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DM 

Dark Matter (and Dark Energy) 
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Plan for today 

1) Motivation for Dark Matter 

2) Brief reminder of Cosmology 

3) Decoupling of particles in the Early Universe (WIMPs) 

4) 



Galaxies 
 

•  Rotation curves of spiral galaxies 
•  Gas temperature in elliptical galaxies 

Clusters of galaxies 
 

•  Peculiar velocities and gas temperature 
•  Weak lensing 
•  Dynamics of cluster collision 

Cosmological scales 
 
Through the study of the anisotropies in the Cosmic 
Microwave Background the fundamental components of 
the Universe can be determined  

Dark Matter is a necessary (and abundant) ingredient in the Universe 

ΩCDM h2 = 0.1196 ± 0.003
Planck 2013 
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Rotation curves of spiral galaxies become flat for large distances   

From the luminous matter of the disc one would 
expect a decrease in the velocity that is not 
observed 

Galaxies contain vast amounts of non-luminous matter  

Faber, Gallagher ‘79 
Bosma ‘78, ’81 

van Albada, Bahcall, Begeman, Sancisi ‘84 

Rubin ‘75 
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disk	  

	  	  	  	  	  	  	  	  	  	  Dark halo	  



Rotation curves of spiral galaxies become flat for large distances   

From the luminous matter of the disc one would 
expect a decrease in the velocity that is not 
observed 

Rubin ‘75 
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~ Spherical  
Dark Matter Halo 

10 kpc 

100 kpc 

Galaxies contain vast amounts of non-luminous matter  



Rotation curves of spiral galaxies become flat for large distances   

From the luminous matter of the disc one would 
expect a decrease in the velocity that is not 
observed 

Rubin ‘75 
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Isothermal Spherical Cow Halo (a.k.a. Standard Halo Model) 

Isotropic 
 
density distribution 
 
it has reached a steady state (Maxwell-Bolzmann distribution of velocities) 
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Model independent determination of the dark matter mass from direct detection
experiments

Bradley J. Kavanagh∗ and Anne M. Green†

School of Physics & Astronomy,University of Nottingham, University Park, Nottingham, NG7 2RD, UK
(Dated: 19th July, 2013)

Determining the dark matter (DM) mass is of paramount importance for understanding dark
matter. We present a novel parametrization of the DM speed distribution which will allow the DM
mass to be accurately measured using data from Weakly Interacting Massive Particle (WIMP) direct
detection experiments. Specifically, we parametrize the natural logarithm of the speed distribution
as a polynomial in the speed v. We demonstrate, using mock data from upcoming experiments,
that by fitting the WIMP mass and interaction cross-section, along with the polynomial coefficients,
we can accurately reconstruct both the WIMP mass and speed distribution. This new method is
the first demonstration that an accurate, unbiased reconstruction of the WIMP mass is possible
without prior assumptions about the distribution function. We anticipate that this technique will
be invaluable in the analysis of future experimental data.

PACS numbers: 07.05.Kf,14.80.-j,95.35.+d,98.62.Gq

Dark matter (DM) has thus far only been detected
through its gravitational interaction with Standard
Model particles and its particle nature is not yet known.
Weakly Interacting Massive Particles (WIMPs) are a
good DM candidate as they are generically produced in
the early Universe with the required abundance and Su-
persymmetry (SUSY) provides a concrete well-motivated
WIMP candidate in the form of the lightest neutralino
(e.g. Ref. [1]). WIMPs can be detected directly in the lab
or indirectly via their annihilation products. They can
also be produced at particle colliders such as the LHC.
Direct detection experiments [2, 3] aim to observe nuclear
recoils produced by WIMPs passing through terrestrial
detectors (such as XENON100 [4] or CDMS [5]). While
WIMPs are within the reach of near future direct detec-
tion experiments their convincing detection is likely to
require consistent signals (i.e. with the same WIMP pa-
rameters) from direct, indirect and collider searches (e.g.
Ref. [6]). An accurate determination of the WIMP pa-
rameters would also be instrumental in constraining the
parameter space of SUSY models (e.g. Ref. [7]).

Measuring the rate of nuclear recoils as a function of re-
coil energy should in principle allow the WIMP mass and
interaction cross-section with nucleons to be extracted.
However, the analysis of direct detection data requires
assumptions to be made about the astrophysical distri-
bution of the DM within the Milky Way halo. The local
velocity distribution, f(v), encodes the speeds of DM
particles and determines the recoil energies observed in
experiments. Direct detection experiments usually as-
sume the simplest possible model for the Milky Way halo
(referred to as the Standard Halo Model). This model
assumes that the halo is isotropic, has a density distri-
bution ρ(r) ∝ r−2 and has reached a steady state, in
which case it has a Maxwell-Boltzmann velocity distri-
bution in the Galactic frame. However, high resolution
N-body simulations [8, 9] suggest that the true distribu-

tion function is non-Maxwellian. In particular there may
be features in the high-speed tail of the speed distribution
from particles that are not yet virialised [10]. Further-
more, the effect of baryons on the DM halo is not yet
fully understood. For example, some simulations [11, 12]
show evidence for a dark disk (DD) which corotates with
the baryonic disk and which may significantly affect the
direct detection rate [13].

