
So… what is the DM?	  

… and how do we detect it?	  



The Standard Model does not contain any viable candidate for DM 

Dark Matter is one of the clearest hints of Physics Beyond the SM  

Neutrinos constitute a tiny part of (Hot) 
dark matter 
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σSI = 10−9 pb

σSD = 10−5 pb

mχ = 50 GeV

ϵ = 300 kg yr (1)

σSI = 0

σSD = 10−3 pb

mχ = 70 GeV

ϵ = 300 kg yr (2)

σSI = 10−8 pb

σSD = 10−5 pb

mχ = 10 GeV

ϵ = 300 kg yr (3)

ϵGe = 300 kg yr ϵSi = 40 kg yr (4)

(fp/fn)Ge = 0.79 (5)

(fp/fn)Si = 1 (6)

(fp/fn)Xe = 0.70 (7)

(fp/fn)Na = 0.92 (8)

(fp/fn)F = 0.9 (9)

(10)

Ωνh
2 =

∑
i mνi

91.5eV
! 0.003 (11)

Hot dark matter not consistent with 
observations on structure formation. 
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Good candidates for Dark Matter have to fulfil the following conditions	  

•  Neutral 
•  Stable on cosmological scales (*) 
•  Cold, non-relativistic, when structures are formed (**) 
•  Reproduce the correct relic abundance 
•  Not excluded by current searches 
•  No conflicts with BBN or stellar evolution	  



3.  Dark Matter Candidates 
Although the evidence for dark matter presented in Sec. 2 is overwhelming, the 
constraints on its microscopic properties are weak.  The particle or particles that make up 
the bulk of dark matter must be non-baryonic, cold or warm, and stable or metastable on 
10 Gyr time scales.  Such constraints leave open many possibilities, and there are 
numerous plausible dark matter candidates that have been discussed in the literature.  The 
masses and interaction cross sections of these candidates span many orders of magnitude, 
as shown in Figure 20.  Of the candidate dark matter particles displayed, axions and 
WIMPs are especially well-motivated from a particle physics perspective.  
 

10
-33

10
-30

10
-27

10
-24

10
-21

10
-18

10
-15

10
-12

10
-9

10
-6

10
-3

10
0

10
3

10
6

10
9

10
12

10
15

10
18

mass (GeV)

10
-39

10
-36

10
-33

10
-30

10
-27

10
-24

10
-21

10
-18

10
-15

10
-12

10
-9

10
-6

10
-3

10
0

10
3

10
6

10
9

10
12

10
15

10
18

10
21

10
24

σ in
t (

pb
)

Some Dark Matter Candidate Particles

neutrinos 
neutralino 
KK photon 
branon
LTP

axion axino 

gravitino 
KK graviton 

SuperWIMPs :

w
im

pz
ill

aWIMPs : 

B
la

ck
 H

ol
e 

R
em

na
nt

Q-ball

fuzzy CDM

 
Figure 20: The locus of various dark matter candidate particles on a mass versus interaction cross-
section plot35

3.1 Axion 
The axion36 is motivated by the strong CP problem, an unnatural property of the SM.  
The theory of the strong interactions allows a term μν

μνπθ GG ~)32/( 2 , which is explicitly 
CP-violating.  A priori, one would assume θ  to be ~1. However, current bounds from the 
electric dipole moment of the neutron impose the tight constraint that .  The 
axion solution to this problem is to make 

1010−<θ
θ  a dynamical field, which rolls to a potential 

                                                 
34 Figure courtesy of E.-K. Park. 
36 For a review, see e.g. P. Sikivie, astro-ph/0610440 (2006). 
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We don’t know yet what DM is... but we do know many of its properties 
 

Many candidates in Particle Physics	  

•  Axions 
•  Weakly Interacting Massive Particles  
  (WIMPs) 
•  SuperWIMPs and Decaying DM 
•  WIMPzillas 
•  Asymmetric DM 
•  SIMPs, CHAMPs, SIDMs, ETCs... 	  

They have very different properties 
and cannot be searched for iun the 
same way	  



Question 4 (Dark Matter relic density 1)

Consider a simple model in which the Dark Matter is a Dirac fermion, χ, which only couples to the
Standard Model sector through the exchange of the a pseudoscalar particle A. The pseudoscalar A has
couplings gχ to the dark matter and gb to b quarks as described by the Lagrangian

L = i
(
gχχ̄γ

5χ+ gbb̄γ
5b
)
A

• Draw the Feynman diagram that corresponds to the pair-annihilation of two dark matter particles
into bb̄ .

• Considering only Dark Matter annihilation into bb̄, the annihilation cross section in the Early
Universe can be expanded in plane waves as ⟨σv⟩ ≈ abb̄ + bbb̄ x, with (see e.g, Ref.[2])

abb̄ =
1

m2
χ

(
Nc

32π

(
1− 4m2

b

s

)1/2
1

2

∫ 1

−1
d cos θCM |Mχχ→bb|2

)

s=4m2
χ

Show that to leading order in velocity (i.e., x = 0)

⟨σv⟩ ≈ 3

2π

(gχgb)2m2
χ

√
1−m2

b/m
2
χ

(4m2
χ −m2

A) +m2
AΓ

2
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Remember to average over initial spins and sum over final ones. You will also need the following

trace, Tr
[
(/p1 −mχ)γ5(/p2 +mχ)γ5

]
= 4(−p1 · p2 −m2

χ).

• Show that if the mediator is a scalar particle instead of a pseudoscalar then abb̄ = 0.

• Given a dark matter mass mχ = 100 GeV and a pseudoscalar mass mA = 1000 GeV, estimate the
value of the coupling gχgb for which the correct relic density is obtained. Neglect the pseudoscalar
decay width, ΓA and use that

Ωχh
2 ≈ 3× 10−10 GeV−2

⟨σv⟩

χ(p1)

χ̄(p2) b(p3)

b̄(p4)

A(k)
igbγ5igχγ5
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A simple example: fermion DM + Pseudoscalar mediator + SM  
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Let us assume that the DM particle is a 
fermion X, which connects to SM particles 
through the exchange of a pseudoscalar A	  

Is it viable? 	  

•  Is the relic density correct?  
	  

COMPUTING THE DM ANNIHILATION CROSS SECTION 9

The thermally-averaged product of the dark matter pair-annihilation cross section and
their relative velocity h�v

Møl

i is most properly defined in terms of separate thermal baths
for both annihilating particles [1, 2]
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) are the 4-momenta of the two colliding par-
ticles, and T is the temperature of the bath. The above expression can be reduced to a
one-dimensional integral which can be written in a Lorentz-invariant form as [1]
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where s = (p
1

+ p
2

)

2 and K
i

denotes the modified Bessel function of order i. In com-
puting the relic abundance [3] one first evaluates eq. (1.49) and then uses this to solve the
Boltzmann equation. The freeze out temperature can be computed by solving iteratively
the equation
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where g⇤ represents the effective number of degrees of freedom at freeze-out (pg⇤ ' 9).
Typically one finds that the freeze-out point x

f

⌘ m
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/T
f

is approximately x
f

⇠ 20.
The procedure can be simplified if we consider that the annihilation cross section can

be expanded in plane waves. For example, consider the dark matter annihilation process
�� ! ij and assume that the thermally averaged annihilation cross section can be ex-
pressed as h�vi
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The contribution for each final state is calculated separately.
Note that
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Question 4 (Dark Matter relic density 1)

Consider a simple model in which the Dark Matter is a Dirac fermion, χ, which only couples to the
Standard Model sector through the exchange of the a pseudoscalar particle A. The pseudoscalar A has
couplings gχ to the dark matter and gb to b quarks as described by the Lagrangian

L = i
(
gχχ̄γ

5χ+ gbb̄γ
5b
)
A

• Draw the Feynman diagram that corresponds to the pair-annihilation of two dark matter particles
into bb̄ .

• Considering only Dark Matter annihilation into bb̄, the annihilation cross section in the Early
Universe can be expanded in plane waves as ⟨σv⟩ ≈ abb̄ + bbb̄ x, with (see e.g, Ref.[2])

abb̄ =
1

m2
χ

(
Nc

32π

(
1− 4m2

b

s

)1/2
1

2

∫ 1

−1
d cos θCM |Mχχ→bb|2

)

s=4m2
χ

Show that to leading order in velocity (i.e., x = 0)

⟨σv⟩ ≈ 3

2π

(gχgb)2m2
χ

√
1−m2

b/m
2
χ

(4m2
χ −m2

A) +m2
AΓ

2
A

Remember to average over initial spins and sum over final ones. You will also need the following

trace, Tr
[
(/p1 −mχ)γ5(/p2 +mχ)γ5

]
= 4(−p1 · p2 −m2

χ).

• Show that if the mediator is a scalar particle instead of a pseudoscalar then abb̄ = 0.

• Given a dark matter mass mχ = 100 GeV and a pseudoscalar mass mA = 1000 GeV, estimate the
value of the coupling gχgb for which the correct relic density is obtained. Neglect the pseudoscalar
decay width, ΓA and use that

Ωχh
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A simple example: fermion DM + Pseudoscalar mediator + SM  
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Using the expression of the relic density	  

mA = 1000 GeV

m� = 1000 GeV

100 GeV

10 GeV

g�gb ⇠ 0.1� 1

g�gb
��� ��� ��� ��� ��� ���

��-��

��-��

��-��

��-�
h�
vi

(G
eV

�
2
)



Question 4 (Dark Matter relic density 1)

Consider a simple model in which the Dark Matter is a Dirac fermion, χ, which only couples to the
Standard Model sector through the exchange of the a pseudoscalar particle A. The pseudoscalar A has
couplings gχ to the dark matter and gb to b quarks as described by the Lagrangian

L = i
(
gχχ̄γ

5χ+ gbb̄γ
5b
)
A

• Draw the Feynman diagram that corresponds to the pair-annihilation of two dark matter particles
into bb̄ .

• Considering only Dark Matter annihilation into bb̄, the annihilation cross section in the Early
Universe can be expanded in plane waves as ⟨σv⟩ ≈ abb̄ + bbb̄ x, with (see e.g, Ref.[2])

abb̄ =
1

m2
χ

(
Nc

32π

(
1− 4m2

b

s

)1/2
1

2

∫ 1

−1
d cos θCM |Mχχ→bb|2

)

s=4m2
χ

Show that to leading order in velocity (i.e., x = 0)

⟨σv⟩ ≈ 3

2π

(gχgb)2m2
χ

√
1−m2

b/m
2
χ

(4m2
χ −m2

A) +m2
AΓ

2
A

Remember to average over initial spins and sum over final ones. You will also need the following

trace, Tr
[
(/p1 −mχ)γ5(/p2 +mχ)γ5

]
= 4(−p1 · p2 −m2

χ).

• Show that if the mediator is a scalar particle instead of a pseudoscalar then abb̄ = 0.

• Given a dark matter mass mχ = 100 GeV and a pseudoscalar mass mA = 1000 GeV, estimate the
value of the coupling gχgb for which the correct relic density is obtained. Neglect the pseudoscalar
decay width, ΓA and use that

Ωχh
2 ≈ 3× 10−10 GeV−2

⟨σv⟩

χ(p1)

χ̄(p2) b(p3)

b̄(p4)

A(k)
igbγ5igχγ5

6

A simple example: fermion DM + Pseudoscalar mediator + SM  

This results in	  

Question 4 (Dark Matter relic density 1)

Consider a simple model in which the Dark Matter is a Dirac fermion, �, which only couples to the
Standard Model sector through the exchange of the a pseudoscalar particle A. The pseudoscalar A has
couplings g� to the dark matter and gb to b quarks as described by the Lagrangian

L = i
�
g��̄�

5�+ gbb̄�
5b
�
A

• Draw the Feynman diagram that corresponds to the pair-annihilation of two dark matter particles
into bb̄ .

• Considering only Dark Matter annihilation into bb̄, the annihilation cross section in the Early
Universe can be expanded in plane waves as h�vi ⇡ abb̄ + bbb̄ x, with (see e.g, Ref.[?])

abb̄ =
1

m2
�

 
Nc

32⇡

✓
1� 4m2

b

s

◆1/2
1

2

Z 1

�1
d cos ✓CM |M��!bb|2

!

s=4m2
�

Show that to leading order in velocity (i.e., x = 0)

h�vi ⇡ 3

2⇡

(g�gb)2m2
�

q
1�m2

b/m
2
�

(4m2
� �m2

A)
2 +m2

A�
2
A

Remember to average over initial spins and sum over final ones. You will also need the following

trace, Tr
h
(/p1 �m�)�5(/p2 +m�)�5

i
= 4(�p1 · p2 �m2

�).

• Show that if the mediator is a scalar particle instead of a pseudoscalar then abb̄ = 0.

• Given a dark matter mass m� = 100 GeV and a pseudoscalar mass mA = 1000 GeV, estimate the
value of the coupling g�gb for which the correct relic density is obtained. Neglect the pseudoscalar
decay width, �A and use that

⌦�h
2 ⇡ 3⇥ 10�10 GeV�2

h�vi

�(p1)

�̄(p2) b(p3)

b̄(p4)

A(k)
igb�5ig��5

6

Question 4 (Dark Matter relic density 1)

Consider a simple model in which the Dark Matter is a Dirac fermion, �, which only couples to the
Standard Model sector through the exchange of the a pseudoscalar particle A. The pseudoscalar A has
couplings g� to the dark matter and gb to b quarks as described by the Lagrangian

L = i
�
g��̄�

5�+ gbb̄�
5b
�
A

• Draw the Feynman diagram that corresponds to the pair-annihilation of two dark matter particles
into bb̄ .

• Considering only Dark Matter annihilation into bb̄, the annihilation cross section in the Early
Universe can be expanded in plane waves as h�vi ⇡ abb̄ + bbb̄ x, with (see e.g, Ref.[?])

abb̄ =
1

m2
�

 
Nc

32⇡

✓
1� 4m2

b

s

◆1/2
1

2

Z 1

�1
d cos ✓CM |M��!bb|2

!

s=4m2
�

Show that to leading order in velocity (i.e., x = 0)

h�vi ⇡ 3

2⇡

(g�gb)2m2
�

q
1�m2

b/m
2
�

(4m2
� �m2

A)
2 +m2

A�
2
A

Remember to average over initial spins and sum over final ones. You will also need the following

trace, Tr
h
(/p1 �m�)�5(/p2 +m�)�5

i
= 4(�p1 · p2 �m2

�).

• Show that if the mediator is a scalar particle instead of a pseudoscalar then abb̄ = 0.

• Given a dark matter mass m� = 100 GeV and a pseudoscalar mass mA = 1000 GeV, estimate the
value of the coupling g�gb for which the correct relic density is obtained. Neglect the pseudoscalar
decay width, �A and use that
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Question 4 (Dark Matter relic density 1)

Consider a simple model in which the Dark Matter is a Dirac fermion, χ, which only couples to the
Standard Model sector through the exchange of the a pseudoscalar particle A. The pseudoscalar A has
couplings gχ to the dark matter and gb to b quarks as described by the Lagrangian

L = i
(
gχχ̄γ

5χ+ gbb̄γ
5b
)
A

• Draw the Feynman diagram that corresponds to the pair-annihilation of two dark matter particles
into bb̄ .

