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In vitro selection: a practical viewpoint and some issues

Selection is a fundamental biological process, at the core of Darwinian evolution.
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In vitro selection: a practical viewpoint and some issues

Sequences v Counts Counts Counts
(Round 1) (Round 2) (Round 3)
AUCCGU
UGGCAA... 1600 400 100
GCUAAG... 1 2 4
GCCUAU... 10 5 12
C.(v)

Relative Enrichment RE.(v,r-1—r)= proxy for (exp) fitness

Ca)

* Sampling in sequence space is generally very sparse, dependent on initial library

e Counts may be unreliable (biases in sub-sampling e.g. for small numbers,
in amplification, sequencing errors ...)

* Relationship between fitness and sequence?



Selection: a practical viewpoint and some issues

Basic = Existence of sequence-to-fitness function

Assumptions ® R.E.is exponentially increasing with fitness (if biases are avoided)

Fithess F

90O 29 ® —® > sequences V

Can be inferred by unsupervised methods, [Representations]

such as restricted Boltzmann machines
(RBM), variational auto-encoders (VAE), ... ' "'

[ Data configurations ]

Objectives: Build scoring model,
Understand key features in data (interpretable representations ...)

Generate new « data », possibly with desired features




Restricted Boltzmann Machines

* Graphical model constituted by two sets of
random variables that are coupled together.

log P(v,h) = Egi (vl.)+2ww (vi)hﬂ - YU, (h)

Representation/latent layer

* Marginal distribution: P(V)=fdh P(v,h)

Data layer

e Joint distribution of v,h define

log P(v), logP(h|v), logP(v|h)

~ \

maximized over Extract representation Design data from
data set from data representation



Why RBM?

= Simple(st) generative model implementing the data-representation duality



Why RBM?

= Simple(st) generative model implementing the data-representation duality

=  Competitive with deeper architectures in some relevant situations

o Not all applications are supported by huge data sets ...

Analysis of T Cell Receptors (TCR) populations in patients
suffering from pancreatic tumors

Tumor cell

(o) -

immuno-
editing ?

=
=

Luzka et al.,

Neoantigen quality predicts immunoediting and
clonal evolution in pancreatic cancer survivors,
Nature 2022



Why RBM?
= Simple(st) generative model implementing the data-representation duality
=  Competitive with deeper architectures in some relevant situations
o Not all applications are supported by huge data sets ...

o No ad hoc assumption .20 potential v
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Why RBM?

= Simple(st) generative model implementing the data-representation duality

=  Competitive with deeper architectures in some relevant situations

©)

Not all applications are supported by huge data sets ...

No ad hoc assumption on the distribution of latent
variables (potentials U are learned from data) # VAE

Interpretable (under some appropriate regularization conditions)

1. Sparsity of representations A
Performance
2. Sparsity of weights Vs.
Interpretability
3. Disentanglement of representations based on Trade-off
annotated data v

Fernandez de Cossio Diaz, Cocco, RM,
arxiv:2206.11600, 2022



Why RBM?
= Simple(st) generative model implementing the data-representation duality
=  Competitive with deeper architectures in some relevant situations
o Not all applications are supported by huge data sets ...

o No ad hoc assumption on the distribution of latent
variables (potentials U are learned from data) # VAE

o Interpretable (under some appropriate regularization conditions)
= Appealing from a statistical mechanics point of view = deeply related to the
Hopfield model (1982)

Analytical understanding of « phases » in the hyperparameter space

Review by Decelle, Furtlehner 2020



Two applications

> to RNA riboswitches:

Talk by J. Fernandez de Cossio Diaz in the « RNA Design » session later this week

» to SELEX experiments for the design of DNA aptamers binding to thrombin

:e}ChemPubSoc . CHEMBIOCHEM
- Europe DOI: 10.1002/cbic.201900265 Full Papers
Thrombin Very Important Paper
. . B DNA-Nanoscaffold-Assisted Selection of Femtomolar
Fibrinogen - Fibrin @ Bivalent Human a-Thrombin Aptamers with Potent
(soluble) (-> protein network) Anticoagulant Activity

Yu Zhou, Xiaodong Qi, Yan Liu, Fei Zhang,* and Hao Yan*"! (2019)



