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Data is the stumbling block for deep learning in
computational biology

Deep neural networks (DNNs) are data hungry because of the huge
number of trainable parameters

® We may not have enough data for training complex DNNs

® Available data are heavily biased towards a few model systems
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Using synthetic data

If we can artificially generate synthetic data we can:

® Generate and train on arbitrarily large unbiased data sets

Find out what is easy / hard / impossible to learn by DNNs

Identify which network architectures work best

Ask how much data is needed for training

Test how biases in training effect the DNNs ability to
generalize

® Pre-train networks before final training on real data

Synthetic data need not be accurate — they only need to reflect the
complexity of the real problem!
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RNA secondary structure

Problems with RNA secondary structure prediction by energy
minimization:

® Parameters from limited number of experiments

® |gnores pseudo-knots, ignores tertiary structure

® |gnores non-nearest neighbor effects

® Poor treatment of non-canonical base pairs

® Poor performance on long-range base pairs

Still good enough for tests with synthetic data

If DNNs can not be trained to emulate RNAfold, then they won't
be able to solve the “real” RNA structure prediction problem.

4/20



A simplified problem: Predicting pairedness

Try to predict which nucleotides are paired / unpaired
® Much smaller solution space — should be easier

Similar to protein secondary structure prediction

Tested several networks:

® fully connected feed-forward network on a sliding window

® 1D-convolutional network on sliding window

® bi-directional long-term short-term memory (BLSTM) network
® train on 80000 random sequences with RNAfold structures
test on 20000 independent random sequences
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Predicting pairedness

Modeltype Parameters Epochs  Accuracy F1 MCC
BLSTM 1 Layer, 40 Neurons 43 0.667 0.594 0.166
1 Layer, 80 Neurons 27 0.664 0.589 0.168

3 Layers, 40 Neurons 38 0.676 0.609 0.207

FCFF Window 15 89 0.654 0.559 0.120
Window 35 94 0.659 0.559 0.118

Window 71 59 0.661 0.569 0.118

1D-CNN Window 15 67 0.660 0.588 0.156
Window 35 65 0.666 0.586 0.166

Window 71 30 0.668 0.580 0.170

BLSTM slightly better, but poor performance by all architectures

Probable reason: Predicting pairedness is not simpler than predicting the full

secondary structure right
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Predicting pair matrices

Approach chosen by most recent structure prediction DNNs
® Represent sequence by an n x n matrix of all possible pairs
® Use 2D convolutional networks on these matrices
® We chose the SPOT-RNA architecture !

® Minimal post-processing: values > 0.5 represent base pair,
greedily remove base triples and pseudo-knots.
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1Singh et al., Nat. Commun., 2019
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Model Performance

Training and validation sets with fixed length n =70
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What features are easy / hard to learn?

Do the structures predicted by the DNN look statistically similar to

the RNAfold ground truth?

Relative frequency of base pair types)
model / length GC CG AU UA GU UG NC
VRNA / 70 0.257 0.262 0.169 0.170 0.071 0.071 0.00
DNN / 70 0.258 0.260 0.170 0.172 0.070 0.070 9.63-107°
VRNA / 100 0.262 0.255 0.173 0.170 0.068 0.071 0.00
DNN / 100 0.257 0252 0.177 0.175 0.068 0.070 2.30-107°

Learning the base pair frequencies is no problem at all
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What features are easy / hard to learn?

How about different loop types?

Frequency of bases in context

model / length | paired EL BL HL IL ML
VRNA / 70 0.508 0.176 0.033 0.156 0.114 0.014
DNN / 70 0.445 0.222 0.027 0.161 0.127 0.019
VRNA / 100 0.541 0.123 0.031 0.143 0.126 0.035
DNN / 100 0.433 0.185 0.030 0.146 0.152 0.053

Average number of structural element

model / length | helix EL BL HL IL ML
VRNA / 70 4825 0.992 1.112 1.754 1841 0.118
DNN / 70 4354 0.993 0.840 1730 1.686 0.098
VRNA / 100 7.132 0991 1.586 2314 2.839 0.343
DNN / 100 6.146 0991 1.080 2.135 2.632 0.299

® Frequency and size of hairpin and interior loops match very well
® Network produces fewer, but larger multi-loops

® Number of base pairs does not match
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Multi loop length

Multiloop length
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Pseudo-knots and base triples

DNNs have no problem predicting pseudo-knots and base
triples — should be an advantage

But can they learn, to predict the right amount?

Our ground truth has no PKs, no base triples

At length 100:

Almost 50% (975,/2000) of structures contain a PK
75% (1512/2000) contain multi-pairs
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What features are easy / hard to learn?
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Validation set length
® An RNA structure can contain < 7 pairs

® DNNs working on pair matrices naturally predict a quadratic
growth
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What features are easy / hard to learn?

Convolutional networks always focus on local features of the matrix
Therefore:

® Jocal features (e.g. interior loops) are easiest to get right
® larger features (e.g. multi loops) are harder

e global properties (total number of pairs) are hardest to learn
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Biases in the training set

How do biases in the training set affect performance?
Example different length distributions:

Dataset 1 Dataset 2

Validation Training
1 2 3 4
1 0.64 0.61 0.64 0.63
2 0.59 0.58 0.60 0.57
3 0.61 0.59 0.62 0.59
4 0.71 0.68 0.70 0.75
train 0.72 0.66 0.71 0.87
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The bpRNA dataset

Do we have large enough data sets? Use bpRNA?!

RNP: 466

RNA: 634 /’1
® over 100000 sequence/structure Pomie

pairs

SRP: 959

® Collected from 7 databases
e CRW: SSU, LSU, and 5S rRNAs

e RFAM: 2588 families
but 82% rRNA, 9% tRNA

— Many sequences, but low structural diversity!

How does this effect prediction accuracy on RNA not from these
families?

2Danaee et al., NAR 2018
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The bpRNAinv data set

How can we mimic training data with low structural diversity using
synthetic data?

® Take all structures from bpRNA
® Remove pseudo-knots, restrict to n < 120, < 6 pairs in PKs

® For each structure design a sequence using RNAinverse
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The bpRNAinv data set

How can we mimic training data with low structural diversity using
synthetic data?

® Take all structures from bpRNA
® Remove pseudo-knots, restrict to n < 120, < 6 pairs in PKs

® For each structure design a sequence using RNAinverse

® Resulting data set has same structure distribution as bpRNA
® Sequences are completely unrelated to each other
After training with these data set, test performance on two test
sets:

@ A test set produced in the same way by RNAinverse
unrelated sequences, but same structure bias

® Di-nucleotide shuffling of training sequences
same sequence composition, but unrelated structures
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Performance with the bpRNAinv data set
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® Performance on the inverse folded test set almost as good as
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® Poor performance when structures are dis-similar to training

structures
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Take home lessons

Synthetic data allow to test the capabilities of DNNs with full
control over biases

DNNs for RNA secondary structure prediction can easily learn
about local structure features, but struggle with non-local or
global features

Current architectures generalize well to novel sequences as
long as structures are covered by the training set

Poor generalization to RNA with novel structures
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