• Considering only Dark Matter annihilation into bb̄, the annihilation cross section in the Early
Universe can be expanded in plane waves as ⟨σv⟩ ≈ abb̄ + bbb̄ x, with (see e.g, Ref.[2])

abb̄ =
1

m2
χ

(
Nc

32π

(
1− 4m2

b

s
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2

∫ 1

−1
d cos θCM |Mχχ→bb|2
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s=4m2
χ

Show that to leading order in velocity (i.e., x = 0)
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A

Remember to average over initial spins and sum over final ones. You will also need the following

trace, Tr
[
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]
= 4(−p1 · p2 −m2

χ).

• Show that if the mediator is a scalar particle instead of a pseudoscalar then abb̄ = 0.

• Given a dark matter mass mχ = 100 GeV and a pseudoscalar mass mA = 1000 GeV, estimate the
value of the coupling gχgb for which the correct relic density is obtained. Neglect the pseudoscalar
decay width, ΓA and use that
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Indirect Detection 

(DM annihilation) 

Dark Matter particles can be probed in different ways 



... probing different aspects of the DM interactions with ordinary matter 
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DIRECT DARK MATTER SEARCHES: 
look for the recoil of an atom after the scattering off a DM particle 
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1 Introduction

2 Direct dark matter detection

Let us start by briefly reviewing some basic expressions describing the WIMP rate in

direct dark matter detection [1] (for a recent review see Ref. [2]).

The differential event rate for the elastic scattering of a WIMP with mass mχ off a

nucleus with mass mN is given by

dR

dER
=

ρ0
mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv , (2.1)

where ρ0 is the local WIMP density and f(v) is the WIMP speed distribution in the

detector frame normalized to unity. The integration over WIMP speeds is performed

from the minimum WIMP speed which can induce a recoil of energy ER: vmin =√
(mNER)/(2µ2

N) and a escape velocity vesc, the maximum speed in the Galactic rest

frame for WIMPs which are gravitationally bound to the Milky Way. The total event

rate is then calculated by integrating the differential event rate over all the possible

recoil energies,

R =

∫ ∞

ET

dER
ρ0

mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv . (2.2)

Here ET is the threshold energy, the smallest recoil energy which the detector is capable

of measuring, and is a crucial parameter of the experimental setup.

In general, the WIMP-nucleus cross section can be separated into a spin-independent

(scalar) and a spin-dependent contribution, and the total WIMP-nucleus cross section

is calculated by adding coherently the above spin and scalar components, using nuclear

wave functions. The differential cross section thus reads

dσWN

dER
=

mN

2µ2
Nv

2

(
σSI
0 F 2

SI(ER) + σSD
0 F 2

SD(ER)
)
, (2.3)

where σSI, SD
0 are the spin-independent and -dependent cross sections at zero momen-

tum transfer, and the form factors FSI, SD(ER) account for the coherence loss which

leads to a suppression in the event rate for heavy WIMPs or nucleons in the spin-

independent and -dependent contributions.

[DC: Not sure we should start with this since we do not determine the ex-

pressions of the effective Lagrangian and this is actually only for Fermions.

2
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Detecting Dark Matter through elastic scattering with nuclei 

We want to describe the (elastic) scattering cross 
section of DM particles with nuclei 

N	   N	  

But our microscopic theory generally provides the interaction with quarks and gluons 

Quarks à Nucleons (protons and neutrons)   

Nucleons à Nucleus              Nuclear models (encoded in a Form Factor)   



The WIMP-nucleus cross section has two components 

Spin-independent contribution: scalar (or vector) coupling of WIMPs with quarks  

Spin-dependent contribution: WIMPs couple to the quark axial current 

Total cross section with Nucleus scales as A2  

Total cross section with Nucleus scales as J/(J+1)  
Only present for nuclei with J≠ 0 and WIMPs with spin 

Present for all nuclei (favours heavy targets) and WIMPs 

2 Direct dark matter detection

Let us start by briefly reviewing the basic expressions that describe the WIMP rate in

direct dark matter detection [23] (for a recent review see Ref. [24]).

The differential event rate for the elastic scattering of a WIMP with mass mχ off a

nucleus with mass mN is given by

dR

dER
=

ρ0
mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv , (2.1)

where ρ0 is the local WIMP density and f(v) is the WIMP speed distribution in the

detector frame normalized to unity. The integration over WIMP speeds is performed

from the minimum WIMP speed which can induce a recoil of energy ER, vmin =
√

(mNER)/(2µ2
N), and a escape velocity vesc, the maximum speed in the Galactic rest

frame for WIMPs which are gravitationally bound to the Milky Way. The total event

rate is then calculated by integrating the differential event rate over all the possible

recoil energies,

R =

∫ ∞

ET

dER
ρ0

mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv . (2.2)

Here ET is the threshold energy, the smallest recoil energy which the detector is capable

of measuring, and is a crucial parameter of the experimental setup.

In general, the WIMP-nucleus cross section can be separated into a spin-independent

(SI) and a spin-dependent (SD) contribution, and the total WIMP-nucleus cross sec-

tion is calculated by adding coherently the above spin and scalar components, using

nuclear wave functions. The differential cross section thus reads

dσWN

dER
=

(

dσWN

dER

)

SI

+

(

dσWN

dER

)

SD

=
mN

2µ2
Nv

2

(

σSI
0 F 2

SI(ER) + σSD
0 F 2

SD(ER)
)

, (2.3)

where σSI, SD
0 are the spin-independent and -dependent cross sections at zero momen-

tum transfer, and the form factors FSI, SD(ER) account for the coherence loss which

leads to a suppression in the event rate for heavy WIMPs or nucleons in the SI and

SD contributions.

The observed number of dark matter events and the differential rate are subject

to uncertainties in the nuclear form factors and the parameters describing the dark

matter halo. Determining the impact of these is crucial to understand the capability

4

loss which leads to a suppression in the event rate for heavy WIMPs or nucleons. In general,
we can express the differential cross section as

dσWN

dER
=

mN

2µ2
Nv2

(

σSI
0 F 2

SI(ER) + σSD
0 F 2

SD(ER)
)

, (5)

where σSI, SD
0 are the spin-independent and -dependent cross sections at zero momentum

transfer.
The origin of the different contributions is best understood at the microscopic level, by

analysing the Lagrangian which describes the WIMP interactions with quarks. The contribu-
tions to the spin-independent cross section arise from scalar and vector couplings to quarks,
whereas the spin-dependent part of the cross section originates from axial-vector couplings.
These contributions are characteristic of the particular WIMP candidate (see, e.g., [2]) and
can be potentially useful for their discrimination in direct detection experiments.

2.1 Spin-dependent contribution

The contributions to the spin-dependent (SD) part of the WIMP-nucleus scattering cross
section arise from couplings of the WIMP field to the quark axial current, q̄γµγ5q. For
example, if the WIMP is a (Dirac or Majorana) fermion, such as the lightest neutralino in
supersymmetric models, the Lagrangian can contain the term

L ⊃ αA
q (χ̄γ

µγ5χ)(q̄γµγ5q) . (6)

If the WIMP is a spin 1 field, such as in the case of LKP and LTP, the interaction term is
slightly different,

L ⊃ αA
q ϵ

µνρσ(Bρ

↔

∂µ Bν)(q̄γ
σγ5q) . (7)

In both cases, the nucleus, N , matrix element reads

⟨N |q̄γµγ5q|N⟩ = 2λN
q ⟨N |JN |N⟩ , (8)

where the coefficients λN
q relate the quark spin matrix elements to the angular momentum of

the nucleons. They can be parametrized as

λN
q ≃

∆(p)
q ⟨Sp⟩+ ∆(n)

q ⟨Sn⟩
J

, (9)

where J is the total angular momentum of the nucleus, the quantities ∆qn are related to

the matrix element of the axial-vector current in a nucleon, ⟨n|q̄γµγ5q|n⟩ = 2s(n)µ ∆(n)
q , and

⟨Sp,n⟩ = ⟨N |Sp,n|N⟩ is the expectation value of the spin content of the proton or neutron
group in the nucleus1. Adding the contributions from the different quarks, it is customary to
define

ap =
∑

q=u,d,s

αA
q√

2GF
∆p

q ; an =
∑

q=u,d,s

αA
q√

2GF
∆n

q , (10)

1These quantities can be determined from simple nuclear models. For example, the single-particle shell
model assumes the nuclear spin is solely due to the spin of the single unpaired proton or neutron, and therefore
vanishes for even nuclei. More accurate results can be obtained by using detailed nuclear calculations.

3

and

Λ =
1

J
[ap⟨Sp⟩+ an⟨Sn⟩] . (11)

The resulting differential cross section can then be expressed (in the case of a fermionic
WIMP) as

(

dσWN

dER

)

SD
=

16mN

πv2
Λ2G2

FJ(J + 1)
S(ER)

S(0)
, (12)

(using d|q⃗|2 = 2mNdER). The expression for a spin 1 WIMP can be found, e.g., in Ref. [2].
In the parametrization of the form factor it is common to use a decomposition into

isoscalar, a0 = ap + an, and isovector, a1 = ap − an, couplings

S(q) = a20S00(q) + a0a1S01(q) + a21S11(q) , (13)

where the parameters Sij are determined experimentally.

2.2 Spin-independent contribution

Spin-independent (SI) contributions to the total cross section may arise from scalar-scalar
and vector-vector couplings in the Lagrangian:

L ⊃ αS
q χ̄χq̄q + αV

q χ̄γµχq̄γ
µq . (14)

The presence of these couplings depends on the particle physics model underlying the WIMP
candidate. In general one can write

(

dσWN

dER

)

SI
=

mNσ0F 2(ER)

2µ2
Nv2

, (15)

where the nuclear form factor for coherent interactions F 2(ER) can be qualitatively under-
stood as a Fourier transform of the nucleon density and is usually parametrized in terms of
the momentum transfer as [3; 4]

F 2(q) =
(

3j1(qR1)

qR1

)2

exp
[

−q2s2
]

, (16)

where j1 is a spherical Bessel function, s ≃ 1 fm is a measure of the nuclear skin thickness,
and R1 =

√
R2 − 5s2 with R ≃ 1.2A1/2 fm. The form factor is normalized to unity at zero

momentum transfer, F (0) = 1.
The contribution from the scalar coupling leads to the following expression for the WIMP-

nucleon cross section,

σ0 =
4µ2

N

π
[Zfp + (A− Z)fn]2 , (17)

with
fp

mp
=

∑

q=u,d,s

αS
q

mq
fp
Tq +

2

27
fp
TG

∑

q=c,b,t

αS
q

mq
, (18)

where the quantities fp
Tq represent the contributions of the light quarks to the mass of the

proton, and are defined as mpf
p
Tq ≡ ⟨p|mq q̄q|p⟩. Similarly the second term is due to the

4
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2 MINIMAL WIMP IN THE SHM

For both, SI and SD, the di↵erential rate spectrum displays an exponential decay
sensitive [REF], for instance, to the ratio of WIMP to nucleus mass. Additionally, the
signal underlies a characteristic annual modulation caused by the periodic movement of
the Earth around the Sun. This periodic variation of the signal helps to separate events
originating from DM collisions from background related to other sources [32,40,42]. In
the EFT, the di↵erential rate and the annual modulation can both take non-standard
forms [57–59]. This could be an opportunity to test the validity of the EFT and to
reconcile DAMA with the (null) results of other experiments [REF].

In the following, I will discuss the di↵erent components in greater detail and address
the feature of annual modulation at the example of the Standard Halo Model (SHM) [32].
All calculations were performed explicitly on paper and using our own numerical tools
(Mathematica and later on a C based code). The graphs presented in this section were
generated using these tools unless specified otherwise.

We decided to stick to the simple astrophysical SHM and chose a benchmark proposed
in [64] (BM1) for the remaining parameters. This means that I will mainly consider a
WIMP of mass 100 GeV, equal proton and neutron couplings and a SI WIMP-nucleon
cross section � = 10�9 pb. Further specifications will be given in the respective sections.

2.2 Di↵erential Cross Section

The di↵erential cross section contains the particle physics contribution to the event
rate calculation. Its magnitude is energy-dependent and determined by the interaction
couplings, particle masses and material properties such as spin, proton number and so
on.

The di↵erential WIMP-nucleus cross section is commonly written in terms of the
WIMP-nucleus cross sections for the spin-independent (SI) and the spin-dependent
(SD) interaction at zero momentum transfer as well as their corresponding form factor
squared [39,65]:

d�WN

dE
R

=
m

N

2µ
N

2v2
�
�0

SI,NF 2
SI

(E
R

) + �0
SD,NF 2

SD

(E
R

)
�
, (2.2.1)

where F
SI

, F
SD

denote the SI and SD form factors. They parameterize the energy-
dependent loss of coherence when WIMP and target scatter. Both form factors are
described in more detail later on. m

N

represents the mass of the target, in our case
germanium, and µ

N

stands for the reduced mass of WIMP and target.
The di↵erential cross section has a dependence of v�2 that we have to consider in

the integral over the velocity, leading to the form of the integral that gives it its name
‘inverse velocity’. The di↵erential cross sections in the e↵ective field theory (EFT) [57–59]
on the other hand can have additional dependencies on v which we will have to include
in the halo integral to achieve correct results.

The WIMP-nucleus cross sections at zero momentum transfer �SI,N

0 and �SD,N

0 can
be expressed in terms of the nucleon couplings [39, 65]

�0
SI,N =

4µ2
N

⇡
[Zf

p

+ (A� Z)f
n

]2, (2.2.2)

�0
SD,N =

32µ2
N

G2
F

⇡
[a

p

S
p

+ a
n

S
n

]2
✓
J + 1

J

◆
, (2.2.3)
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(SD) interaction at zero momentum transfer as well as their corresponding form factor
squared [39,65]:

d�WN

dE
R

=
m

N

2µ
N

2v2
�
�0

SI,NF 2
SI

(E
R

) + �0
SD,NF 2

SD

(E
R

)
�
, (2.2.1)

where F
SI

, F
SD

denote the SI and SD form factors. They parameterize the energy-
dependent loss of coherence when WIMP and target scatter. Both form factors are
described in more detail later on. m

N

represents the mass of the target, in our case
germanium, and µ

N

stands for the reduced mass of WIMP and target.
The di↵erential cross section has a dependence of v�2 that we have to consider in

the integral over the velocity, leading to the form of the integral that gives it its name
‘inverse velocity’. The di↵erential cross sections in the e↵ective field theory (EFT) [57–59]
on the other hand can have additional dependencies on v which we will have to include
in the halo integral to achieve correct results.

The WIMP-nucleus cross sections at zero momentum transfer �SI,N

0 and �SD,N

0 can
be expressed in terms of the nucleon couplings [39, 65]

�0
SI,N =

4µ2
N

⇡
[Zf

p

+ (A� Z)f
n

]2, (2.2.2)

�0
SD,N =

32µ2
N

G2
F

⇡
[a

p

S
p

+ a
n

S
n

]2
✓
J + 1

J

◆
, (2.2.3)
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where f
p

, f
n

, a
p

, a
n

are the nucleon couplings for SI and SD, G
F

the Fermi constant and
S
p

, S
n

the nucleon spin averaged over the nucleus. Z is as usual the proton and A the
nucleon number. J stands for the nuclear spin.

If we assume f
p

= f
n

for the SI case, one reduces the parameter space and only
one WIMP-nucleon cross section is necessary to fully describe the WIMP-nucleus cross
section [65]:

�0
SI,N =

✓
µ
N

µ
n

◆2

A2�SI . (2.2.4)

The SD WIMP-nucleus cross section can also be written in terms of WIMP-nucleon cross
sections [66]:

�0,N
SD

=
4

3

✓
J + 1

J

◆✓
µ
N

µ
n

◆⇣
S
p

p
�SD,p + S

n

p
�SD,n

⌘2
. (2.2.5)

2.2.1 Form Factors

Whilst point-like scattering is a good approximation for low recoil energies, the e↵ective
cross section drops with increase in momentum transferred to the nucleus. It becomes
necessary to introduce nuclear form factors to take account of this loss of coherence. In
particular more massive nuclei are a↵ected.

