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The spurion method in flavour physics

Effective theories in flavour physics

New physics in electroweak penguins?
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physics of interest: weak quark-transition process
problem: hidden by QCD effects
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» large perturbative corrections with strong coupling o (x) for
1 2, my, potentially enhanced by large logs

» non-perturbative hadronic effects
quark-confinement in hadrons (baryons and mesons)



The QCD challenge

physics of interest: weak quark-transition process
problem: hidden by QCD effects

» large perturbative corrections with strong coupling o (x) for
1 2, my, potentially enhanced by large logs

» non-perturbative hadronic effects
quark-confinement in hadrons (baryons and mesons)

basic strategy:

facorise non-perturbative effects into process-independent decay
constants and form factors

— to be determined in reference measurements or calculated with
non-perturbative methods (lattice QCD, light-cone sum rules, ...)
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» QCD corrections involve separated mass scales m?, m3
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Separated scales

Gauge

t > Higgs

H—— — t t > Fermions
vieud u s (< ¢ b t

Non-perturb.QCD  Heavy quarks

NP?

» QCD corrections involve separated mass scales m?, m3
— logarithmic enhancement log(m?/m3)

» construct sequence of effective theories:
decouple heavier particles by encoding their effects into higher
dimensional operators

Lan(@® ~vhw) = Lsu + 3~ x OnOn(sun))
s A
Leit(q® ~mj) = £5QfCD + Z ——3C (‘WQCD})
a>5 VEW

Leit(q® ~ Apep) = Luger + O(Agep/ms)



b — cus: effective theory

LO: O(a) NLO: O(al)
b c b c
further
g - diagrams
W i W i
S S
1 LL Mg,
Mo x —5 % Mo D Mo < aslog —5
q° —my q;
O(m2) o(m3)

» hierarchy between scales ¢? < M2
large logs log(M§, /p?) spoil perturbative expansion

» solution: effective theory
decouple heavy scale M3, — oo
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LO: O(a?)

MLQOC m—2
w

o
» [~

» expansion of amplitude in p? /M7, < 1:

heavy particle propagator — point-like interaction

= heavy particle disapears as dynamical particle (decoupling)
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b — cus: effective theory

LO: O(a NLO: O(al)
; + further
diagrams
S
Mo x LQ
myy

» expansion of amplitude in p? /M3, < 1:
heavy particle propagator — point-like interaction
= heavy particle disapears as dynamical particle (decoupling)

» effective Hamiltonian:
Hetr o C1 [y b)) vust] + Co [ by ][] vus]]
C1,C5 - Wilson coefficients
first colour structure induced by QCD corrections



b — cus: effective theory

LO: O(a?) NLO: O(a)
b c b c
_ - further
u g u
\é \Qg + diagrams
S S
Moo o —— Mo D Moy « «a /ﬂ a"q”
LO m?/v NLO Uv s | o 02 _MSV)(qQ)g,

log-divergence for ¢ — oo

» expansion of amplitude in p? /M3, < 1:
heavy particle propagator — point-like interaction
= heavy particle disapears as dynamical particle (decoupling)

» effective Hamiltonian:
Hetr o C1 [y b)) vust] + Co [ by ][] vus]]
C1,C5 - Wilson coefficients
first colour structure induced by QCD corrections

» additional UV divergences in effective theory compared to full
theory



» absolute potential:

zZ0
V(20) = /mg = mgz|*,_ = mgz + oo
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» absolute potential:

o
V(zo) = /mg = mgz|", = mgzy +
—0Q

» but: only differences of potential physicall
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mass m in homogenous gravitational field

» absolute potential:

Z0
V(z0) = /mg = mgz|*, = mgz + o0
—00

» but: only differences of potential physical!
» introduce regulator :

z0
Vo) =t [omg = im0
A



mass m in homogenous gravitational field
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absolute potential:

20
Vi(z) = /mg = mgz|*°_ = mgz +
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but: only differences of potential physical!
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introduce regulator :

20
Vo) =t [omg = im0
A
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difference of potential:
V(z2) = V(21) = mg(z2 — A) = mg(z1 — A) = mg(z2 — 21)
— divergence cancels



mass m in homogenous gravitational field

v

absolute potential:

20
Vi(z) = /mg = mgz|*°_ = mgz +
)

» but: only differences of potential physicall
» introduce regulator :

20
Vo) =t [omg = im0
A

» difference of potential:
V(z2) = V(21) = mg(z2 — A) = mg(z1 — A) = mg(z2 — 21)
— divergence cancels

