. tree secondary structure twister ribozyme
FtwE tw=2 tw=5

» hard to compute in general but good solvers/heuristics
» Small on RNA structures
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Parenthesis: treewidth values of RNAs

EE exact results EEm exact results
heuristic results (harder instances) heuristic results (harder instances)
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Figure: Canonical interactions only Figure: Inclucing non-canonical interactions

» Histograms of treewidth values over the PDB database (graph extraction with
DSSR)



Structural results: recovering typical recursion strategies

Main theorem

Give an helix H of length > 5 in G, any tree decomposition of G can be modified
to represent H in one of two canonical ways

“diagonal” case “clique” case
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Structural results: recovering typical recursion strategies

Main theorem

Give an helix H of length > 5 in G, any tree decomposition of G can be modified

to represent H in one of two canonical ways

“diagonal” case

T

. {j. k}US
m

I_ﬂl
G

“clique” case

i k 1

ilJk

» + (in our paper) an algorithm to re-write tree decompositions for canonical

representation
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DP equations from tree decomposition

e

example fatgraph

tree decomposition

-

J

canonical tree dec.

» One DP table per bag/helix

» Indices of the table: intersection with parent
bag

» Indices not in parent: marginalization

—_— Al :(B[i,m] + Cli,n])

C

for each table —+ number of indices < treewidth
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DP equations from tree decomposition

(R

example fatgraph B - W b1k
7a,21,1}i,r;,k( la, g, ,]]+-[g, -1,5,k—1])

B[a,g,h,]] = gl}g(.e>f7 17h72 - 1] +C[(l,8|f7g,l,]])

Cla+1,elf,g,4,7],
Cla,e —1|f,g,i,4],
C[a +1le— 1|f’g7i:j] +AG(C"’ 5)7
Dla,e+1,f,9,i,]]

Dlb,d. f.g.i.j] = min (Cgle.d — 1. f.9 — 1]+ Clbsc — 1,7, ~ 1))

Claelf,g,i,j] = min

tree decomposition

. J

canonical tree dec.
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Helix equations (for simplicity: ambiguous, Nussinov)

diag case: only one end given:

D[i +1,1|S]
D[i, l|S] = min D[I.’I_ 1/5] .
D[i+ 1,1 —1|S] + score(i, I)
> ce chitdren Melle C{i, 1} U S] i k 1

“diagonal” case

clique case: when all 4 extremities are constrained:

C&[I + 17./7 ka /]

CXl[iLjakal_l] i ] k 1
Cg[l' + 1,_j, k, | — 1] + score(i,j) “clique” case
0if (1,1) = (j, k)

Cxli, j, k, I] = min
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Example: kissing hairpins - treewidth=4

S

A= min (1B [e.did.))

1B/ (a.d~1]d"g].
Blla+1,d-1|d,g] + AG(a,d)
[Blla+1.dd,g),

1B [a.d~1]d.g).
Blla+1,d-1|d,g] + AG(a,d)
€[, gla,d)

1619~ 11b.d),
1€ld+1,9-1]b,c] + AG(d,g)
1€l[d+1,glb,cl,

16'(d.g~ 1]b.c].
1C[d+ 1.9 1]b.d + AG(d.g)

Ci e~ 1dg+1-1]

1B/ a.d|d".g) = min {

B [a,d|d', g] = min

.’ [d. g|b, ¢] = min {

becd g 1€ [d.g|b.c|] = min

B

TSN
Wi Wi

TS

ifd—1,¢ {a,dg}
if {a+1,d—1}n{d\g} =0
ifa+1¢{dd g}
ifd—1,¢ {a,d', g}
if {a+1,d— 1} n{d’, g} =0,

ifg—1,¢{d.b.c}
if{d+1,9g—-1}N{b.c} =0

ifd+1¢{g,bc}

ifg—1,¢{d.b.c}
if {d+ 1,91} N{b.c} =0,



More examples

Name fatgraph | treewidth | non-Turner, non-recursive | Turner recursive

H-type A7) 4 O(n%) O(n%)
kissing hairpins | @74z 4 O(n*) O(n%)

‘L RN | 5 O(n®) o(n®)

"M R EN 5 0(n®) 0(n®)
4-clique AT 5 O(n®) 0O(n®)
5-clique (TR 5 O(n®) O(n®)
5-chain mﬂ 6 O(n") O(n")

> first 4 examples: the 4 “shadows” used in gfold [Reidys et al., 2011]
— we recover the same complexity automatically
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Features and limitations

P> Can take as input a finite number of fatgraphs, with expansions of these fatgraphs
recursively inserted.

» Regular secondary structure can also be inserted recursively

» Energy model: depends on what is put in the equations of the two helix cases. —
stacking terms and bulges/interior-loop with same complexity
cost [Lyngsget al., 1999].

» Non-ambiguous: partition function computations
Limitations:

» Conformational space of some algorithms ([Rivas and Eddy, 1999],
[Dirks and Pierce, 2003]) cannot be described with finite number of fatgraphs



Conclusion and next steps

P Interestingly — we recover typical DP strategies from graph theory analysis

> Algorithm generation: 20 seconds on my laptop to generate all examples shown
Future steps

» Generate code directly (and not just latex)

» Complexity is “minimized” but could we prove it is optimal in some sense?

P In general: my PhD — using treewidth to include pseudoknots into algorithms
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Conclusion and next steps

P Interestingly — we recover typical DP strategies from graph theory analysis

> Algorithm generation: 20 seconds on my laptop to generate all examples shown
Future steps

» Generate code directly (and not just latex)

» Complexity is “minimized” but could we prove it is optimal in some sense?

P In general: my PhD — using treewidth to include pseudoknots into algorithms

Thank you
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