There are several parameterizations available depending on the charge density model
used and the application on di↵erent materials. We will only introduce the ones relevant
in the framework of our calculations.

Spin-independent Form Factor For the spin-independent (SI) form factor usually
the analytic expression of the Helm form factor is considered [34,67]:

F 2(q) =

✓
3j1(qR1)

qR1

◆2

exp(�q2s2), (2.2.6)

where q is the momentum transfer in fm�1, s a measure of the nuclear skin thickness
(⇡ 1fm), R1 =

p
R2 � 5s2 and R ⇡ 1.2A

1
2 fm. The form factor is normalized to unity at

zero momentum transfer, F (0) = 1
j1 is a spherical Bessel function given by

j1 =
sin(x)

x2
� cos(x)

x
. (2.2.7)

The momentum transfer with nucleus mass m
N

[GeV] and recoil energy E
R

[keV] can
be expressed in the unit fm�1 via the following equation [68]:

q[fm�1] =

p
2m

N

[GeV]E
R

[keV] · 10�6

0.1973GeV fm
. (2.2.8)

Spin-dependent Form Factors The spin-dependent interaction (SD) couples the
spin of the WIMP to the nuclear spin. Hence, the contributions can vary immensely from
isotope to isotope. For instance, out of the stable isotopes of germanium only germanium
73 has a nuclear spin (J = 9/2) [REF] that is not equal to zero.
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1 Introduction

2 Direct dark matter detection

Let us start by briefly reviewing some basic expressions describing the WIMP rate in

direct dark matter detection [1] (for a recent review see Ref. [2]).

The differential event rate for the elastic scattering of a WIMP with mass mχ off a

nucleus with mass mN is given by

dR

dER
=

ρ0
mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv , (2.1)

where ρ0 is the local WIMP density and f(v) is the WIMP speed distribution in the

detector frame normalized to unity. The integration over WIMP speeds is performed

from the minimum WIMP speed which can induce a recoil of energy ER: vmin =√
(mNER)/(2µ2

N) and a escape velocity vesc, the maximum speed in the Galactic rest

frame for WIMPs which are gravitationally bound to the Milky Way. The total event

rate is then calculated by integrating the differential event rate over all the possible

recoil energies,

R =

∫ ∞

ET

dER
ρ0

mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv . (2.2)

Here ET is the threshold energy, the smallest recoil energy which the detector is capable

of measuring, and is a crucial parameter of the experimental setup.

In general, the WIMP-nucleus cross section can be separated into a spin-independent

(scalar) and a spin-dependent contribution, and the total WIMP-nucleus cross section

is calculated by adding coherently the above spin and scalar components, using nuclear

wave functions. The differential cross section thus reads

dσWN

dER
=

mN

2µ2
Nv

2

(
σSI
0 F 2

SI(ER) + σSD
0 F 2

SD(ER)
)
, (2.3)

where σSI, SD
0 are the spin-independent and -dependent cross sections at zero momen-

tum transfer, and the form factors FSI, SD(ER) account for the coherence loss which

leads to a suppression in the event rate for heavy WIMPs or nucleons in the spin-

independent and -dependent contributions.

[DC: Not sure we should start with this since we do not determine the ex-

pressions of the effective Lagrangian and this is actually only for Fermions.
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with the momentum transferred to the nucleus. A good review of the di↵erent form
factors for germanium is presented by Bednyakov et al. in [73].

2.3 SHM and the inverse velocity

The Standard Halo Model (SHM) assumes a velocity distribution according to an
isothermal sphere with Maxwellian distribution [32, 40, 42, 74]. Due to its simplicity it is
widely used for calculations in this field. The distribution function is defined via

f(~v) =
1

(2⇡)
3
2�3

exp

✓
� ~v2

2�2

◆
, (2.3.1)

where � is the central velocity. The distribution function is defined in the Galactic frame
and one hast to shift it to the Earth frame by taking ~v ! ~v + ~v

lag

[32, 40, 42, 74]. v
lag

is
the velocity of the solar system in the Galactic frame and also includes the velocity of
the Earth which exhibits an annual modulation.

f(~v + ~v
lag

) =
1

(2⇡)
3
2�3

exp

✓
�
(~v + ~v

lag

)2

2�2

◆
. (2.3.2)

The Galilean shift from the Galactic frame into the Earth frame underlies an annual
modulation (see section 2.5) which results in a variation of the distribution function
and hence also all quantities related to it. In addition, the parameters that define the
SHM and the model itself are subject to astrophysical uncertainties [24]. Furthermore,
diverse alternative distribution functions were proposed describing the behavior of DM
streams [41], debris flows [75], dark disks [76, 77] or other forms [78,79].

Inverse Velocity In the minimal WIMP case, the average over the distribution function
becomes an integral of f over v when considering a v�2 contribution coming from the
di↵erential cross section (see 2.2). In the e↵ective field theory (EFT), operators can have
additional velocity dependencies, e.g. a factor of v2 (O3, O5, O7 and O8 [57–59]). Extra
factors of q2 or q4 (momentum transfer) are also possible and were also considered in
earlier papers [60, 61]. The corresponding integrals would then be di↵erent, even in the
SHM. In this section I will perform the SHM calculation with standard v�2 contribution
from the di↵erential cross section only. I will calculate the integrals of higher order using
numerical tools for multidimensional integrals on C2.

The inverse velocity ⌘ is defined by

⌘(v
min

) =

Z
f(~v)

v
d3~v, (2.3.3)

where f(~v) is the velocity distribution function specified by the choice of halo. The SHM
distribution is given in eqn (2.3.2). The dependence of the integral on v�1 gives the
expression its name: ‘inverse velocity’. v

min

is the minimal velocity being able to lead to
a reaction associated with a recoil energy E

R

and is, hence, a function of E
R

and vice
versa.

v
min

= v
min

(E
R

) =

s
m

N

E
R

2µ2
�N

. (2.3.4)

2
‘cubature’ package by Steven G. Johnson. See http://ab-initio.mit.edu/wiki/index.php/Cubature.

11

2 MINIMAL WIMP IN THE SHM

with the momentum transferred to the nucleus. A good review of the di↵erent form
factors for germanium is presented by Bednyakov et al. in [73].

2.3 SHM and the inverse velocity

The Standard Halo Model (SHM) assumes a velocity distribution according to an
isothermal sphere with Maxwellian distribution [32, 40, 42, 74]. Due to its simplicity it is
widely used for calculations in this field. The distribution function is defined via
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where � is the central velocity. The distribution function is defined in the Galactic frame
and one hast to shift it to the Earth frame by taking ~v ! ~v + ~v

lag

[32, 40, 42, 74]. v
lag

is
the velocity of the solar system in the Galactic frame and also includes the velocity of
the Earth which exhibits an annual modulation.
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The Galilean shift from the Galactic frame into the Earth frame underlies an annual
modulation (see section 2.5) which results in a variation of the distribution function
and hence also all quantities related to it. In addition, the parameters that define the
SHM and the model itself are subject to astrophysical uncertainties [24]. Furthermore,
diverse alternative distribution functions were proposed describing the behavior of DM
streams [41], debris flows [75], dark disks [76, 77] or other forms [78,79].

Inverse Velocity In the minimal WIMP case, the average over the distribution function
becomes an integral of f over v when considering a v�2 contribution coming from the
di↵erential cross section (see 2.2). In the e↵ective field theory (EFT), operators can have
additional velocity dependencies, e.g. a factor of v2 (O3, O5, O7 and O8 [57–59]). Extra
factors of q2 or q4 (momentum transfer) are also possible and were also considered in
earlier papers [60, 61]. The corresponding integrals would then be di↵erent, even in the
SHM. In this section I will perform the SHM calculation with standard v�2 contribution
from the di↵erential cross section only. I will calculate the integrals of higher order using
numerical tools for multidimensional integrals on C2.

The inverse velocity ⌘ is defined by

⌘(v
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v
d3~v, (2.3.3)

where f(~v) is the velocity distribution function specified by the choice of halo. The SHM
distribution is given in eqn (2.3.2). The dependence of the integral on v�1 gives the
expression its name: ‘inverse velocity’. v

min

is the minimal velocity being able to lead to
a reaction associated with a recoil energy E
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and is, hence, a function of E
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1 Introduction

2 Direct dark matter detection

Let us start by briefly reviewing some basic expressions describing the WIMP rate in

direct dark matter detection [1] (for a recent review see Ref. [2]).

The differential event rate for the elastic scattering of a WIMP with mass mχ off a

nucleus with mass mN is given by

dR

dER
=

ρ0
mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv , (2.1)

where ρ0 is the local WIMP density and f(v) is the WIMP speed distribution in the

detector frame normalized to unity. The integration over WIMP speeds is performed

from the minimum WIMP speed which can induce a recoil of energy ER: vmin =√
(mNER)/(2µ2

N) and a escape velocity vesc, the maximum speed in the Galactic rest

frame for WIMPs which are gravitationally bound to the Milky Way. The total event

rate is then calculated by integrating the differential event rate over all the possible

recoil energies,

R =

∫ ∞

ET

dER
ρ0

mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv . (2.2)

Here ET is the threshold energy, the smallest recoil energy which the detector is capable

of measuring, and is a crucial parameter of the experimental setup.

In general, the WIMP-nucleus cross section can be separated into a spin-independent

(scalar) and a spin-dependent contribution, and the total WIMP-nucleus cross section

is calculated by adding coherently the above spin and scalar components, using nuclear

wave functions. The differential cross section thus reads

dσWN

dER
=

mN

2µ2
Nv

2

(
σSI
0 F 2

SI(ER) + σSD
0 F 2

SD(ER)
)
, (2.3)

where σSI, SD
0 are the spin-independent and -dependent cross sections at zero momen-

tum transfer, and the form factors FSI, SD(ER) account for the coherence loss which

leads to a suppression in the event rate for heavy WIMPs or nucleons in the spin-

independent and -dependent contributions.

[DC: Not sure we should start with this since we do not determine the ex-

pressions of the effective Lagrangian and this is actually only for Fermions.
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with the momentum transferred to the nucleus. A good review of the di↵erent form
factors for germanium is presented by Bednyakov et al. in [73].

2.3 SHM and the inverse velocity

The Standard Halo Model (SHM) assumes a velocity distribution according to an
isothermal sphere with Maxwellian distribution [32, 40, 42, 74]. Due to its simplicity it is
widely used for calculations in this field. The distribution function is defined via

f(~v) =
1

(2⇡)
3
2�3

exp

✓
� ~v2

2�2

◆
, (2.3.1)

where � is the central velocity. The distribution function is defined in the Galactic frame
and one hast to shift it to the Earth frame by taking ~v ! ~v + ~v

lag

[32, 40, 42, 74]. v
lag

is
the velocity of the solar system in the Galactic frame and also includes the velocity of
the Earth which exhibits an annual modulation.

f(~v + ~v
lag

) =
1

(2⇡)
3
2�3

exp

✓
�
(~v + ~v

lag

)2

2�2

◆
. (2.3.2)

The Galilean shift from the Galactic frame into the Earth frame underlies an annual
modulation (see section 2.5) which results in a variation of the distribution function
and hence also all quantities related to it. In addition, the parameters that define the
SHM and the model itself are subject to astrophysical uncertainties [24]. Furthermore,
diverse alternative distribution functions were proposed describing the behavior of DM
streams [41], debris flows [75], dark disks [76, 77] or other forms [78,79].

Inverse Velocity In the minimal WIMP case, the average over the distribution function
becomes an integral of f over v when considering a v�2 contribution coming from the
di↵erential cross section (see 2.2). In the e↵ective field theory (EFT), operators can have
additional velocity dependencies, e.g. a factor of v2 (O3, O5, O7 and O8 [57–59]). Extra
factors of q2 or q4 (momentum transfer) are also possible and were also considered in
earlier papers [60, 61]. The corresponding integrals would then be di↵erent, even in the
SHM. In this section I will perform the SHM calculation with standard v�2 contribution
from the di↵erential cross section only. I will calculate the integrals of higher order using
numerical tools for multidimensional integrals on C2.

The inverse velocity ⌘ is defined by

⌘(v
min

) =

Z
f(~v)

v
d3~v, (2.3.3)

where f(~v) is the velocity distribution function specified by the choice of halo. The SHM
distribution is given in eqn (2.3.2). The dependence of the integral on v�1 gives the
expression its name: ‘inverse velocity’. v

min

is the minimal velocity being able to lead to
a reaction associated with a recoil energy E

R

and is, hence, a function of E
R

and vice
versa.

v
min

= v
min

(E
R

) =

s
m

N

E
R

2µ2
�N

. (2.3.4)
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‘cubature’ package by Steven G. Johnson. See http://ab-initio.mit.edu/wiki/index.php/Cubature.
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4

XENON1T [38] SuperCDMS [39] WArP [40]

Detector Target Xe Ge Ar

Nuclear Mass, mN/amu 131 73 40

Detector Mass, mdet/kg 1000 100 1000

Exposure Time, texp/days 60.8 109.5 365

Energy Range, [Emin, Emax] /keV [2,30] [10,100] [30,130]

TABLE I. Parameter values for the three mock experiments used in this work, chosen to closely match those used in Ref. [28].
The meanings of the experimental parameters are described in Sec. IIIA.

(iii) rescaled Via Lactea II data (VL-2).

We model the dark disk velocity distribution as a
Maxwellian with σ = 50 km s−1 and vlag = 60 km s−1,
similar to the typical values obtained by Ref. [45]. A 50%
contribution from the dark disk is at the upper limit of
the range presented by Ref. [37] and we consider this as
an extreme case. The third benchmark is the distribution
function as extracted from the Via Lactea 2 (VL-2) N-
body simulation [46] and presented in Ref. [33]. It is aver-
aged over galactic radius in the range 7.5 < R < 9.5 kpc
and measured in bins of width 10 m s−1. VL-2 is a DM-
only simulation and thus leads to a lower peak speed than
the SHM. Including the effects of baryons should deepen
the galactic potential and raise this peak speed closer
to that observed in the Milky Way. In order for a fairer
comparison, we therefore rescale the VL-2 data such that
f3(v) peaks at the same speed as in the SHM, allowing
us to probe the departures from Maxwellian form which
appear in N-body simulations.

These benchmark velocity distributions are illustrated
in Fig. 2. The VL-2 data has the flattest velocity dis-
tribution with a tail extending beyond 800 km s−1. This
leads to a flatter spectrum and a larger number of events
at higher energies than for the other two benchmark mod-
els. The SHM distribution produces roughly the same
number of events as the VL-2 distribution, but with
fewer events at high energy. In the dark disk model,
however, the value of vlag is much smaller. This means
that WIMPs typically have much lower speeds and many
have insufficient energy to overcome the thresholds of
the detector. This results in fewer observed events and a
steeper recoil spectrum.