» divergence is consequence of unhandy normalisation
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Dimensional regularisation

perform calculation in D = 4 — 2¢ space-time dimensions

integral converges for suitable choice of ¢
— analytic continuation of the result for arbitrary complex e

UV divergence appears as 1/¢ pole

dimensional regularisation respects gauge invariance



Dimensional regularisation

perform calculation in D = 4 — 2¢ space-time dimensions

integral converges for suitable choice of ¢
— analytic continuation of the result for arbitrary complex e

UV divergence appears as 1/¢ pole
dimensional regularisation respects gauge invariance

S=[dPzL = L hasmass dimension D
gauge coupling: replace g — g = g is dimensionless
=- dimensional regularisation introduces energy scale x !

1: 1 correspondence between 1/¢ pole and n dependence
= amplitude contains piece proportional to

1
Avv (i) = = =i + log(4r) + log *

=Ayv



Predictions for observables

Effective Lagrangian: £ = Lqcp + Lex(CY, CY)
» consider n observables O, ..., O,
» calculate these observables in effective theory up to order o*:
o =o(cf,cy), .. oh=0b(ch, Y
o™ . UV-divergent functions of C?, CY
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o™ . UV-divergent functions of C?, CY
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Predictions for observables

Effective Lagrangian: £ = Lqcp + Lex(CY, CY)
» consider n observables O, ..., O,

» calculate these observables in effective theory up to order o*:
o =oM(c,cl), .. 0 =0P ()

o™ . UV-divergent functions of C?, CY

» choose 2 (= # free parameters) observables as input:
— choice defines input scheme

0 L o® (o, cY), 0 Lol o cl)
= O =07, 05%), & = WO, 057)
— OV, CY contain UV divergences
» prediction for remaining (n — 2) observables:
off = 07 (€ (07®, 05%), ¢; (07®, 05%)) = 0 (0F®, 05)

— 0" UV finite functions of O 0?2



Renormalisable theory:
UV-finite.

Predictions 0" (0$°, 0°) in terms of observables 0T, O are
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Renormalisability

Renormalisable theory:
Predictions 0\") (0%, 0} in terms of observables 0% 0% are
UV-finite.
fixed order in effective couplings C;: (typically first order)
» UV-divergences can be absorbed into C; to arbitrary order in o
» finite number of C; to be fixed from measurements

= renormalisable and predictive framework



Renormalisability

Renormalisable theory:
Predictions 0\") (0%, 0} in terms of observables 0% 0% are
UV-finite.
fixed order in effective couplings C;: (typically first order)
» UV-divergences can be absorbed into C; to arbitrary order in o
» finite number of C; to be fixed from measurements

= renormalisable and predictive framework

arbitrary order k = 1, ..., oo in effective couplings C;:

» new effective couplings C\*) have to be introduced at each order
k to absorb UV-divergences

» infinite number of Cf’” to be fixed from measurements
= not renormalisable and not predictive

Phenomenology: fixed order sufficient because higher coefficients
are suppressed by higher powers of p? /Mheavy



Renormalisation:

split of bare parameters C? into a finite part C; and a counterterm 6C;
1
C9 = C; +6C;, 5C; (—ci“) + c,@))
4 \ e
¢\ : fixed by requirement that C; finite for ¢ — 0
¢?) : can be chosen arbitrarily

Qg

— choice of gi(z) defines renormalisation scheme
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Renormalisation

Renormalisation:
split of bare parameters C? into a finite part C; and a counterterm 6C;

s (1
CY=Ci+0Ci,  8C = (;Q“’ + éfz))

¢!V : fixed by requirement that C; finite for € — 0
(i(z) : can be chosen arbitrarily

— choice of (i(z) defines renormalisation scheme

Lagrangian unchanged (only rewritten as £ = £, + 0 L)
= physical results do not depend on renormalisation



Renormalisation

Renormalisation:
split of bare parameters C? into a finite part C; and a counterterm 6C;

s (1
CY = C; +6Cy, 5C; = %T (EQ‘(U +Q(2))

¢!V : fixed by requirement that C; finite for € — 0

¢!¥ : can be chosen arbitrarily

— choice of (fz) defines renormalisation scheme

Lagrangian unchanged (only rewritten as £ = £, + 0 L)
= physical results do not depend on renormalisation

but: perturbative evaluation
treat C; as C; = O(1) and 6C; as §C; = O(a)

— dependence on renormalisation scheme:
calculation of O(a?) —  scheme dependence of O(a?*!)



to first order in effective couplings C;:

