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Thermodynamic vs. Kinetic Folding

Equilibrium properties for RNA secondary strutcures can be
calculated efficiently
But what about dynamics?

® On what time scale is equilibrium reached?
® How fast/slow is re-folding between dissimilar structures?

® What structures are populated initially?

-7.9 kcal/mol — -8.0 kcal/mol
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Folding Dynamics as Markov Process
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® Time evolution determined by master equation:

dP,'(t)
e > [Pi(t)ki — Pi(t)ky].
J#i
® Rate model must satisfy detailed balance
energies from the Turner model

® guarantees correct convergence to equilibrium
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Strategies for Predicting Folding Kinetics

® Folding trajectories via Monte-Carlo simulation
® Time-consuming
® Need statistics over many trajectories
® Non-trivial to analyze and interpret
® kinfold, KineFold

® (Coarse graining the energy landscape

Identify representative structures (local minima)

® Assign transition rates

® Either exact enumeration (barriers)

using heuristics (RNAlocmin, RNAxplorer)

Solve Py(t) on coarse grained landscape (treeekin)
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Coarse Graining the folding dynamics

For a reduced description we need
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® macro-states form a partition
of full configuration space

Energy

® macro-states defined via
gradient walks

—- barrier 2,3
- gradient walk
 saddle point

e cffective transition rates
between macro states

Conformation space

Transition rates e.g. from Arrhenius rule rg, = exp (—(Ega — Ga)/RT).
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Workflow for Folding Kinetics
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Sampling Representative Structures

® Exhaustive enumeration
short sequences only

® Boltzmann sampling
lot's of samples close to MFE but poor diversity

nonredundant sampling (RNAsubopt)
sampling only local minima (RNAlocopt)
sampling with temperature control (RNAlocmin)
sampling with guiding potentials (RNAxplorer)

7/21



RNAxplorer Sampling

Boltzmann sampling produces structure s with
p(s) = L exp(—E(s)/RT)
@ Set energy function E = Eqyrmer
® Boltzmann sampling from E
© ldentify most overrepresented structure §
O Set Enew = Egla + Eguide(8)
©® Goto 2

Eguide penalizes any structures similar to §
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RNAxplorer Guiding Potentials

Two choices of guiding potential:

® penalize all base pairs present in §

® penalize by distance from §

Eguide(s, 8) = a- dgp(s, 5)

Both guiding potentials implemented as soft constraints in

ViennaRNA.
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Base pair distance to MFE
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Comparison with RNA2DFold

2D projection of the SV11 energy landscape
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Comparison with RNA2DFold
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Folding during Transcription

All RNA structures are affected by co-transcriptional folding:
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® RNA is transcribed at a rate of only 25-50 nucleotides per second
® The nascent chain starts folding as soon as its leaves the polymerase
® Stems formed early on may be too stable to refold later

e (Co-transcriptional folding may drive the folding process to a
well-defined folded state (possibly different from the MFE)

® An energy barrier of 5kcal/mol is sufficient to prevent refolding
during extension

12/21



DrTransformer: Heuristic Co-transcriptional Folding

® Simulate a small network consisting only of the most relevant
structural states

® Evolve network as RNA grows
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DrTransformer: “Breathing” neighbors

Which new structures should be added after an elongation step?

® Elongation can only effect the surroundings of the exterior loop
® Partially unfold all helices that protrude from exterior loop

® Use constrained folding to re-fold exterior loop surroundings

14 /21



DrTransformer: Connecting States

e Connect structures based on distance.
Add an edge between x and y, if there is no i such that

max{d(x,),d(i,y)} < d(x,y)
If edges exist between x and /i, and i and y, add a shortcut, if
d(x, 1)+ d(i,y) > d(x,y).

® Estimate saddle points using findpath

® Add addditional minima encountered along paths
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DrTransformer: Coarse Graining and Pruning

Runtime depends critically on the number of structure states
Keep the number of active structure states small by

® Coarse graining:
remove all shallow local minima with, i.e. that can reach other
minima via a barrier < ¢ &~ 1 kcal/mol

® Pruning:
After each simulation step, remove unoccupied states
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DrTransformer Runtime
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Test on an artificial sequence

A bistable sequence with hierarchically overlapping helices
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Comparison with co-transcriptional SHAPE-seq

Watters et al, Nat. Struct. Biol. 2016
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Is RNA structure determined by co-transcriptional folding?

® Some RNAs will be trapped during co-transcriptional folding
can't reach their MFE within reasonable time

® How often does this happen?

0.04 seconds after transcription
60 seconds after transcription
60 minutes after transcription
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