B. Parameter Exploration

We generate mock datasets for each set of benchmark
WIMP parameters and then analyse these using Markov
Chain Monte Carlo (MCMC) techniques. For a given
set of physical parameters, θtrue = {mχ,σp, f(v)}, we
calculate the expected number of events for each detector,
Ne, to an accuracy of 0.1 events:
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FIG. 2. 1-D and 3-D speed distributions, f(v) and f3(v), and
mean inverse speed, η(v), for the 3 benchmark speed models
with parameter values as given in Sec. IIIA : Standard Halo
Model (SHM - solid blue), Standard Halo Model + Dark Disk
(DD - dashed green) and Via Lactea 2 (VL-2 - dotted red).

Ne = mdettexp

∫ Emax

Emin

dR

dE
(E) dE. (6)

For each experiment, the number of events actually
observed, No, is drawn from a Poisson distribution with
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2.3 SHM and the inverse velocity

The Standard Halo Model (SHM) assumes a velocity distribution according to an
isothermal sphere with Maxwellian distribution [32, 40, 42, 74]. Due to its simplicity it is
widely used for calculations in this field. The distribution function is defined via

f(~v) =
1

(2⇡)
3
2�3

exp

✓
� ~v2

2�2

◆
, (2.13)

where � is the central velocity. The distribution function is defined in the Galactic frame
and one hast to shift it to the Earth frame by taking ~v ! ~v + ~vlag [32, 40, 42, 74]. vlag is
the velocity of the solar system in the Galactic frame and also includes the velocity of
the Earth which exhibits an annual modulation.

f(~v + ~vlag) =
1

(2⇡)
3
2�3

exp

✓
�
(~v + ~vlag)2

2�2

◆
. (2.14)

The Galilean shift from the Galactic frame into the Earth frame underlies an annual
modulation (see section 2.5) which results in a variation of the distribution function
and hence also all quantities related to it. In addition, the parameters that define the
SHM and the model itself are subject to astrophysical uncertainties [24]. Furthermore,
diverse alternative distribution functions were proposed describing the behavior of DM
streams [41], debris flows [75], dark disks [76, 77] or other forms [78,79].

Inverse Velocity In the minimal WIMP case, the average over the distribution function
becomes an integral of f over v when considering a v�2 contribution coming from the
di↵erential cross section (see 2.2). In the e↵ective field theory (EFT), operators can have
additional velocity dependencies, e.g. a factor of v2 (O3, O5, O7 and O8 [57–59]). Extra
factors of q2 or q4 (momentum transfer) are also possible and were also considered in
earlier papers [60, 61]. The corresponding integrals would then be di↵erent, even in the
SHM. In this section I will perform the SHM calculation with standard v�2 contribution
from the di↵erential cross section only. I will calculate the integrals of higher order using
numerical tools for multidimensional integrals on C2.

The inverse velocity ⌘ is defined by

⌘(vmin) =

Z
f(~v)

v
d3~v, (2.15)

where f(~v) is the velocity distribution function specified by the choice of halo. The SHM
distribution is given in eqn (2.14). The dependence of the integral on v�1 gives the
expression its name: ‘inverse velocity’. vmin is the minimal velocity being able to lead to
a reaction associated with a recoil energy ER and is, hence, a function of ER and vice
versa.

vmin = vmin(ER) =

s
mNER

2µ2
�N

. (2.16)

Inserting the shifted SHM velocity distribution f(~v + ~vlag) (2.14) into eqn (2.15) gives:

⌘(vmin) =

Z 1

vmin

1

(2⇡)
3
2�3

exp

✓
�
(~v + ~vlag)2

2�2

◆
1

v
d3~v, (2.17)

2
‘cubature’ package by Steven G. Johnson. See http://ab-initio.mit.edu/wiki/index.php/Cubature.
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1 Introduction

2 Direct dark matter detection

Let us start by briefly reviewing some basic expressions describing the WIMP rate in

direct dark matter detection [1] (for a recent review see Ref. [2]).

The differential event rate for the elastic scattering of a WIMP with mass mχ off a

nucleus with mass mN is given by

dR

dER
=

ρ0
mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv , (2.1)

where ρ0 is the local WIMP density and f(v) is the WIMP speed distribution in the

detector frame normalized to unity. The integration over WIMP speeds is performed

from the minimum WIMP speed which can induce a recoil of energy ER: vmin =√
(mNER)/(2µ2

N) and a escape velocity vesc, the maximum speed in the Galactic rest

frame for WIMPs which are gravitationally bound to the Milky Way. The total event

rate is then calculated by integrating the differential event rate over all the possible

recoil energies,

R =

∫ ∞

ET

dER
ρ0

mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv . (2.2)

Here ET is the threshold energy, the smallest recoil energy which the detector is capable

of measuring, and is a crucial parameter of the experimental setup.

In general, the WIMP-nucleus cross section can be separated into a spin-independent

(scalar) and a spin-dependent contribution, and the total WIMP-nucleus cross section

is calculated by adding coherently the above spin and scalar components, using nuclear

wave functions. The differential cross section thus reads

dσWN

dER
=

mN

2µ2
Nv

2

(
σSI
0 F 2

SI(ER) + σSD
0 F 2

SD(ER)
)
, (2.3)

where σSI, SD
0 are the spin-independent and -dependent cross sections at zero momen-

tum transfer, and the form factors FSI, SD(ER) account for the coherence loss which

leads to a suppression in the event rate for heavy WIMPs or nucleons in the spin-

independent and -dependent contributions.

[DC: Not sure we should start with this since we do not determine the ex-

pressions of the effective Lagrangian and this is actually only for Fermions.
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Inserting the shifted SHM velocity distribution f(~v + ~v
lag

) (2.3.2) into eqn (2.3.3) gives:
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Instead of an infinite upper limit for the integral, sometimes a cuto↵ in the distribution
function is considered. Particles in the DM halo at a higher velocity than the escape
velocity v

esc

can not be contained by the gravitational force and ‘escape’ the halo. A finite
cuto↵ requires renormalizing the distribution function by dividing through a normalization
factor N (see appendix).

2.4 Putting together the pieces

Combining the components discussed in the previous sections one obtains the di↵erential
rate equation (2.1.1) The di↵erential rate indicates how the event rate changes with
a variation in the recoil energy E

R

. Usually it is calculated in the unit ‘dru’ with
dru = (kg · days · keV )�1 [39]. This peculiar unit is a result of di↵erent groups of
physicists (both experimental and theoretical), astrophysicists and particle physicists,
collaborating and contributing to this one definition where each fraction works with their
own set of preferred units. In most cases the astro- and particle physical inputs are
given in a specific set of units as well and accordingly one has to apply a suitable unit
conversion factor (see appendix, section 7.1.2).

The total event rate can be determined by integrating the di↵erential rate over the
recoil energy [39].
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where we assume a finite energy threshold E
T

. Furthermore, one has to bear in mind that
experiments are not only limited from below (E

T

) but also a realistic upper limit should
be considered. A realistic energy interval for the germanium detectors in the CDMS
experiment is E

R

of 1 to 100 keV. Detectors made from heavy nuclei are kinematically
more favorable to detect heavy WIMPs, lighter materials in return are to use to detect
light particles.

If one wants to calculate the total number of events, the total rate has to be multiplied
with the exposure of the specific experiment. The exposure is the product of the total
mass of the detector (in kg or t) and run time of the experiment (in units of days or
years).
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Sometimes a more detailed visualization of the events that mirrors the energy dependence
is more useful. Instead of integrating over the entire energy interval, one considers bins
with an appropriate energy width.

2.5 Annual Modulation

A very distinct feature in the theory of DM signals is the annual modulation of the
relative velocity Earth-DM [32,40–42]. The Earth orbits the Sun whilst the entire solar
system moves with a constant speed relative to the Galactic frame. In the Standard Halo
Model (SHM), this leads to a modulation of the relative velocity with a periodicity of
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2 Event rate

The differential event rate, usually expressed in terms of counts/kg/day/keV (a quantity
referred to as a differential rate unit or dru) for a WIMP with mass mχ and a nucleus with
mass mN is given by

dR

dER
=

ρ0
mN mχ

∫

∞

vmin

vf(v)
dσWN

dER
(v,ER) dv , (1)

where ρ0 is the local WIMP density, dσWN

dER
(v,ER) is the differential cross-section for the

WIMP-nucleus elastic scattering and f(v) is the WIMP speed distribution in the detector
frame normalized to unity.

Since the WIMP-nucleon relative speed is of order 100 km−1 s−1 the elastic scattering
occurs in the extreme non-relativistic limit, and the recoil energy of the nucleon is easily
calculated in terms of the scattering angle in the center of mass frame, θ∗

ER =
µ2
Nv2(1− cos θ∗)

mN
, (2)

where µN = mχmN/(mχ +mN ) is the WIMP-nucleus reduced mass.
The lower limit of the integration over WIMP speeds is given by the minimum WIMP

speed which can cause a recoil of energy ER: vmin =
√

(mNER)/(2µ2
N ). The upper limit is

formally infinite, however the local escape speed vesc (see Sec. 3.2), is the maximum speed in

the Galactic rest frame for WIMPs which are gravitationally bound to the Milky Way.
The total event rate (per kilogram per day) is found by integrating the differential event

rate over all the possible recoil energies:

R =
∫

∞

ET

dER
ρ0

mN mχ

∫

∞

vmin

vf(v)
dσWN

dER
(v,ER) dv , (3)

where ET is the threshold energy, the smallest recoil energy which the detector is capable of
measuring.

The WIMP-nucleus differential cross section encodes the particle physics inputs (and as-
sociated uncertainties) including the WIMP interaction properties. It depends fundamentally
on the WIMP-quark interaction strength, which is calculated from the microscopic description
of the model, in terms of an effective Lagrangian describing the interaction of the particular
WIMP candidate with quarks and gluons. The resulting cross section is then promoted to
a WIMP-nucleon cross section. This entails the use of hadronic matrix elements, which de-
scribe the nucleon content in quarks and gluons, and are subject to large uncertainties. In
general, the WIMP-nucleus cross section can be separated into a spin-independent (scalar)
and a spin-dependent contribution,

dσWN

dER
=
(

dσWN

dER

)

SI
+
(

dσWN

dER

)

SD
. (4)

Finally, the total WIMP-nucleus cross section is calculated by adding coherently the above
spin and scalar components, using nuclear wave functions. The form factor, F (ER), encodes
the dependence on the momentum transfer, q =

√
2mNER, and accounts for the coherence

2
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1 Introduction

2 Direct dark matter detection

Let us start by briefly reviewing some basic expressions describing the WIMP rate in

direct dark matter detection [1] (for a recent review see Ref. [2]).

The differential event rate for the elastic scattering of a WIMP with mass mχ off a

nucleus with mass mN is given by

dR

dER
=

ρ0
mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv , (2.1)

where ρ0 is the local WIMP density and f(v) is the WIMP speed distribution in the

detector frame normalized to unity. The integration over WIMP speeds is performed

from the minimum WIMP speed which can induce a recoil of energy ER: vmin =√
(mNER)/(2µ2

N) and a escape velocity vesc, the maximum speed in the Galactic rest

frame for WIMPs which are gravitationally bound to the Milky Way. The total event

rate is then calculated by integrating the differential event rate over all the possible

recoil energies,

R =

∫ ∞

ET

dER
ρ0

mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv . (2.2)

Here ET is the threshold energy, the smallest recoil energy which the detector is capable

of measuring, and is a crucial parameter of the experimental setup.

In general, the WIMP-nucleus cross section can be separated into a spin-independent

(scalar) and a spin-dependent contribution, and the total WIMP-nucleus cross section

is calculated by adding coherently the above spin and scalar components, using nuclear

wave functions. The differential cross section thus reads

dσWN

dER
=

mN

2µ2
Nv

2

(
σSI
0 F 2

SI(ER) + σSD
0 F 2

SD(ER)
)
, (2.3)

where σSI, SD
0 are the spin-independent and -dependent cross sections at zero momen-

tum transfer, and the form factors FSI, SD(ER) account for the coherence loss which

leads to a suppression in the event rate for heavy WIMPs or nucleons in the spin-

independent and -dependent contributions.

[DC: Not sure we should start with this since we do not determine the ex-

pressions of the effective Lagrangian and this is actually only for Fermions.
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Inserting the shifted SHM velocity distribution f(~v + ~v
lag

) (2.3.2) into eqn (2.3.3) gives:
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Instead of an infinite upper limit for the integral, sometimes a cuto↵ in the distribution
function is considered. Particles in the DM halo at a higher velocity than the escape
velocity v

esc

can not be contained by the gravitational force and ‘escape’ the halo. A finite
cuto↵ requires renormalizing the distribution function by dividing through a normalization
factor N (see appendix).

2.4 Putting together the pieces

Combining the components discussed in the previous sections one obtains the di↵erential
rate equation (2.1.1) The di↵erential rate indicates how the event rate changes with
a variation in the recoil energy E

R

. Usually it is calculated in the unit ‘dru’ with
dru = (kg · days · keV )�1 [39]. This peculiar unit is a result of di↵erent groups of
physicists (both experimental and theoretical), astrophysicists and particle physicists,
collaborating and contributing to this one definition where each fraction works with their
own set of preferred units. In most cases the astro- and particle physical inputs are
given in a specific set of units as well and accordingly one has to apply a suitable unit
conversion factor (see appendix, section 7.1.2).

The total event rate can be determined by integrating the di↵erential rate over the
recoil energy [39].
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where we assume a finite energy threshold E
T

. Furthermore, one has to bear in mind that
experiments are not only limited from below (E

T

) but also a realistic upper limit should
be considered. A realistic energy interval for the germanium detectors in the CDMS
experiment is E

R

of 1 to 100 keV. Detectors made from heavy nuclei are kinematically
more favorable to detect heavy WIMPs, lighter materials in return are to use to detect
light particles.

If one wants to calculate the total number of events, the total rate has to be multiplied
with the exposure of the specific experiment. The exposure is the product of the total
mass of the detector (in kg or t) and run time of the experiment (in units of days or
years).
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Sometimes a more detailed visualization of the events that mirrors the energy dependence
is more useful. Instead of integrating over the entire energy interval, one considers bins
with an appropriate energy width.

2.5 Annual Modulation

A very distinct feature in the theory of DM signals is the annual modulation of the
relative velocity Earth-DM [32,40–42]. The Earth orbits the Sun whilst the entire solar
system moves with a constant speed relative to the Galactic frame. In the Standard Halo
Model (SHM), this leads to a modulation of the relative velocity with a periodicity of

12

The response of these detectors to DM particles 
leads to an exponential signal 

Figure 1: The dependence of the spin independent differential event rate on the WIMP mass
and target. The solid and dashed lines are for Ge and Xe respectively and WIMP masses of
(from top to bottom at ER = 0keV) 50, 100 and 200 keV. The scattering cross-section on
the proton is taken to be σSI

p = 10−8 pb.

4.2 Time dependence

The Earth’s orbit about the Sun leads to a time dependence, specifically an annual modula-
tion, in the differential event rate [29; 49]. The Earth’s speed with respect to the Galactic
rest frame is largest in Summer when the component of the Earth’s orbital velocity in the
direction of solar motion is largest. Therefore the number of WIMPs with high (low) speeds
in the detector rest frame is largest (smallest) in Summer. Consequently the differential event
rate has an annual modulation, with a peak in Winter for small recoil energies and in Summer
for larger recoil energies [50]. The energy at which the annual modulation changes phase is
often referred to as the ‘crossing energy’.