Fitness and design of aptamers from SELEX data

Design of DNA aptamers that inhibit the coagulant activity of Thrombin

Fitness: Binding affinity to thrombin
s

Non
Binders

sequence space

(10%% seqs)
Initial set of 101> random seqs of 20 nt for each loop

ATAGCTGATGAGCGCTACAC
ACGTTAGCTGTCGATAATGC

Zhou et al, ChemBioChem 2019



Fitness and design of aptamers from SELEX data

Fitness: Binding affinity to thrombin
s

Sampling
10° Seqs Good
=% Binders
Non
Binders

sequence space

Zhou et al, ChemBioChem 2019



Fitness and design of aptamers from SELEX data

Fitness: Binding affinity to thrombin

4 ThAD
Excellent
Binders ThBD
Sampling
10° Seqs Good
— Binders
Non
Binders
E b to thrombin are found sequence space

Zhou et al, ChemBioChem 2019



Fitness and design of aptamers from SELEX data

Fitness: Binding affinity to thrombin

Excellent
Binders
Sampling

10° Seqs Good
— Binders

Non
Binders

E b to thrombin are found

Zhou et al, ChemBioChem 2019

“

ThAD

sequence space

-

o

AGGGATGATGTGTGGTAGGC GTAGGATGGGTAGGGTGGTC

Kp=340 fM

ThAD

~




Fitness and design of aptamers from SELEX data

Fitness: Binding affinity to thrombin

“ ThAD
Excellent
Binders ThBD
Sampling

10° Seqs Good

— Binders

Non
Binders

sequence space

Predict selection
at next rounds

—

RBM models with
two objectives

Round 5 Round 6 == Round7 = Round 8

Design evolvable
binders



RBM log-likelihoods predict enrichments at later rounds

Histograms of RBM log-likelihoods

log P_(v)

(computable in time linear in L,M)
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RBM log-likelihoods predict enrichments at later rounds

Non 2-loop
Binders Binders

10°F round 5
* Histograms of RBM log-likelihoods
10%F

log I)r=6 (V) 10°F ’r’_rn_lul-rrn_l_l_:imd 6
(computable in time linear in L,M) 4L

0
03+ round 7

L

10°F ‘|/|-I_|-I-L round 8
10k k

—70 —60 -50 -40 -30 -20
Log-likelihood

* Precise connection with fithess ?

1)
F (v)=logRE(v,r-1—r)=log




RBM log-likelihoods predict enrichments at later rounds

Log-enrichment

Log-likelihood
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Almost linear relation !



RBM log-likelihoods predict enrichments at later rounds

4arC —— linear fit, round 5 - 6 0
- [nearfitround 6= 7 o Almost linear relation !
—— linear fit, round 7 - 8
2 -
-t
C
w .
E ol o Observation 1:
S
GE) © T Slope decreases with rounds
'81 -2 ~~ 4015 %
— 10105
° oo F()=a xF(v)
L 10.05< r r
—4F G
Radi \ . 4000 &
0.00 O.OSSIOO.élg 0.15 . . .
. \ : . P . intensity of selection
-70 -60 —50 —40 -30 -20 ; d
Log-likelihood atrounar

r—lF(v) oC eﬁrF(V)

Thus, likelihood ~ p (v)xe™ ' p (v)x... with B =a,+o +..+0
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similar to inverse temperature in statistical physics J



RBM log-likelihoods predict enrichments at later rounds

arC —— linear fit, round 5 - 6 °®
- inear it round 6 =7 0 Almost linear relation !
—— linear fit, round 7 - 8
2-
-
C
w .
E of o Observation 1:
S
g © = Slope decreases with rounds
& —2F , @ 10155
S 0108 F F
o 10.105 _
& % r(v) a. x (v)
—4F a8
adi . . -o.oog
0.00 0.05 | 0.10 0.15 . . .
. , , , Sopes , L intensity of selection
=70 ~60 =50 —40 =30 —20 ; d
Log-likelihood atrounar

r—lF(v) oC e/er(V)

Thus, likelihood ~ p (v)xe™ ' p (v)x... with B =a,+o +..+0

1

similar to inverse temperature in statistical physics J

Observation 2: Slopes can be estimated from A<10g p>
Fisher’s fundamental theorem

=a _ X Var(log p)

r=l—r r—1



Hidden layer

RBM weigths reveal nucleotidic motifs W ()
G> G)

A

Profile of sequences at round 8

0.9 %
c :
T T T 0.6 & P G Quadruplex motif
s ol o ]
YA AAAAAVIAA L TACLXYIAGLAAL LV ALY 8

5 10 15 20 25 30 35 40
Position

Three weights, showing that the two loops are independent:

La 1 .
i _ .Ac Gz %)EAG JGG s Variation of second half of
_(1)_ ¢ ch%g CG‘-i*-TC T-‘fé I G-quadruplex (pos 33-39)
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Position Input



Sampling of RBM to design evolvable binders

Fitness: Binding affinity to thrombin Sequences obtained by
4 sampling RBM inferred
ThD from round 8 data (with
ThA
‘ counts) are very close
variants of best binders
Good (ThA or ThD)
Binders
Non
Binders = N Sequences obtained by

sampling RBM inferred
from round 8 UNIQUE data
are diverse

sequence space



Sampling of RBM to design evolvable binders

Fitness: Binding affinity to thrombin Sequences obtained by
A ThD sampling RBM inferred

from round 8 data (with
ThA
‘ counts) are very close
variants of best binders
Good (ThA or ThD)

Binders

Non
Binders = IS Sequences obtained by
sampling RBM inferred
sequence space
from round 8 UNIQUE data
are diverse

RBM used to

* Predict binding for sequences with @ low counts
Overall 27 predictions

(6 for non-binding,
* |dentify deleterious mutations @ that strongly damage 21 for binding)
excellent binders

* Design new binders © by MC-sampling

Di Gioacchino et al, Validation by gel shift assays:

BiorXiv 2022.03.12.484094, under review 25 trues: 33% Accuracy



