Finding entanglements of RNA structural elements
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Introduction
e Entanglements of structural elements
are motifs / phenomena found in RNA
structures
e In some cases they are actually desired
(i.e., functional), in others they are
likely a modeller mistake or a
computational artifact
o We:
o defined these motifs and their
classification, | .
o designed algorithms to find them, ' ] n&
o evaluated the findings on different = -
datasets, and
o prepared a user-friendly application S, B




Disclaimer: protein knots

Probabilistic Knotoid Deterministic knot Probabilistic knot Cysteine
knot including disulfide including disulfide "knot"

KnotProt 2.0: A Database of Proteins with Knots and Other Entangled Structures. P.
Dabrowski-Tumanski et al. Nucleic Acids Research. 2019. 47(D1):D367-D375




RNA structure

e We look at RNA structures as a

composition of structural elements:
o Double strands / Duplexes / Stems

Hairpin loops

Bulges

Internal loops

Multiloops / N-way junctions

Single strands

Pseudoknots
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RNAspider idea




RNAspider idea




Open and closed elements
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g (closed)
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Polygons and meshes

e RNAspider constructs a polygonal
chain by connecting selected atoms
and pseudoatoms (geometrical centers
of base pairs)

e For closed elements, this polygonal
chain will reach back to the first point

e This allows to fill the closed area with
polygon mesh via triangulation




Polygons and meshes

e We employ Moller-Trumbore
algorithm to detect intersections
between triangles and lines sections
(fragments of the polygonal chain)

e This allows to distinguish between
punctured and puncturing structural
element

e This also provides exact 3D coordinates
of the point of intersection







Entanglements classification
A

L&L




Entanglements classification
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1. Input RNA 3D structure model

2. Extract the secondary structure
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3. Divide input 3D structure into structure elements
based on the 2D topology

4. For each encircled 3D structure element, perform the
triangulation of its inner area

5. Apply the segment intersection algorithm to every
triangle of the polygon mesh. Detect punctures
and identify entanglements.

6. Output the list of entanglements with the classification
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Entanglements in the predicted models

We decided to check all available RNA-Puzzles 3D structures for the presence of
entangled structural elements

We tested 1017 unique RNA 3D structures (both models and targets)

We found entanglements in 138 instances (137 models and 1 target: PZ18, PDB 5TPY,
xrRNA from Zika virus)

Most entangled models contained just one entanglement (usually of lasso topology)
All together, we found 201 entanglements - 165 lassos and 36 interlaces
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Puzzle Length RNA type Ent. models Entanglements

PZ17 62 Pistol ribozyme 35 /105 1xL&L 32xL(S) 9xL(D) 8xL(L)

PZ24 112, Viral non-coding RNA 19/ 88 2xL&L 3xD&L 10xL(S) 9xL(D) 3xL(L)
PZ1s 68 Hammerhead ribozyme 17/ 70 10xL&L 5xL(S) 14xL(D) 1xL(L)




A) 7th position according to
RMSD in PZ17 (Pistol
ribozyme), L(S)
entanglement

B) 43rd position according
to RMSD in PZ13 (ZTP
riboswitch), L&L
entanglement

C) 3rd position according to
RMSD in PZs
(lariat-capping
ribozyme), L&L, L&D,
2xL(D)
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Entanglements in the PDB

e We also decided to analyze all available 5 804 RNA 3D structures solved experimentally
e Interestingly, 11 entries contained overlapping/clashing atoms so our tool reported
insane amounts of entanglements

e From the remaining cases, we found 120 primary entanglements and 3 308
higher-order ones






RNAspider results (order 0 only)
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Knot-like fold

e Exoribonuclease-resistant RNAs (xrRNAs) are found in viruses — so far found in
flaviviruses (dengue, yellow fever, West Nile, Zika) and in SARS-CoV-2 FSE

e Their structure has properties which protects them from being cut by the enzyme

e It turns out, xrRNAs have a higher-order entanglement (in the literature named a
knot-like fold or a ring-like architecture)






Summary

e Biological molecules may form knots (proteins) or entanglements / knot-like folds
(RNAs)

The latter are defined on structural elements (loops, dinucleotide steps and single
strands) where some are punctured / intersected by others

Some entanglements of structural elements are functional

Others are probably artifacts of software processing

RNAspider is the first and only tool to find and classify them
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