Since the Earth’s orbital speed is significantly smaller than the Sun’s circular speed the
amplitude of the modulation is small and, to a first approximation, the differential event rate
can, for the standard halo model, be written approximately as a Taylor series:

dR

dER
≈

¯(

dR

dER

)

[1 +∆(ER) cosα(t)] , (27)

where α(t) = 2π(t − t0)/T , T = 1 year and t0 ∼ 150 days. In fig. 2 we plot the energy

dependence of the amplitude in terms of vmin (recall that vmin ∝ E1/2
R with the constant of

proportionality depending on the WIMP and target nuclei masses). The amplitude of the
modulation is of order 1-10 %.

The Earth’s rotation provides another potential time dependence in the form of a diur-
nal modulation as the Earth acts as a shield in front of the detector [51; 52], however the
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2 Direct dark matter detection

Let us start by briefly reviewing some basic expressions describing the WIMP rate in

direct dark matter detection [1] (for a recent review see Ref. [2]).

The differential event rate for the elastic scattering of a WIMP with mass mχ off a

nucleus with mass mN is given by

dR

dER
=

ρ0
mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv , (2.1)

where ρ0 is the local WIMP density and f(v) is the WIMP speed distribution in the

detector frame normalized to unity. The integration over WIMP speeds is performed

from the minimum WIMP speed which can induce a recoil of energy ER: vmin =√
(mNER)/(2µ2

N) and a escape velocity vesc, the maximum speed in the Galactic rest

frame for WIMPs which are gravitationally bound to the Milky Way. The total event

rate is then calculated by integrating the differential event rate over all the possible

recoil energies,

R =

∫ ∞

ET

dER
ρ0

mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv . (2.2)

Here ET is the threshold energy, the smallest recoil energy which the detector is capable

of measuring, and is a crucial parameter of the experimental setup.

In general, the WIMP-nucleus cross section can be separated into a spin-independent

(scalar) and a spin-dependent contribution, and the total WIMP-nucleus cross section

is calculated by adding coherently the above spin and scalar components, using nuclear

wave functions. The differential cross section thus reads

dσWN

dER
=

mN

2µ2
Nv

2

(
σSI
0 F 2

SI(ER) + σSD
0 F 2

SD(ER)
)
, (2.3)

where σSI, SD
0 are the spin-independent and -dependent cross sections at zero momen-

tum transfer, and the form factors FSI, SD(ER) account for the coherence loss which

leads to a suppression in the event rate for heavy WIMPs or nucleons in the spin-

independent and -dependent contributions.

[DC: Not sure we should start with this since we do not determine the ex-

pressions of the effective Lagrangian and this is actually only for Fermions.
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Inserting the shifted SHM velocity distribution f(~v + ~v
lag

) (2.3.2) into eqn (2.3.3) gives:
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Instead of an infinite upper limit for the integral, sometimes a cuto↵ in the distribution
function is considered. Particles in the DM halo at a higher velocity than the escape
velocity v

esc

can not be contained by the gravitational force and ‘escape’ the halo. A finite
cuto↵ requires renormalizing the distribution function by dividing through a normalization
factor N (see appendix).

2.4 Putting together the pieces

Combining the components discussed in the previous sections one obtains the di↵erential
rate equation (2.1.1) The di↵erential rate indicates how the event rate changes with
a variation in the recoil energy E

R

. Usually it is calculated in the unit ‘dru’ with
dru = (kg · days · keV )�1 [39]. This peculiar unit is a result of di↵erent groups of
physicists (both experimental and theoretical), astrophysicists and particle physicists,
collaborating and contributing to this one definition where each fraction works with their
own set of preferred units. In most cases the astro- and particle physical inputs are
given in a specific set of units as well and accordingly one has to apply a suitable unit
conversion factor (see appendix, section 7.1.2).

The total event rate can be determined by integrating the di↵erential rate over the
recoil energy [39].
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where we assume a finite energy threshold E
T

. Furthermore, one has to bear in mind that
experiments are not only limited from below (E

T

) but also a realistic upper limit should
be considered. A realistic energy interval for the germanium detectors in the CDMS
experiment is E

R

of 1 to 100 keV. Detectors made from heavy nuclei are kinematically
more favorable to detect heavy WIMPs, lighter materials in return are to use to detect
light particles.

If one wants to calculate the total number of events, the total rate has to be multiplied
with the exposure of the specific experiment. The exposure is the product of the total
mass of the detector (in kg or t) and run time of the experiment (in units of days or
years).

N = M
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Sometimes a more detailed visualization of the events that mirrors the energy dependence
is more useful. Instead of integrating over the entire energy interval, one considers bins
with an appropriate energy width.

2.5 Annual Modulation

A very distinct feature in the theory of DM signals is the annual modulation of the
relative velocity Earth-DM [32,40–42]. The Earth orbits the Sun whilst the entire solar
system moves with a constant speed relative to the Galactic frame. In the Standard Halo
Model (SHM), this leads to a modulation of the relative velocity with a periodicity of
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2 MINIMAL WIMP IN THE SHM

with the momentum transferred to the nucleus. A good review of the di↵erent form
factors for germanium is presented by Bednyakov et al. in [73].

2.3 SHM and the inverse velocity

The Standard Halo Model (SHM) assumes a velocity distribution according to an
isothermal sphere with Maxwellian distribution [32, 40, 42, 74]. Due to its simplicity it is
widely used for calculations in this field. The distribution function is defined via

f(~v) =
1

(2⇡)
3
2�3

exp

✓
� ~v2

2�2

◆
, (2.3.1)

where � is the central velocity. The distribution function is defined in the Galactic frame
and one hast to shift it to the Earth frame by taking ~v ! ~v + ~v

lag

[32, 40, 42, 74]. v
lag

is
the velocity of the solar system in the Galactic frame and also includes the velocity of
the Earth which exhibits an annual modulation.

f(~v + ~v
lag

) =
1

(2⇡)
3
2�3

exp

✓
�
(~v + ~v

lag

)2

2�2

◆
. (2.3.2)

The Galilean shift from the Galactic frame into the Earth frame underlies an annual
modulation (see section 2.5) which results in a variation of the distribution function
and hence also all quantities related to it. In addition, the parameters that define the
SHM and the model itself are subject to astrophysical uncertainties [24]. Furthermore,
diverse alternative distribution functions were proposed describing the behavior of DM
streams [41], debris flows [75], dark disks [76, 77] or other forms [78,79].

Inverse Velocity In the minimal WIMP case, the average over the distribution function
becomes an integral of f over v when considering a v�2 contribution coming from the
di↵erential cross section (see 2.2). In the e↵ective field theory (EFT), operators can have
additional velocity dependencies, e.g. a factor of v2 (O3, O5, O7 and O8 [57–59]). Extra
factors of q2 or q4 (momentum transfer) are also possible and were also considered in
earlier papers [60, 61]. The corresponding integrals would then be di↵erent, even in the
SHM. In this section I will perform the SHM calculation with standard v�2 contribution
from the di↵erential cross section only. I will calculate the integrals of higher order using
numerical tools for multidimensional integrals on C2.

The inverse velocity ⌘ is defined by

⌘(v
min

) =

Z
f(~v)

v
d3~v, (2.3.3)

where f(~v) is the velocity distribution function specified by the choice of halo. The SHM
distribution is given in eqn (2.3.2). The dependence of the integral on v�1 gives the
expression its name: ‘inverse velocity’. v

min

is the minimal velocity being able to lead to
a reaction associated with a recoil energy E

R

and is, hence, a function of E
R

and vice
versa.

v
min

= v
min

(E
R

) =

s
m

N

E
R

2µ2
�N

. (2.3.4)

2
‘cubature’ package by Steven G. Johnson. See http://ab-initio.mit.edu/wiki/index.php/Cubature.

11

Annual modulation of Dark Matter 

The Earth velocity inside the DM halo has a 
seasonal dependence. 

 

This implies different detection rate in 
summer and winter 

2 MINIMAL WIMP IN THE SHM

Figure 3: The Galaxy and the Earth in the DM halo. Illustration of annual modulation3:
The Galaxy moves with a constant velocity relative to the DM halo, here called the ‘WIMP
wind’. The orbit of the Earth around the Sun is tilted by 60� with respect to the galactic
plane and the motion exhibited is anti-parallel to the WIMP wind in June and parallel in
December, increasing or decreasing the relative velocity in the Earth frame.

signal can help to distinguish DM interactions from reactions caused by sources on Earth
or other cosmic origins than the DM halo.

The halo distribution function is defined in the frame of the Galactic DM halo.
One has to shift into the Earth frame by a vector ~vlag = ~vlag,0 + ~vE,0 cos(↵(t)), where
↵(t) = 2⇡ t�t0

T and T = 1 year, t0 ⇡ 150 days. ~vlag,0 denotes the constant velocity of the
Galaxy and ~vE,0 the maximal velocity shift of the Earth. The maximum and minimum
velocities occur in June and December respectively. Introducing annual modulation
into the calculations does not change any of the previous steps. in particularly the
velocity integral remains the same. However, the quantity vlag is no longer a constant
but a time-dependent variable. Hence, one has to substitute vlag = vlag(t) in all earlier
calculation. Let us now discuss how annual modulation a↵ects the signal.

The di↵erential rate can be approximated by a Taylor series [39]

dR

dER
⇡

✓
dR

dER

◆
(1 +�(ER) cos(↵(t))) . (2.20)

The quantity � is an indicator how the distribution modulates over the year. � is
commonly referred to as the ‘annual modulation amplitude’ and is an energy dependent
quantity. It is very convenient to consider this variable and compare it later on with
results from di↵erent modulated operators of the e↵ective field theory (EFT) [57–59].

The extreme values of the modulation are to find in June and December. Accordingly,
a possible definition for the annual modulation amplitude regarding the approximation
as a Taylor series would be [39]

� ⇡ 1

2

✓
dR

dER

���
June,1st

� dR

dER

���
December,1st

◆
. (2.21)

3
taken from the DM research website of the University of She�eld www.hep.shef.ac.uk/research/dm
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Figure 3: The Galaxy and the Earth in the DM halo. Illustration of annual modulation3:
The Galaxy moves with a constant velocity relative to the DM halo, here called the ‘WIMP
wind’. The orbit of the Earth around the Sun is tilted by 60� with respect to the galactic
plane and the motion exhibited is anti-parallel to the WIMP wind in June and parallel in
December, increasing or decreasing the relative velocity in the Earth frame.

signal can help to distinguish DM interactions from reactions caused by sources on Earth
or other cosmic origins than the DM halo.

The halo distribution function is defined in the frame of the Galactic DM halo.
One has to shift into the Earth frame by a vector ~vlag = ~vlag,0 + ~vE,0 cos(↵(t)), where
↵(t) = 2⇡ t�t0

T and T = 1 year, t0 ⇡ 150 days. ~vlag,0 denotes the constant velocity of the
Galaxy and ~vE,0 the maximal velocity shift of the Earth. The maximum and minimum
velocities occur in June and December respectively. Introducing annual modulation
into the calculations does not change any of the previous steps. in particularly the
velocity integral remains the same. However, the quantity vlag is no longer a constant
but a time-dependent variable. Hence, one has to substitute vlag = vlag(t) in all earlier
calculation. Let us now discuss how annual modulation a↵ects the signal.

The di↵erential rate can be approximated by a Taylor series [39]
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(1 +�(ER) cos(↵(t))) . (2.20)

The quantity � is an indicator how the distribution modulates over the year. � is
commonly referred to as the ‘annual modulation amplitude’ and is an energy dependent
quantity. It is very convenient to consider this variable and compare it later on with
results from di↵erent modulated operators of the e↵ective field theory (EFT) [57–59].

The extreme values of the modulation are to find in June and December. Accordingly,
a possible definition for the annual modulation amplitude regarding the approximation
as a Taylor series would be [39]
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Figure 5: Annual modulation of the inverse velocity (fig. 5a) and the di↵erential rate
(fig. 5b) vs the minimal velocity vmin and the recoil energy ER respectively: Figure 5a
shows the inverse velocity at di↵erent months. It clearly changes throughout the year,
in particular for low velocities and less pronounced for medium velocities after a node
(�(ER) = 0). This is also reflected in the variation of the di↵erential rate as shown in
figure 5b.

xmin = 0.85 for di↵erent WIMP masses and materials. Assuming this value for the
inversion point, we can see that low WIMP masses result in low recoil energies. This
relation is not as simple for targets since they cross at certain points. However, this
means that di↵erent targets can be used to confirm the position of the inversion point
and exclude other factors, i.e. di↵erent targets provide complementary data.

Figure 4a presents the modulation amplitudes for germanium and several di↵erent
WIMP masses. The inversion point wanders, as already pointed out by figure 4b, to
lower recoil energies as the WIMP mass decreases. The black dotted line indicates the
energy threshold of 1 keV. It becomes evident that for WIMP masses much smaller than
the target nucleus the inversion point can fall below threshold, i.e. can not be measured
in experiment. As a consequence that the mass attribution becomes less accurate and
an entire range of experiments would not be able to provide complementary data. This
is a strong argument to pursue achieving low thresholds in experiments and applying a
variety of di↵erent targets for the direct detection of DM. With regard of the EFT one
has to bear in mind that operators with non-standard velocity dependencies can exhibit
inversion points shifted relative to the recoil energies presented here. I discuss this in
section 3.3.
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Observed rate	  

Backgrounds are not expected to modulate 



Figure 1: The dependence of the spin independent differential event rate on the WIMP mass
and target. The solid and dashed lines are for Ge and Xe respectively and WIMP masses of
(from top to bottom at ER = 0keV) 50, 100 and 200 keV. The scattering cross-section on
the proton is taken to be σSI

p = 10−8 pb.

4.2 Time dependence

The Earth’s orbit about the Sun leads to a time dependence, specifically an annual modula-
tion, in the differential event rate [29; 49]. The Earth’s speed with respect to the Galactic
rest frame is largest in Summer when the component of the Earth’s orbital velocity in the
direction of solar motion is largest. Therefore the number of WIMPs with high (low) speeds
in the detector rest frame is largest (smallest) in Summer. Consequently the differential event
rate has an annual modulation, with a peak in Winter for small recoil energies and in Summer
for larger recoil energies [50]. The energy at which the annual modulation changes phase is
often referred to as the ‘crossing energy’.

Since the Earth’s orbital speed is significantly smaller than the Sun’s circular speed the
amplitude of the modulation is small and, to a first approximation, the differential event rate
can, for the standard halo model, be written approximately as a Taylor series:

dR

dER
≈

¯(

dR

dER

)

[1 +∆(ER) cosα(t)] , (27)

where α(t) = 2π(t − t0)/T , T = 1 year and t0 ∼ 150 days. In fig. 2 we plot the energy

dependence of the amplitude in terms of vmin (recall that vmin ∝ E1/2
R with the constant of

proportionality depending on the WIMP and target nuclei masses). The amplitude of the
modulation is of order 1-10 %.

The Earth’s rotation provides another potential time dependence in the form of a diur-
nal modulation as the Earth acts as a shield in front of the detector [51; 52], however the
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DAMA (DAMA/LIBRA) signal on annual modulation 

cumulative exposure 427,000 kg day (13 
annual cycles) with NaI 

energy threshold of 2 keV is considered.
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Figure 1: Experimental model-independent residual rate of the single-

hit scintillation events, measured by DAMA/NaI over seven and by
DAMA/LIBRA over six annual cycles in the (2 – 6) keV energy interval
as a function of the time [4, 5, 17, 18]. The zero of the time scale is Jan-
uary 1st of the first year of data taking. The experimental points present
the errors as vertical bars and the associated time bin width as horizontal
bars. The superimposed curve is A cos ω(t − t0) with period T = 2π

ω = 1
yr, phase t0 = 152.5 day (June 2nd) and modulation amplitude, A, equal
to the central value obtained by best fit over the whole data: cumulative
exposure is 1.17 ton × yr. The dashed vertical lines correspond to the
maximum expected for the DM signal (June 2nd), while the dotted vertical
lines correspond to the minimum. See Refs. [17, 18] and text.