8C; =3 62;C; = (C°=2C,  with Zij = 6;; + 62
J
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to first order in effective couplings C;:

6C; =Y 62i;C; = C°=2C, with Zi; = 6;; + 0Z;;
J

UV-divergent amplitudes contain piece

1
o< Apv(p) =

c et log(4m) +log pi*

-~

=Ayv
MS-scheme: subtract only this piece

zijAuy
4
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Renormalisation
to first order in effective couplings C;:

6C; = Y 62,;¢; = O=2C, with Zi; = 6, + 02

UV-divergent amplitudes contain piece

1
o Apy(p) = T E + log(47) + log u”

=Ayv

Qg
—zijAuy
4™

MS-scheme: subtract only this piece ~ —  §Z;; =
predictions for observables cannot depend on artificial scale p:

» explicit u- dependence of AUV( ) inside renormalised
Wilson-coefficients: ¢' = /(1)

» in addition: implicit ;-dependence via o, = a5(p) in C and 6C

» but: C° = C + 6C is p-independent



Physical meaning of scale u
a priori: scale y is not physical:
cancels order by order in perturbation theory

schematically:
2

M2 37 aiCilu) + P10Cilog 5 +0(o?)
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» u-dependence of a; and C; in leads to terms of order o2

» implicit ;--dependence of [ 1] cancels explicit one of
= by varying p contributions can be reshuffled between

and



Physical meaning of scale u
a priori: scale y is not physical:
cancels order by order in perturbation theory

schematically:
2

M2 37 aiCilu) + P10Cilog 5 +0(o?)

» u-dependence of a; and C; in leads to terms of order o2

» implicit ;--dependence of [ 1] cancels explicit one of
= by varying p contributions can be reshuffled between

and

» for ;. ~ m: log in [2] becomes small
= dominant NLO effects absorbed into LO result
= better convergence of perturbative series



Resummation of large logs

amplitude dependending on two separated scales m; < ma:

2
M(m?,m3) = 1+4a,log mé +0(a?)
m3
L mi 2 L 2
= |l+aglog— +0(ag)| |1+ aslog — + O(ag)
H 3

My (m?,pu?) Moz (m3,p?)



Resummation of large logs

amplitude dependending on two separated scales m; < ma:

m

M(m?,m3) = 1+4a,log

2
1 2

=+ 0

m3 +0(e)

= 1 1 771% -I-O( 2) 1 1 : -I-O( 2)
= + o, log o + o, log o
S = ‘u2 F: (=) /% &
My (m?,pu?) Moz (m3,p?)

strategy:

calculate M up to order o” at the scale 12 ~ m?2
= good convergence of perturbative expansion



Resummation of large logs

amplitude dependending on two separated scales m; < ma:

2
M(m?,m3) = 1+aglog mé +0(a?)
m3
m? 2 1 2
= |l+aglog— +0(ag)| |1+ aslog — + O(ag)
H 3
My (m?,pu?) Moz (m3,p?)

strategy:

calculate M up to order o” at the scale 12 ~ m?2
= good convergence of perturbative expansion

evolve M from the scale ;7 ~ m? to the scale ;3 ~ m3 using
the renormalisation group equation at »n + 1 loop
= resums contributions of order o >~ o log" (113 /3)
]‘.



Resummation of large logs

amplitude dependending on two separated scales m; < ma:

2
M(m?,m3) = 1+aglog mé +0(a?)
m3
m? 2 1 2
= |l+aglog— +0(ag)| |1+ aslog — + O(ag)
H 3
My (m?,pu?) Moz (m3,p?)

strategy:
calculate M up to order o at the scale ;7 ~ m?
= good convergence of perturbative expansion

evolve M from the scale ;7 ~ m? to the scale ;3 ~ m3 using
the renormalisation group equation at »n + 1 loop
= resums contributions of order o >~ o log" (113 /3)
]‘.

calculate M, up to order o at the scale 1> ~ m3
= good convergence of perturbative expansion

= RGE-improved result for M at order o 5_ o log" (m? /m3)
k



d =
OZ/L@CO

bare couplings do not depend on scale p:

d - d = d =
= renormalisation group equation (RGE):
d i
i)

=0

withy = — (u%Z) z!
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Renormalisation group equation

bare couplings do not depend on scale p:
LS R s O O AW 4a
0= Hd,uc = Hd,u(ZC) = <Mduz> c+7 (Hd,uc>

