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Thermodynamic vs. Kinetic Folding
Equilibrium properties for RNA secondary strutcures can be
calculated efficiently
But what about dynamics?
• On what time scale is equilibrium reached?
• How fast/slow is re-folding between dissimilar structures?
• What structures are populated initially?
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Folding Dynamics as Markov Process
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• Time evolution determined by master equation:

dPi (t)
dt

=
∑
j 6=i

[Pj(t)kji − Pi (t)kij ].

• Rate model must satisfy detailed balance
energies from the Turner model
• guarantees correct convergence to equilibrium
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Strategies for Predicting Folding Kinetics

• Folding trajectories via Monte-Carlo simulation
• Time-consuming
• Need statistics over many trajectories
• Non-trivial to analyze and interpret
• kinfold, KineFold

• Coarse graining the energy landscape
• Identify representative structures (local minima)
• Assign transition rates
• Either exact enumeration (barriers)

using heuristics (RNAlocmin, RNAxplorer)
• Solve Px(t) on coarse grained landscape (treeekin)
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Coarse Graining the folding dynamics

For a reduced description we need
• macro-states form a partition

of full configuration space
• macro-states defined via

gradient walks
• effective transition rates

between macro states

Transition rates e.g. from Arrhenius rule rβα = exp
(
−(E∗

βα − Gα)/RT
)

.
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Workflow for Folding Kinetics

Structure
sampling
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Sampling Representative Structures

• Exhaustive enumeration
short sequences only
• Boltzmann sampling

lot’s of samples close to MFE but poor diversity
• nonredundant sampling (RNAsubopt)
• sampling only local minima (RNAlocopt)
• sampling with temperature control (RNAlocmin)
• sampling with guiding potentials (RNAxplorer)
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RNAxplorer Sampling

Boltzmann sampling produces structure s with
p(s) = 1

Z exp (−E (s)/RT )

1 Set energy function E = ETurner

2 Boltzmann sampling from E

3 Identify most overrepresented structure ŝ

4 Set Enew = Eold + Eguide(ŝ)
5 Goto 2

Eguide penalizes any structures similar to ŝ

8 / 21



RNAxplorer Guiding Potentials

Two choices of guiding potential:
• penalize all base pairs present in ŝ

Eguide(s, ŝ) = α · |s ∩ ŝ|
|ŝ|

• penalize by distance from ŝ

Eguide(s, ŝ) = α · dBP(s, ŝ)

Both guiding potentials implemented as soft constraints in
ViennaRNA.
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Comparison with RNA2DFold

2D projection of the SV11 energy landscape
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Comparison with RNA2DFold
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Folding during Transcription

All RNA structures are affected by co-transcriptional folding:

• RNA is transcribed at a rate of only 25–50 nucleotides per second
• The nascent chain starts folding as soon as its leaves the polymerase
• Stems formed early on may be too stable to refold later
• Co-transcriptional folding may drive the folding process to a

well-defined folded state (possibly different from the MFE)
• An energy barrier of 5kcal/mol is sufficient to prevent refolding

during extension

12 / 21



DrTransformer: Heuristic Co-transcriptional Folding

• Simulate a small network consisting only of the most relevant
structural states

• Evolve network as RNA grows

coarse graining
to representative

local minima

sequence elongation 
& network expansion

deterministic simulation
of folding kinetics

pruning of 

unoccupied

structures
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DrTransformer: “Breathing” neighbors

Which new structures should be added after an elongation step?
• Elongation can only effect the surroundings of the exterior loop
• Partially unfold all helices that protrude from exterior loop
• Use constrained folding to re-fold exterior loop surroundings

p
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c1
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DrTransformer: Connecting States

• Connect structures based on distance.
Add an edge between x and y , if there is no i such that

max{d(x , i), d(i , y)} < d(x , y)

If edges exist between x and i , and i and y , add a shortcut, if

d(x , i) + d(i , y) > d(x , y) .

• Estimate saddle points using findpath
• Add addditional minima encountered along paths
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DrTransformer: Coarse Graining and Pruning

Runtime depends critically on the number of structure states
Keep the number of active structure states small by
• Coarse graining:

remove all shallow local minima with, i.e. that can reach other
minima via a barrier < δ ≈ 1 kcal/mol

• Pruning:
After each simulation step, remove unoccupied states
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DrTransformer Runtime
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Test on an artificial sequence
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Comparison with co-transcriptional SHAPE-seq
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Is RNA structure determined by co-transcriptional folding?
• Some RNAs will be trapped during co-transcriptional folding

can’t reach their MFE within reasonable time
• How often does this happen?
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