The DAMA/LIBRA data released so far correspond to six annual cycles
for an exposure of 0.87 ton×yr [17, 18]. Considering these data together
with those previously collected by DAMA/NaI over 7 annual cycles (0.29
ton×yr), the total exposure collected over 13 annual cycles is 1.17 ton×yr;
this is orders of magnitude larger than the exposures typically collected
in the field. Several analyses on the model-independent DM annual mod-
ulation signature have been performed (see Refs. [17, 18] and references
therein); here just few arguments are mentioned. In particular, Fig. 1
shows the time behaviour of the experimental residual rates of the single-

hit events collected by DAMA/NaI and by DAMA/LIBRA in the (2–6) keV
energy interval [17, 18]. The superimposed curve is the cosinusoidal func-
tion: A cos ω(t− t0) with a period T = 2π

ω = 1 yr, with a phase t0 = 152.5
day (June 2nd), and modulation amplitude, A, obtained by best fit over
the 13 annual cycles. The hypothesis of absence of modulation in the data
can be discarded [17, 18] and, when the period and the phase are released
in the fit, values well compatible with those expected for a DM particle
induced effect are obtained [18]; for example, in the cumulative (2–6) keV
energy interval: A = (0.0116±0.0013) cpd/kg/keV, T = (0.999±0.002) yr

4

... however other experiments (CDMS, Xenon, CoGeNT, ZEPLIN, Edelweiss, ...) did not 
confirm (its interpretation in terms of WIMPs).  
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Upper bounds on the SI cross section 

XENON10, XENON100, LUX (Xe), CDMSlite, SuperCDMS, Edelweiss (Ge), COUPP (CF3I), and 
CRESST (CaWO4) have not observed any DM signal, which constrains the scattering cross 
section 

LUX	  

XENON100	  

DAMA	  

SuperCDMS	  
CDMSlite	  

EDELWEISS	  low	  thr.	  

CRESST-‐comm.	  (2009)	  

CRESST-‐II	  	  

CRESST	  	  
(2011)	  

DISCLAIMER:  
 
THIS PLOT ASSUMES 
•  Isothermal Spherical Halo 
•  WIMP with only spin-independent interaction 
•  coupling to protons = coupling to neutrons 
•  elastic scattering 

Plot by Raimund Strauss	  



2nd Generation experiments will extend the sensitivity by over an order of magnitude.  
SuperCDMS @ SNOLAB will have an excellent coverage of the light mass window. 

28	  

Are there viable DM candidates in this mass range?  
 
Can they be detected in future detectors? 
 
How does this compare to other searches  
(indirect/colliders) 



Observe the products of Dark Matter annihilation (or decay!) 

Subject to large uncertainties and very dependent on the halo parameters  

Indirect detection, signals or backgrounds? 

(positrons, antiprotons, antideuterons) 

(e.g., from the galactic centre or other 
galaxies) 

(from the centre of the Sun or the 
Earth) 
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The antimatter puzzle... 

PAMELA satellite revealed an excess in the positron fraction but no excess in the 
antiproton signal. 	  

Is this an evidence of 
DM annihilation? 	  

Even Decaying DM 
could account for it	  



The antimatter puzzle... 

PAMELA satellite revealed an excess in the positron fraction but no excess in the 
antiproton signal.	  

Astrophysical explanation in terms of pulsars is plausible.	   See e.g., Delahaye et al. 2010 

Too small signals in canonical models (WIMP)	  

•  boost factors (inhomogeneities? IMBH?) 
•  play with propagation parameters 
•  non-thermal DM 
•  decaying dark matter	  

Why are there no antiprotons?	  

•  Majorana fermions disfavoured (neutralino) 
•  Leptophilic dark matter	  

The interpretation in terms of DM is very 
complicated	  

No evidence for associated gamma ray excess	  

•  decaying dark matter	  
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The antimatter puzzle... 

New AMS results up to 500 GeV shows a “plateau” (or is it starting to decrease??)	  

32	  TAE	  Benasque	  2014	  

AMS 2014 



Fermi data on total flux of positrons and electrons came as a further constraint 

Astrophysical explanation in terms of pulsars is plausible.	   See e.g., Delahaye et al. 2010 
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Antiproton searches show no hint for DM 

The antiproton data is good enough to constrain very light WIMPs	  

Donato et al. 2008 
Salati, Donato, Fornengo 2010 

... also a potentially promising future in antideuteron searches... 	  

Bottino, Donato, Fornengo, Salati 2005 
Salati, Donato, Fornengo 2010 

The predicted flux for a very light WIMP 
annihilating into quarks may exceed  
observations	  

Lavalle 2010 

DGC, Delahaye, Lavalle 2012 

Light WIMPs annihilating in scalar 
particles?	  

See also latest results by BESS-II	  
BESS-II ‘11 
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Internal 
bremsstrahlung 

Continuum (secondary photons) 

Gamma rays from DM annihilation 

Direct gamma emission (features, lines) 

Fragmentation, 
hadronization and 
decays of SM 
particles 

f̄

f

γ

χ

χ

η

f̄

f

γ

χ

χ

η

f̄

f

γ

χ

χ

η

Figure 1. Feynman diagrams of the processes that contribute in leading order to the three-body
annihilation cross-section and produce internal bremsstrahlung. The first diagram very roughly cor-
responds to VIB, the second and third to FSR (but note that these contributions can be properly
defined and separated in a gauge-invariant way [22]).

mass-splitting of µ = 1.1. The spectra of secondary photons that stem from the subsequent
decay or fragmentation of the produced fermions are derived using Pythia 6.4.19 [56]. Note
that in case of bottom-quark final states we also take into account the production of VIB
gluons following Refs. [48, 57].1 For two-body annihilation, we cross-checked our results
with the analytical fits from Ref. [58, 59] and find very good agreement. From Fig. 2 it
is clear that for small enough mass-splittings the gamma-ray spectrum at high energies is
completely dominated by VIB photons, which show up as a pronounced peak at energies
close to the dark matter mass. Secondary photons and FSR only become relevant at lower
energies, or for larger values of µ. In our spectral analysis of galactic center fluxes presented in
Section 3, we will entirely concentrate on the spectral VIB feature and neglect the featureless
secondary photons. We will consider the range 1 < µ ! 2, because the VIB feature is most
important in the nearly degenerate case. In this range, the shape of the VIB spectrum is
almost independent of µ (it becomes slightly wider for larger µ), but its normalization can
vary rather strongly: for µ = 1.1 (µ = 2.0), the rate is already suppressed by a factor of 0.55
(0.05) with respect to the exactly degenerate µ = 1 case; for large µ, the rate scales as ∝ µ−4

(whereas the two-body annihilation rate scales like ∝ µ−2). For comparison with our main
results, we will also derive limits from dwarf galaxy observations (see Section 4.1); in this
case we will take into account both VIB and secondary photons.

2.2 Connection to the MSSM

Before continuing, let us briefly mention the connection between our toy model and the much
more often studied case of supersymmetry. The minimal supersymmetric extension to the
standard model (MSSM) is extremely well motivated from a particle physics point of view—
leading, in particular, to a unification of gauge couplings and strongly mitigating fine-tuning
issues in the Higgs sector—and the stability of the lightest supersymmetric particle (LSP)
is guaranteed by the conservation of R-parity; if it is neutral and weakly interacting, the
LSP thus makes for an ideal DM candidate (for a comprehensive and pedagogical primer to
supersymmetry and the MSSM see e.g. Ref. [61]).

In most cases, the lightest neutralino is the LSP, and thus a prime candidate for WIMP
DM [3]. It is a linear combination of the superpartners of the neutral components of the

1We use throughout the values αs = 0.118 and αem = 1/128 as evaluated at the mass of the Z boson. For
DM masses mχ = 40 to 300 GeV this approximation affects the VIB photon cross-section at the few percent
level, and the gluon VIB cross-section by ! 20%.

– 5 –

Loop processes 

ar
X

iv
:1

20
5.

26
88

v5
  [

he
p-

ph
]  

25
 Ju

l 2
01

2

130 GeV dark matter and the Fermi gamma-ray line

James M. Cline∗

Department of Physics, McGill University, 3600 Rue University, Montréal, Québec, Canada H3A 2T8

Based on tentative evidence for a peak in the Fermi gamma-ray spectrum originating from near
the center of the galaxy, it has been suggested that dark matter of mass ∼ 130 GeV is annihilating
directly into photons with a cross section ∼ 24 times smaller than that needed for the thermal
relic density. We propose a simple particle physics model in which the DM is a scalar X, with a
coupling λXX2|S|2 to a scalar multiplet S carrying electric charge, which allows for XX → γγ at
one loop due to the virtual S. We predict a second monochromatic photon peak at 114 GeV due
to XX → γZ. The S is colored under a hidden sector SU(N) or QCD to help boost the XX → γγ
cross section. The analogous coupling λhh

2|S|2 to the Higgs boson can naturally increase the partial
width for h → γγ by an amount comparable to its standard model value, as suggested by recent
measurements from CMS. Due to the hidden sector SU(N) (or QCD), S binds to its antiparticle
to form S-mesons, which will be pair-produced in colliders and then decay predominantly to XX,
hh, or to glueballs of the SU(N) which subsequently decay to photons. The cross section for X on
nucleons is close to the Xenon100 upper limit, suggesting that it should be discovered soon by direct
detection.

Refs. [1, 2] have recently found tentative evidence for
a narrow spectral feature at Eγ = 130 GeV in the Fermi-
LAT [3] data (a 4.6σ excess, or 3.3σ taking into account
the look-elsewhere effect), and have interpreted it as pho-
tons from the annihilation of dark matter (DM) of the
same mass. The Fermi collaboration does not yet re-
port such a signal, but their most recent upper limit of
⟨σv⟩ ∼ 10−27cm3s−1 (assuming an Einasto profile) for
130 GeV DM to annihilate into two photons [4] is con-
sistent with the required cross section found in [2]. The
DM interpretation was bolstered in ref. [5], which showed
that the two-photon annihilation channel gives a better
fit to the feature than do other final states leading to
photons, the others tending to give a broader peak than
is observed. Ref. [6] has suggested that the excess has
an astrophysical origin associated with the Fermi bub-
ble regions, but ref. [5] claims to locate the spatial re-
gions in which the signal is maximized, indicating that
the strongest emission is coming from close to the galac-
tic center and not the Fermi bubble regions. In this note
we adopt the annihilating DM hypothesis and propose a
model which can account for the monochromatic photon
line.1

q e

q e

λX λX

γ

γ

+S
X

X s

s

2(q e)s

FIG. 1: Feynman diagrams for the annihilation XX → γγ
mediated by virtual S.

∗Electronic address: jcline@physics.mcgill.ca
1 For an alternative model involving an extra U(1) gauge boson
see [7]. See also [8] for an earlier model that can provide gamma
ray lines from DM annihilation.

Dark matter (here denoted by X) should couple only
weakly to photons, if at all, at tree-level [9, 10]. One way
to insure the “darkness” of the DM is for it to couple
to photons only via loops. At one loop, the DM should
couple directly to charged particles S. To make a renor-
malizable coupling of this type, both X and S must be
bosons, since the stability of X and the conservation of
charge require X2 and |S|2. This leads us to consider the
interactions

Lint =
λX

2
X2 |S|2 + λh|H |2 |S|2 +

λhX

2
|H |2 X2 (1)

betweenX , the Higgs doubletH , and S. The second cou-
pling is not necessary, but neither is there is any reason to
forbid it, and in fact we will show that it can naturally
give rise to an interesting enhancement in the h → γγ
branching ratio, for the same values of the S mass and
charge as needed to explain the Fermi line. The third
coupling is useful for achieving the correct relic density
of X [11], as we will discuss. The stability of X is insured
by the Z2 symmetry X → −X .

Decays of S. It is necessary to make S unstable
in order to avoid charged relics, on whose abundance
there are very stringent bounds from terrestrial searches
for anomalous heavy isotopes [12, 13] and from their ef-
fects on big bang nucleosynthesis [14, 15]. We will also
find it useful to let S transform under QCD or a hid-
den SU(N) gauge symmetry, in order to boost the cross
section for XX → γγ. Suppose S is in the fundamen-
tal representation of SU(N) for definiteness. If SU(N)
is QCD and S has charge 4/3, it can decay into right-
handed up-type quarks through the renormalizable op-
erator ϵαβγSαūR,βuc

R,γ . If the SU(N) is exotic, then S
could decay into a lighter, neutral fundamental repre-
sentation field T and two charged right-handed fermions
through a dimension 5 operator. For example, if S has
charge qS = 2, the decay into T + e+ + e+ occurs via the

2 Gamma-ray flux from dark matter annihilation

The continuum gamma-ray differential flux from DM annihilation from a given observational region
∆Ω in the galactic halo has two main contributions: Prompt and Inverse Comptom Scattering
(ICS),

dΦγ

dEγ
(Eγ ,∆Ω) =

(

dΦγ

dEγ

)

prompt

+

(

dΦγ

dEγ

)

ICS

. (1)

We detail both contributions in the next subsections.

2.1 Prompt gamma rays

A continuous spectrum of gamma rays is produced by the decays of π0’s generated in the cascading
of annihilation products and by internal bremsstrahlung. While the former process is completely
determined for each given final state of annihilation, the latter depends on the details of the DM
model, such as the spin of the DM particle and the properties of the mediating particle. Neverthe-
less, it is known that internal bremsstrahlung always contains much model-independent final state
radiations, which are emitted directly from charged particles in the final states. In our analysis of
generic DM models, we only consider these components of the continuum spectrum (HOW IMPOR-
TANT ARE THE OTHERS?). It is a safe choice for the conservative approach that we follow, since
the inclusion of model-dependent components like (WHICH ARE THE OTHERS?) virtual internal
bremsstrahlung would make constraints stronger.

The prompt contribution can be written as

(

dΦγ

dEγ

)

prompt

=
∑

i

dN i
γ

dEγ
⟨σiv⟩

1

8πm2
DM

J̄(∆Ω)∆Ω , (2)

where the discrete sum is over all DM annihilation channels, dN i
γ/dEγ is the differential gamma-ray

yield, ⟨σiv⟩ is the annihilation cross section averaged over its velocity distribution, mDM is the mass
of the DM particle, and the quantity J̄(∆Ω), commonly known as the J-factor, is defined as

J̄(∆Ω) ≡
1

∆Ω

∫

dΩ

∫

l.o.s.
ρ2(r(l,Ψ)) dl . (3)

This quantity accounts for both the DM distribution and the geometry of the problem1. The integral
of the DM squared density ρ2 in the direction of observation Ψ is along the line of sight (l.o.s), and
r and l represent the galactocentric distance and the distance to the Earth, respectively.

In eq. (2), all the dependence on astrophysical parameters is contained in the factor J̄(∆Ω)∆Ω,
whereas the rest of the terms contain the particle physics details2. The most crucial aspect in the
calculation of J̄(∆Ω)∆Ω is related to the modeling of the DM distribution.