= renormalisation group equation (RGE):
ui—’y C=0 withy = — uiz 7z 1
du du

anomalous dimension marix :

d da dz «

= —(u—2z\1z71=_ s 7z 1 = —

! <Mdu > <M dM) <das> ’ T
N—— N————

dp=? 27140 =2zAuv+0(as)

dp
= —2eas + O(a?)
= as(22) + O(a?)



express RGE for €' in terms of a,:

dC  da,
dag

| a
W =

as(22)C
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Renormalization group equation

express RGE for C in terms of a,:

dC  dayg d =
C_ a G

das Mdu " ¢ a5(22)C

for das/dp one gets

das d _92 —1.0 —1 dZo/
= _ 6Z = — 2 “Ug — Z -

du ‘udﬂ (:u « as) €a. a dM
——

=—BoAuv+0(as)

dag

&

Qs



Renormalization group equation

express RGE for C in terms of a,:

dC

dag H

for das/dp one gets

dag
i

Y
G

da d 5 =
> =|u—C = ~+C
du Hd,u
2710 = —2ea, —
——

(pde)@®

= a,(22)C

7z 1 dZ
dp
——

=—BoAuv+0(as)

a du

dag

S



Renormalization group equation

express RGE for C in terms of a,:

dC  da, d 5~ 4 -
. = —_ = = s 2
aa. Mdlt m C =~C as(2z)C

for das/dp one gets

dag d

dz, da
—2er7—1 0 —1 « s
= u (@ Z760) = g1 L
m udu(u o Q) i
———
=—BoAyv+0O(as)
11 2
= —2eas — 260&3 + O(ag), Bo=—=N.— zny

3 3



Renormalization group equation

express RGE for C in terms of a,:

dC  da d - . -
cp— = |p=C = 7C| = as(22)C
das Mdu ud,u 7 a5(22)
for das/dp one gets
das d —92 ~1.0 71dZa das
= U Z ta)) = — 20— — a,
m " (W25 ay) i
——
=—BoAyv+0O(as)
2 3 11 2
— —2€as — 2/80as + O(as)7 ﬁo = ?NC — gnf

final RGEs for a, and C at leading order (LO):

ac

1 z
das s ﬁO

. dag 2
c, Dy 98,2
dp 7




. —

final RGEs for a; and C' at leading order (LO)

dé 1 2z = das g
da, a_s%c’ dp =~ u
solutions: Clp) = exp[ log s (1 0)] Cl(uo)
Bo s(ﬂ)
ouli) = =
° 1+ 2Bocs(po) log (/o)
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Solving the RGE

final RGEs for a, and C at leading order (LO):

dé 1 2z & das %
da, a5 Bo du__%;
solutions: Clp) = exp[ log as(n 0)}5(%)
Bo S(N)
_ as (ko)
) = T 3B0ms (uo) logli0)

perturbative in «, but exact in as(u)/as(uo)!
geometric series:

a 110) 1 — as(po)250 log " + ( s (110)280 log .

= LO RGE resums logs [a, log(s1/10)]" to all orders k = 1,2, ...
(NLO RGE resums logs a [as log(,u/,uo)]k etc.)



effective theory based on a more fundamental theory:

— determine Wilson coefficients from matching to the full theory
effective Hamiltonian:

Heir o C1 [EEv 0 ][0 78] + Co [E5" bS] (@] ,u87)
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effective theory based on a more fundamental theory:

— determine Wilson coefficients from matching to the full theory
effective Hamiltonian:

Heir o C1 [E3y" 0] [@) 78] + Co [E3"b][@],u87)
LO: 0(a?)
b

(e}

<l

C e
— oo
u

S
S
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effective Hamiltonian

effective theory based on a more fundamental theory
— determine Wilson coefficients from matching to the full theory

NLO: O(«
b

8
b C
\é \& @
oM o s

Hert o< O [epy"bp][apvust] + Co (e 0] [ag yust)]
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Matching

effective theory based on a more fundamental theory:
— determine Wilson coefficients from matching to the full theory

effective Hamiltonian:
Hetr o Ch [e2 by |0 vus] + Co [e27 b3 ][] vus]]

NLO: O(al)
b c b ¢ b ¢
— (1) ,(0)
W 7 < B = °
S
MEL o aglog(ME, /q?), M o c®a, log(12/¢?)

= (C{l))"" o aslog(M3,/u?)