1In other works it also includes instrumental effects such as the Point Spread Function, see e.g., Refs.[4, 5, 6, 7].
CHECK THIS COMMENT

2Strictly speaking, both terms are not completely independent each other, as the minimum predicted mass for
DM halos is set by the properties of the DM particle and it is expected to play an important role also in the J-factor.
CHECK THIS COMMENT
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Astrophysical input 

DM Density profile 

Region of observation (backgrounds) 

Theoretical input 

DM annihilation cross section IN THE HALO 

mW = 100GeV

ϵ = 300 kg yr (1.27)

⟨σv⟩ ≈ a + bv2 (1.28)

v2Decoupling ≈ 1/20 (1.29)

v2halo ≈ 10−7 (1.30)

4
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mW = 100GeV

ϵ = 300 kg yr (1.27)

⟨σv⟩ ≈ a + bv2 (1.28)

v2Decoupling ≈ 1/20 (1.29)

v2halo ≈ 10−7 (1.30)
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Fermi-LAT ‘14 
Fermi-LAT can provide constraints for light WIMPs 

Constraint on 
light WIMPs 

Fermi-LAT ‘11 

Fermi-LAT observation of Dwarf 
Spheroidals 

Thermal cross-section excluded for 
some channels (bb and ττ)

m>100 GeV for the bb channel  
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sistent with WMAP. Blue points have a lower thermal relic density but it is assumed

that neutralinos still comprise all of the DM in virtue of additional non-thermal produc-

tion processes. The line indicate the Fermi 95% upper limits obtained from likelihood

analysis on the 8 selected dwarfs. Figure from [31].

of the parameter space are included. We can see in Fig. 2 that these (red) points remain

unconstrained.

No excess has been observed either from dSphs in Cherenkov telescopes like HESS,

VERITAS, MAGIC and Whipple, implying limits from these studies that vary between

a few times � 10�23 to a few times 10�22 cm3 s�1 for a 1 TeV mass neutralino. Let us

remark that Cherenkov telescopes are more sensitive to DM particles with high masses

(higher than about 200 GeV), and their searches are thus complementary to those of

Fermi.

In a recent work [33], using 24 months of data, adding Segue 1 and Carina to

the sample of 8 dSphs analyzed in [31], and including the uncertainty in the DM

distribution, Fermi-LAT collaboration was able to obtain stronger constrains combining

all the dSph observations into a single joint likelihood function. The upper limits on

the annihilation cross section can be seen in Fig. 3 from ref. [33]. Thus WIMPs with

thermal cross sections are ruled out up to a mass of about 27 GeV for the bb̄ channel
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Fig. 3. – Spectra from the likelihood analysis of the Fermi LAT data (number of counts vs
reconstructed energy) in a 7◦×7◦ region around the Galactic Center (number of counts vs
reconstructed energy)

Fig. 4. – Residuals ( (exp.data - model)/model) of the above likelihood analysis. The blue area
shows the systematic errors on the effective area.

tools [17]). The P6−v3 version of the Instrument Response Functions and event classifi-
cation was used. For this analysis a region of interest (RoI) of 7◦×7◦ was considered in
order to minimize the diffuse backgrounds contributions. The RoI was centered at the
Galactic Center position at RA = 266.46◦, Dec=-28.97◦. The events were selected to
have an energy between 400MeV and 100GeV, to be of the ”diffuse” class (high purity
sample) and to have converted in the front part of the tracker. The selection conditions
provided us with events with very well reconstructed incoming direction. Data have been
binned into a 100×100bins map for the subsequent likelihood analysis. In order to per-
form maximum likelihood analysis of the data, a model of the already known sources and
the diffuse background should be built. The used model is made of 11 sources from the
Fermi 1 year catalog [3] which are located within or very close to the considered region
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annihilation] cross section [DC: in the Early Universe of
⟨σv⟩ ∼] 1-2×10−26 cm3/s, [DC: remarkably close to that
expected for a thermal relic]. ⟨σv⟩ ∼ 10−26 cm3/s
This situation has triggered many studies interpreting

the excess from the particle physics point of view [12–39].
However, as pointed out in Ref. [40], it is [DC: crucial]
to understand if this excess [DC: can be obtained within]
a complete theoretical framework. [DC: In] the case of
SUSY this is highly non-trivial, [DC: however very re-
cently,] a new study has shown that the neutralino in
the MSSM, and other simplified DM models can still de-
scribe the excess for DM masses up to hundreds of GeV
depending on the primary annihilation channel [41]. [DC:
Do they include direct detection bounds and LHC con-
straints as we do?]
In this work, we extend our previous analysis [42] to

demonstrate that the right-handed (RH) sneutrino DM
in the NMSSM is an excellent scenario to account for the
excess while fulfilling constraints from direct detection
experiments, LHC and low energy observables. In our
analysis we also incorporate Fermi-LAT constraints from
dwarf spheroidal galaxies (dSph), including an estimation
of the effect that the most recent results have on our data.
[DC: Modify this paragraph, more details, similar to the
abstract].

RH SNEUTRINO DM IN THE NMSSM

This model has been extensively described in Refs. [45,
46]. It is an extended version of the NMSSM, in which a
new gauge singlet superfield, N , is introduced in order to
account for RH neutrino and sneutrino (Ñi) states [DC:
as in [43, 44]]. The superpotential of this construction is
given by

W = WNMSSM + λNSNN + yNL ·H2N, (1)

where flavour indices are omitted and the dot denotes the
antisymmetric SU(2)L product. WNMSSM is the NMSSM
superpotential, λN is a new dimensionless coupling, yN
is the neutrino Yukawa coupling, and H1,2 are the down
and up type doublet Higgs components, respectively. As
in the NMSSM, a global Z3 symmetry is imposed so that
there are no supersymmetric mass terms in the superpo-
tential. Since we assume R-parity conservation in order
to guarantee the stability of the LSP, the terms NNN
and SSN are forbidden. Furthermore, we do not con-
sider CP violation in the Higgs sector.
After radiative electroweak symmetry-breaking the

Higgs fields get non-vanishing vacuum expectation val-
ues (VEVs) and the physical Higgs states correspond to a
superposition of the H1, H2 and S fields. The RH sneu-
trino interacts with the SM particles through the mix-
ing in the Higgs sector thanks to the coupling λNSNN ,
thereby behaving as a WIMP.

[DC: Interestingly, light RH sneutrinos with masses in
the range of 10− 150 GeV are viable as DM candidates
[49] and constitute ideal candidates to account for the
GCE, as we already pointed out in Ref. [42]. Their phe-
nomenology is very rich, as they can annihilate into a
variety of final states, some of which include scalar and
pseudoscalar Higgses. In particular, if mÑ1

> mH0
1
(A0

1
),

the annihilation final state of sneutrinos is dominated
by a H0

1H
0
1 (A

0
1A

0
1) pair in vast regions of the param-

eter space. It must be noticed that through the pro-
cess Ñ1Ñ1 → H0

1H
0
1 (A

0
1A

0
1) with the subsequent decay

H0
1 (A

0
1) → f f̄ , GḠ where f denotes a fermion and G a

gauge boson, a non-standard final state is produced. In
general, this process will create a gamma ray flux contain-
ing a continuum component plus spectral features coming
from the γγ final states. ]
[DC: Given that the final state is not a pure channel

and include exotic configurations the model independent
approach generally found in the literature is not applica-
ble. In the next section we describe in detail how the fit
to the Fermi-LAT GCE is performed.]

FITTING THE GCE WITH RH SNEUTRINOS

Previous analyses of the GCE employ different assump-
tions on the Galactic diffuse and point source compo-
nents. Consequently, the reconstructed DM mass and
annihilation cross section differ slightly. In this work we
have followed the results of Ref. [10] where the authors
take into account theoretical model systematics by ex-
ploring a large range of Galactic diffuse emission models.
When these systematics are included as correlated er-
rors in the residual spectrum, the best fit for the DM
interpretation corresponds to a bb̄ final state with a mass
of 49+6.4

−5.4 GeV and a velocity averaged cross section of
1.76+0.28

−0.27 × 10−26 cm3/s.
To implement this analysis in our model, we have per-

formed a series of scans over the parameter space of the
model, implementing the bounds from collider, direct and
indirect detection experiments (for more details on the
scan and constraints the reader is referred to Ref. [42]).
All [DC: computing the gamma ray spectrum as well
as the RH sneutrino relic abundance with] micrOMEGAs
3.6.9 [50]. We set an upper bound on the RH sneu-
trino relic abundance, ΩÑ1

h2 < 0.13, consistent with
the latest Planck results [51]. Besides, we have con-
sidered the possibility that RH sneutrinos only con-
tribute to a fraction of the total relic density, and set
for concreteness a lower bound on the relic abundance,
0.001 < ΩÑ1

h2. To deal with these cases, the fractional
density, ξ = min[1,ΩÑ1

h2/0.11], will be introduced to ac-
count for the reduction in the rates for direct and indirect
searches (assuming that the RH sneutrino is present in
the DM halo in the same proportion as in the Universe).
[DC: We .]
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annihilation] cross section [DC: in the Early Universe of
⟨σv⟩ ∼] 1-2×10−26 cm3/s, [DC: remarkably close to that
expected for a thermal relic]. mDM ∼ 20− 100 GeV
This situation has triggered many studies interpreting

the excess from the particle physics point of view [12–39].
However, as pointed out in Ref. [40], it is [DC: crucial]
to understand if this excess [DC: can be obtained within]
a complete theoretical framework. [DC: In] the case of
SUSY this is highly non-trivial, [DC: however very re-
cently,] a new study has shown that the neutralino in
the MSSM, and other simplified DM models can still de-
scribe the excess for DM masses up to hundreds of GeV
depending on the primary annihilation channel [41]. [DC:
Do they include direct detection bounds and LHC con-
straints as we do?]
In this work, we extend our previous analysis [42] to

demonstrate that the right-handed (RH) sneutrino DM
in the NMSSM is an excellent scenario to account for the
excess while fulfilling constraints from direct detection
experiments, LHC and low energy observables. In our
analysis we also incorporate Fermi-LAT constraints from
dwarf spheroidal galaxies (dSph), including an estimation
of the effect that the most recent results have on our data.
[DC: Modify this paragraph, more details, similar to the
abstract].

RH SNEUTRINO DM IN THE NMSSM

This model has been extensively described in Refs. [45,
46]. It is an extended version of the NMSSM, in which a
new gauge singlet superfield, N , is introduced in order to
account for RH neutrino and sneutrino (Ñi) states [DC:
as in [43, 44]]. The superpotential of this construction is
given by

W = WNMSSM + λNSNN + yNL ·H2N, (1)

where flavour indices are omitted and the dot denotes the
antisymmetric SU(2)L product. WNMSSM is the NMSSM
superpotential, λN is a new dimensionless coupling, yN
is the neutrino Yukawa coupling, and H1,2 are the down
and up type doublet Higgs components, respectively. As
in the NMSSM, a global Z3 symmetry is imposed so that
there are no supersymmetric mass terms in the superpo-
tential. Since we assume R-parity conservation in order
to guarantee the stability of the LSP, the terms NNN
and SSN are forbidden. Furthermore, we do not con-
sider CP violation in the Higgs sector.
After radiative electroweak symmetry-breaking the

Higgs fields get non-vanishing vacuum expectation val-
ues (VEVs) and the physical Higgs states correspond to a
superposition of the H1, H2 and S fields. The RH sneu-
trino interacts with the SM particles through the mix-
ing in the Higgs sector thanks to the coupling λNSNN ,
thereby behaving as a WIMP.

[DC: Interestingly, light RH sneutrinos with masses in
the range of 10− 150 GeV are viable as DM candidates
[49] and constitute ideal candidates to account for the
GCE, as we already pointed out in Ref. [42]. Their phe-
nomenology is very rich, as they can annihilate into a
variety of final states, some of which include scalar and
pseudoscalar Higgses. In particular, if mÑ1

> mH0
1
(A0

1
),

the annihilation final state of sneutrinos is dominated
by a H0

1H
0
1 (A

0
1A

0
1) pair in vast regions of the param-

eter space. It must be noticed that through the pro-
cess Ñ1Ñ1 → H0

1H
0
1 (A

0
1A

0
1) with the subsequent decay

H0
1 (A

0
1) → f f̄ , GḠ where f denotes a fermion and G a

gauge boson, a non-standard final state is produced. In
general, this process will create a gamma ray flux contain-
ing a continuum component plus spectral features coming
from the γγ final states. ]
[DC: Given that the final state is not a pure channel

and include exotic configurations the model independent
approach generally found in the literature is not applica-
ble. In the next section we describe in detail how the fit
to the Fermi-LAT GCE is performed.]

FITTING THE GCE WITH RH SNEUTRINOS

Previous analyses of the GCE employ different assump-
tions on the Galactic diffuse and point source compo-
nents. Consequently, the reconstructed DM mass and
annihilation cross section differ slightly. In this work we
have followed the results of Ref. [10] where the authors
take into account theoretical model systematics by ex-
ploring a large range of Galactic diffuse emission models.
When these systematics are included as correlated er-
rors in the residual spectrum, the best fit for the DM
interpretation corresponds to a bb̄ final state with a mass
of 49+6.4

−5.4 GeV and a velocity averaged cross section of
1.76+0.28

−0.27 × 10−26 cm3/s.
To implement this analysis in our model, we have per-

formed a series of scans over the parameter space of the
model, implementing the bounds from collider, direct and
indirect detection experiments (for more details on the
scan and constraints the reader is referred to Ref. [42]).
All [DC: computing the gamma ray spectrum as well
as the RH sneutrino relic abundance with] micrOMEGAs
3.6.9 [50]. We set an upper bound on the RH sneu-
trino relic abundance, ΩÑ1

h2 < 0.13, consistent with
the latest Planck results [51]. Besides, we have con-
sidered the possibility that RH sneutrinos only con-
tribute to a fraction of the total relic density, and set
for concreteness a lower bound on the relic abundance,
0.001 < ΩÑ1

h2. To deal with these cases, the fractional
density, ξ = min[1,ΩÑ1

h2/0.11], will be introduced to ac-
count for the reduction in the rates for direct and indirect
searches (assuming that the RH sneutrino is present in
the DM halo in the same proportion as in the Universe).
[DC: We .]
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Fig. 1 Feynman diagrams for the production of weakly interacting massive particle pairs χχ̄ associated with a jet from
initial-state radiation of a gluon, g. (a) A contact interaction described with effective operators. (b) A simplified model with
a Z′ boson.

be produced directly at the LHC (see Fig. 1(a)). It is assumed here that the DM particle is either a Dirac

Table 1 Effective interactions coupling WIMPs to Standard Model quarks or gluons, following the formalism in Ref. [40],
where M⋆ is the suppression scale of the interaction. Operators starting with a D describe Dirac fermion WIMPs, the ones
starting with a C are for scalar WIMPs and Ga

µν is the colour field-strength tensor.

Name Initial state Type Operator

C1 qq scalar
mq

M2
⋆

χ†χq̄q

C5 gg scalar 1
4M2

⋆

χ†χαs(Ga
µν)

2

D1 qq scalar
mq

M3
⋆

χ̄χq̄q

D5 qq vector 1
M2

⋆

χ̄γµχq̄γµq

D8 qq axial-vector 1
M2

⋆

χ̄γµγ5χq̄γµγ5q

D9 qq tensor 1
M2

⋆

χ̄σµνχq̄σµνq

D11 gg scalar 1
4M3

⋆

χ̄χαs(Ga
µν)

2

fermion or a scalar χ; the only difference for Majorana fermions is that certain interactions are not allowed
and that the cross sections for the allowed interactions are larger by a factor of four. Seven interactions are
considered (see Table 1), namely those described by the operators C1, C5, D1, D5, D8, D9, D11, following
the naming scheme in Ref. [40]. These operators describe different bilinear quark couplings to WIMPs,
qq̄ → χχ̄, except for C5 and D11, which describe the coupling to gluons, gg → χχ̄. The operators for
Dirac fermions and scalars in Ref. [40] fall into six categories with characteristic Emiss

T spectral shapes. The
representative set of operators for these six categories are C1, C5, D1, D5, D9, and D11, while D8 falls
into the same category as D5 but is listed explicitly in Table 1 because it is often used to convert LHC
results into limits on DM pair production. In the operator definitions in Table 1, M∗ is the suppression scale
of the interaction, after integrating out the heavy mediator particles. The use of a contact interaction to
produce WIMP pairs via heavy mediators is considered conservative because it rarely overestimates cross
sections when applied to a specific scenario for physics beyond the SM. Cases where this approach is indeed
optimistic are studied in Refs. [39, 41–45]. Despite the caveats related to the validity of the EFT approach
(see Appendix A), this formalism is used here, as it provides a framework for comparing LHC results to
existing direct or indirect DM searches. Within this framework, interactions of SM and DM particles are

Monojet 
1502.01518 

2

new supersymmetric partner for each SM particle, di↵er-
ing by half a unit of spin from, but with gauge coupling
identical to, those of their SM counterparts. Collisions
of protons could result in pair production of squarks, q̃,
which could decay to a SM quark and a neutralino �̃0

1

; the
neutralino is assumed to be stable in R-parity-conserving
models [23]. If the mass di↵erence m

q̃

�m
�̃

0
1
is small, the

SM quarks would have very low momentum and would
therefore not be reconstructed as jets. Again, the radia-
tion of a photon either from an initial-state quark or an
intermediate squark would result in � + Emiss

T

events, as
shown in Fig. 5.

q

q̄

�

�

G

FIG. 1. Graviton (G) production in models of large extra
dimensions.

q

q̄ �

�̄

�

FIG. 2. Production of pairs of dark–matter particles (��̄) via
an e↵ective four-fermion qq̄��̄ vertex.

FIG. 3. Production of pairs of dark–matter particles (��̄) via
an explicit s-channel mediator, V.

The ATLAS [6] and CMS [7] collaborations have re-
ported limits on various models of new physics based
on searches for an excess in � + Emiss

T

events using pp
collisions at a center-of-mass energy

p
s = 7 TeV. This

paper reports the result of a search for new phenomena
in � + Emiss

T

events in pp collisions at
p
s = 8 TeV.

The paper is organized as follows. Section II gives a
brief description of the ATLAS detector. Section III ex-
plains the reconstruction of physics objects and Sec. IV

q

q̄

�

�

�

�̄

FIG. 4. Production of pairs of dark–matter particles (��̄) via
an e↵ective ����̄ vertex.

q

q̄
�

�̃01

�̃01

q

q̄

q̃

q̃⇤

FIG. 5. Pair production of squarks (q̃), followed by decay
into quarks and neutralinos (�̃0

1). The photon may also be
radiated from the squarks or final-state quarks.

describes the event selection applied. Section V describes
the signal and background Monte Carlo simulation sam-
ples used. Section VI outlines how the SM backgrounds
are estimated and discusses the systematic uncertainties
on the background estimation. Section VII describes the
results and their interpretation, and a summary is finally
given in Sec. VIII.

II. THE ATLAS DETECTOR

The ATLAS detector [24] is a multipurpose particle
physics apparatus with a forward-backward symmetric
cylindrical geometry and near 4⇡ coverage in solid an-
gle [25]. The inner tracking detector (ID) covers the
pseudorapidity range |⌘| < 2.5, and consists of a silicon
pixel detector, a silicon microstrip detector, and, for |⌘| <
2.0, a transition radiation tracker (TRT). The ID is sur-
rounded by a thin superconducting solenoid providing a
2T magnetic field. A high-granularity lead/liquid-argon
sampling electromagnetic calorimeter covers the region
|⌘| < 3.2. An iron/scintillator-tile calorimeter provides
hadronic coverage in the range |⌘| < 1.7. The liquid-
argon technology is also used for the hadronic calorime-
ters in the end-cap region 1.5 < |⌘| < 3.2 and for elec-
tromagnetic and hadronic measurements in the forward
region up to |⌘| = 4.9. The muon spectrometer (MS)
surrounds the calorimeters. It consists of three large
air-core superconducting toroid systems, precision track-
ing chambers providing accurate muon tracking out to
|⌘| = 2.7, and additional detectors for triggering in the
region |⌘| < 2.4.
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Figure 2: [Color online] Partonic monotop production cross-sections in the THDMIII+DM at the Tevatron
and the LHC, normalised to the invisible branching fraction of h

2

and its relevant couplings ỹiju , as a function
of h

2

mass (see text for details). For the Tevatron, the cg and ug fusion induced contributions are shown in
dot-dashed (green) and dotted (red) lines, respectively. For the 8 TeV LHC, these same contributions are shown
in dashed (blue) and full (black) lines, respectively.

simulated and controlled reliably. In particular, one can forego dealing with QCD multijet backgrounds which
have large theoretical uncertainties and in general require data-driven methods to control.

Since we are interested in the leptonic top decay mode, the topology of the sought signal for all models
consists on one b-jet, a lepton, missing transverse energy associated to both the unobserved decay of the X
particle and the neutrino coming from the leptonic top decay, and light jets 8 from initial and final state
radiation (ISR and FSR, respectively). Fig. 3 shows the leading order Feynman diagrams for the process
pp ! t + X ! `b + /ET . Note that due to the relevant PDFs, the LHC cross-sections associated with the
conjugate diagrams are suppressed compared to those in Fig. 3 if the incoming parton is a u quark. This is not
the case if the initial parton is a c quark because c and c̄ PDFs coincide.

t
b

`

/ET

t

u/c
X

/ET
u/c

u/c

t
b

`

/ET

X
/ET

Figure 3: Leading order Feynman diagrams for the signal: pp ! t +X ! b` + /ET . X represents a Z 0 or a
SM Z boson both coupling to u and t or a h

2

scalar coupling to c and t. Note that the /ET comes from the X
particle decay and the neutrino from the leptonic decay of the top quark.

A distinctive characteristic of this signature is the excess of /ET in the production of a single top. Nonetheless,
the main discriminating variable of the leptonic monotop signature is related to the transverse mass of the
lepton plus missing energy system (from now on we refer to it as MT ). This variable is defined as M2

T =

8Throughout this work we use the term light jet for all non-b-tagged jets.
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Fig. 1 Dominant Feynman diagrams for DM production in
conjunction with (a) a single b-quark and (b) a heavy quark
(bottom or top) pair using an e↵ective field theory approach.
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Fig. 2 Example of DM production in the b-FDM model.

operators are normalized by mq, which mitigates con-
tributions to flavour-changing processes, strongly con-
strained by flavour physics observables [25,26], through
the framework of minimal flavour violation (MFV). The
dependence on the quark mass makes final states with
bottom and top quarks the most sensitive to these op-
erators.

This search is also sensitive to tensor couplings be-
tween DM and quarks. The tensor operator (D9), which
describes a magnetic moment coupling, is parameter-
ized as [12]:

O
tensor

=
X

q

1

M2

⇤
�̄�µ⌫�q̄�µ⌫q. (2)

MFV suggests that the D9 operator should have a mass
dependence from Yukawa couplings although canoni-
cally this is not parametrised as such.

The results are also interpreted in light of a bottom-
Flavoured Dark Matter model (b-FDM) [27]. The b-
FDMmodel was proposed to explain the excess of gamma
rays from the galactic centre, recently observed by the
Fermi Gamma-ray Space Telescope, and interpreted as
a signal for DM annihilation [28]. This analysis of the
data recorded by the Fermi-LAT collaboration favours
DM with a mass of approximately 35 GeV annihilating
into b-quarks via a coloured mediator. In this model, a
new scalar field, �, mediates the interactions between
DM and quarks as shown in Fig. 2. DM is assumed to
be a Dirac fermion that couples to right-handed, down-

type quarks. The lightest DM particle, which consti-
tutes cosmic DM, preferentially couples to b-quarks.
The collider signature of this model is b-quarks pro-
duced in association with missing transverse momen-
tum. This analysis sets constraints on the mass of the
mediator and DM particle in the framework of the b-
FDM model.

2 Detector description and physics objects

The ATLAS detector [34] at the LHC covers the pseu-
dorapidity1 range of |⌘| < 4.9 and is hermetic in azi-
muth �. It consists of an inner tracking detector sur-
rounded by a superconducting solenoid, electromagnetic
and hadronic calorimeters, and an external muon spec-
trometer incorporating large superconducting toroidal
magnets. A three-level trigger system is used to select
events for subsequent o✏ine analysis. The data set used
in this analysis consists of 20.3 fb�1 of pp collision data
recorded at a centre-of-mass energy of

p
s = 8 TeV with

stable beam conditions [35] during the 2012 LHC run.
All subsystems listed above were required to be opera-
tional.

This analysis requires the reconstruction of muons,
electrons, jets, and missing transverse momentum. Muon
candidates are identified from tracks that are well recon-
structed inside both the inner detector and the muon
spectrometer [36]. To reject cosmic-ray muons, muon
candidates are required to be consistent with produc-
tion at the primary vertex, defined as the vertex with
the highest ⌃(ptrack

T

)2, where ptrack
T

refers to the trans-
verse momentum of each track.

Electrons are identified as tracks that are matched
to a well-reconstructed cluster in the electromagnetic
calorimeter. Electron candidates must satisfy the tight
electron shower shape and track selection criteria of
Ref. [37]. Both electrons and muons are required to have
transverse momenta p

T

> 20 GeV and |⌘| < 2.5. Poten-
tial ambiguities between overlapping candidate objects
are resolved based on their angular separation. If an
electron candidate and a jet overlap within �R < 0.2,
then the object is considered to be an electron and the
jet is discarded. If an electron candidate and any jet
overlap within 0.2 < �R < 0.4, or if an electron can-
didate and a b-tagged jet overlap within �R < 0.2 of

1 ATLAS uses a right-handed coordinate system with its
origin at the nominal interaction point (IP) in the centre of
the detector, and the z-axis along the beam line. The x-axis
points from the IP to the centre of the LHC ring, and the y-
axis points upwards. Cylindrical coordinates (r, �) are used
in the transverse plane, � being the azimuthal angle around
the beam line. The pseudorapidity ⌘ is defined in terms of
the polar angle ✓ as ⌘ = � ln tan(✓/2). Observables labeled
“transverse” are projected into the x–y plane.

Heavy quarks 
1410.4031 
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Fig. 12 Inferred 90% CL limits on (a) the spin-independent and (b) spin-dependent WIMP–nucleon scattering cross section
as a function of DM mass mχ for different operators (see Sect. 1). Results from direct-detection experiments for the spin-
independent [127–133] and spin-dependent [134–138] cross section, and the CMS (untruncated) results [14] are shown for
comparison. (c) The inferred 95% CL limits on the DM annihilation rate as a function of DM mass. The annihilation rate is
defined as the product of cross section σ and relative velocity v, averaged over the DM velocity distribution (⟨σ v⟩). Results
from gamma-ray telescopes [125, 126] are also shown, along with the thermal relic density annihilation rate [25, 26].

of the ADD and WIMPs models. This is done separately for the different selections, and the one with the
most stringent expected limit is adopted as the nominal result. In the region with squark/gluino masses
below 800 GeV, SR7 provides the best sensitivity while SR9 provides the most stringent expected limits for
heavier squark/gluino masses. Figure 14 presents the final results. Gravitino masses below 3.5 × 10−4 eV,
3 × 10−4 eV, and 2 × 10−4 eV are excluded at 95% CL for squark/gluino masses of 500 GeV, 1 TeV, and
1.5 TeV, respectively. The observed limits decrease by about 9%–13% after considering the −1σ uncertainty
from PDF and scale variations in the theoretical predictions. These results are significantly better than
previous results at LEP [54] and the Tevatron [15], and constitute the most stringent bounds on the gravitino
mass to date. For very high squark/gluino masses, the partial width for the gluino or squark to decay into a
gravitino and a parton becomes more than 25% of its mass and the narrow-width approximation employed
is not valid any more. In this case, other decay channels for the gluino and squarks should be considered,
leading to a different final state. The corresponding region of validity of this approximation is indicated in
the figure. Finally, limits on the gravitino mass are also computed in the case of non-degenerate squarks and
gluinos (see Fig. 15). Scenarios with mg̃ = 4×mq̃, mg̃ = 2×mq̃, mg̃ = 1/2×mq̃, and mg̃ = 1/4×mq̃ have
been considered. In this case, 95% CL lower bounds on the gravitino mass in the range between 1×10−4 eV
and 5× 10−4 eV are set depending on the squark and gluino masses.

Translated to upper limits on direct detection cross sections 
 

The most stringent constraint is for operator D11 (notice that this operator ~ 1/M*
3) and 

therefore subject to a large variation if the mediator mass is smaller than 1 TeV	  
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Taxonomy vs. Taxidermy	  
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•  Asymmetric DM
•  Inelastic DM
•  Decaying DM (e.g., gravitinos)
•  Axions
•  Self-interacting DM
•  …

•  “Standard” WIMPs

-  Supersymmetry 
(neutralinos, sneutrinos)

-  Kaluza-Klein DM 
-  Inert Doublet Model
-  …

Taxonomy (Theory–biased)  
Predictions are tested with experimental results 

 

Construct a bestiary of “well motivated models” 
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Excellent motivation for direct searches at low masses  
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Taxidermy (Phenomenology-driven) 

Identify some basic 
features from a 
positive 
observation 

Interpret experimental results in terms of simplified models or effective Lagrangians 

 

(Galactic Centre Emission)	  



Taxidermy (Phenomenology-driven) 

Identify some basic 
features from a 
positive 
observation 

Perform a 
complementary 
measurement with 
other search 
technique 

(Galactic Centre Emission)	  

(Signal in various direct detection 
targets or at the LHC)	  



Taxidermy (Phenomenology-driven) 

Identify some basic 
features from a 
positive 
observation 

Perform a 
complementary 
measurement with 
other search 
technique 

Some data might be more 
difficult to explain in terms 
of “standard” DM models 

(Galactic Centre Emission)	  

(Signal in various direct detection 
targets or at the LHC)	  

(DAMA annual modulation)	  



Taxidermy (Phenomenology-driven) 

Identify some basic 
features from a 
positive 
observation 

Perform a 
complementary 
measurement with 
other search 
technique 

©	  Esteban	  Seimandi	  
	  	  	  	  Animalia	  ExsKnta	  

Some data might be more 
difficult to explain in terms 
of “standard” DM models 

This motivates working with general frameworks, where 
little or nothing is assumed for the DM particle	  
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•  Experimental data allow us to reconstruct “phenomenological 
parameters”.  
 

  mX, σSI, σSD, <σv>ij 
 
•  Theoretical models tend to produce similar results  

(e.g., most WIMPs are alike) 

If there is a positive detection of DM, can we identify the underlying model?  

•  Data from different experiments has to be combined in order to 
remove degenerate solutions (and reduce the effect of 
uncertainties) 

Problem:  

Solution:  

Design strategies that allow the identification of DM from future 
data  
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Do not break what 
already works �
�

Good candidates for Dark Matter have to fulfil 
the following conditions	  
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