1 should be chosen of order O(my) for matching



P e Q7 = (dp)v_a(Pb)v_a D=e
"E“’“ Q5 = (dip;)v—a(Pibi)v-a
= (db)v-a 2, (Gq)v-a
( )V AZ (tqu)v A
q g = (db)v-a 2, (d9)v+a
= (dibj)v-a 2 (@i%)vea,  Qry= FRdrLowF*bp

, Qr=(db)v-a Y, 3eq(@0)v+a
w e
e Qs =(dibj)v-a X, 3eq(g)v+a
z, = _
= Qo = (db)v-4 3, 5eq(79)v-a

Qo = (dibj)v-aY_, 3eq(@ai)v-a, Qsg=4drouG*bp

u]
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» hadronic B-decay into two mesons:

B — M1 M,
M;: picks up the spectator quark

B

My

Mo
» need to calculate matrix elements of operators

Q = (qI'b) ® (qTq")

DA



Hadronic matrix elements

hadronic B-decay into two mesons: B M
F — M 1 M 2 b

M;: picks up the spectator quark Mo

need to calculate matrix elements of operators
Q = (qI'd) ® (qT'q")

naive factorization:
(M1 M,|Q|B) = (M;]qTb|B) (M>|ql'q’|0)

FB—=Mi(g2) Faty

universal non-perturbative objects describing hadronisation:
FB=Mu - form factor, fu, : decay constant
calculated non-perturbatively (lattice, light-cone sum rules)



Hadronic matrix elements

hadronic B-decay into two mesons: B M
F — M 1 M 2 b

M;: picks up the spectator quark Mo

need to calculate matrix elements of operators
Q = (qI'd) ® (qT'q")

naive factorization:
(M1 M,|Q|B) = (M;]qTb|B) (M>|ql'q’|0)

FB—=Mi(g2) Faty

universal non-perturbative objects describing hadronisation:
FB=Mu - form factor, fu, : decay constant
calculated non-perturbatively (lattice, light-cone sum rules)

does factorisation work?
what about gluon exchange between the factorised matrix
elements?



» consider situation that quarks ¢, ¢’
composing M; are light (u, d, s)

o]
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QCD factorisation

My

s

consider situation that quarks ¢, ¢’
composing M; are light (u, d, s) Mo

g and ¢ are very energetic and originate from a common
space-time point (they are created by a point-like interaction)
= highly collinear with small transverse extension

low-energetic gluons see ¢¢’ as colourless object because they
cannot resolve the inner structure (colour-transperancy)

= non-perturbative QCD interactions confined to B-M; and M,
systems separately

QCD interactions between B — M; and M, can be treated
perturbatively



QCD factorisation
factorisation formula:

1
MMIQiB) = ST FPMi(3) / dus T (un) Bagy (us) + (M 6> M)
: 0
J

1
+ / dup duy dus T,,-”(’u,;g7 ut,u2) ®p(up) ®ur, (u1) ®ar, (u2),
0

T, 7" : hard scattering kernels
(perturbative QCD corrections of O(as(us)))

D (u) : light-cone distribution amplitude

— probability for the quark to carry momentum fraction up of the
meson momentum p




QCD factorisation

factorisation formula:
1
(M M3|Q;|B) = ZFJB—’Ml(mg)/ dus T (u2) ®ar, (u2) + (M ¢ Ma)
. 0
J
1
+ / dup dui dus T (up,ui,u2) P (up) ®ar, (u1) Par, (uz),
0
T, 7" : hard scattering kernels

(perturbative QCD corrections of O(as(us)))

D (u) : light-cone distribution amplitude
— probability for the quark to carry momentum fraction up of the
meson momentum p

M,
M, My
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» concept of QCDF valid in the limit m; — oo (heavy-quark limit)
= QCDF gives results up to O(Aqcp/my) corrections
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factors and decay constants)
= strong phases are only generated at O(«,) or O(Aqcp/mw)
= QCDF predicts small strong phases with large uncertainties



Properties and limitations of QCDF

concept of QCDF valid in the limit m; — oo (heavy-quark limit)
= QCDF gives results up to O(Aqcp/my) corrections

large uncertainties for colour-suppressed LO-topologies
(O(as) and O(Aqcp/mw) can be enhanced by a factor NV,)

LO matrix elements are real in QCDF (because of real form
factors and decay constants)

= strong phases are only generated at O(«,) or O(Aqcp/mw)
= QCDF predicts small strong phases with large uncertainties

In B — V'V decays (V : vector mesons) three helicity
configurations are possible:

both longitudinally, both positively or both negatively polarised.
In the SM the generation of transversely polarised vector
mesons requires helicity flips of the energetic light quarks

my mp

2
hierarchy:  Ap : A_ : Ay =1 : Agcp : (@)