These uncertainties in the velocity distribution can
lead to an order of magnitude uncertainty in estimates
of the interaction cross-section [14] and significant bias
in the recovery of the WIMP mass from direct detec-
tion data [15]. It is therefore imperative to account for
this uncertainty in the current and future analysis of
such experiments. Several different approaches have been
proposed. One option is to simultaneously fit Galac-
tic parameters, for example the lag speed (the speed
of the Solar System with respect to the peak of the
WIMP speed distribution), the velocity dispersion and
anisotropy, alongside the WIMP mass and cross-section
[14, 16, 17]. However this method assumes that the Milky
Way halo is fully equilibrated and requires that it can be
described by one of a relatively small class of models. Pe-
ter proposed a more model-independent approach where
f(v) is parameterized as a series of constant bins in veloc-
ity space [15]. Subsequent studies have explored param-
eterizing the momentum distribution [18], while Ref. [19]
parameterises f(v) in terms of integrals of motion. How-
ever, these approaches still have significant shortcomings
and either result in a substantial bias in WIMP param-
eters [15, 18] or assume that the WIMP mass is already
known [19].

In this letter we present a new model-independent
parametrization method for f(v) which allows the ac-
curate, unbiased reconstruction of the WIMP mass. In
order to demonstrate the robustness of the method, we
generate mock data sets for three proposed experiments
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The effect of DM has also been observed in the Milky Way...  

Bovy, Tremaine 2012 

•  Observations also show that there is need for DM in the solar neighbourhood 

Rotation curve of the Milky Way 
Bertone, Iocco, Pato 2015 

•  There is DM in the central region of our Galaxy 
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There are substantial uncertainties in the description of our DM halo 

ar
X

iv
:1

21
2.

36
70

v1
  [

as
tro

-p
h.

CO
]  

15
 D

ec
 2

01
2

The Local Dark Matter Density

Fabrizio Nesti,a Paolo Salucci∗b

aUniversity of L’aquila - I-67100, L’Aquila, Italy
bSISSA
E-mail: nesti@aquila.infn.it, salucci@sissa.it

We present the recent robust determination of the value of the Dark Matter density at the Sun’s
location (ρ⊙) with a technique that does not rely on a global mass-modeling of the Galaxy. The
method is based on the local equation of centrifugal equilibrium and depends on local and quite
well known quantities such as the angular Sun’s velocity, the disk to dark contribution to the
circular velocity at the Sun, and the thin stellar disk scale length. This determination is inde-
pendent of the shape of the dark matter density profile, the knowledge of the rotation curve
at any radius, and the very uncertain bulge/disk/dark-halo mass decomposition. The result is:
ρ⊙ = 0.43(0.11)(0.10)GeV/cm3, where the quoted uncertainties are due to the uncertainty a) in
the slope of the circular-velocity at the Sun location and b) in the ratio between this radius and the
exponential length scale of the stellar disk. The devised technique is also able to take into account
any future improvement in the data relevant for the estimate.

VIII International Workshop on the Dark Side of the Universe,
June 10-15, 2012
Rio de Janeiro, Brazil

∗Speaker.

c⃝ Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

Nesti, Salucci 2012 

•  local DM density  
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SISSA 34/2009/EP

A novel determination of the local dark
matter density

Riccardo Catenaa

Piero Ulliob

a,bSISSA, Scuola Internazionale Superiore di Studi Avanzati,

Via Beirut 2-4, I-34014 Trieste, Italy and

INFN, Istituto Nazionale di Fisica Nucleare,

Sezione di Trieste, I-34014 Trieste, Italy

Abstract

We present a novel study on the problem of constructing mass models for the

Milky Way, concentrating on features regarding the dark matter halo component.

We have considered a variegated sample of dynamical observables for the Galaxy,

including several results which have appeared recently, and studied a 7- or 8-

dimensional parameter space - defining the Galaxy model - by implementing a

Bayesian approach to the parameter estimation based on a Markov Chain Monte

Carlo method. The main result of this analysis is a novel determination of the

local dark matter halo density which, assuming spherical symmetry and either an

Einasto or an NFW density profile is found to be around 0.39 GeV cm−3 with a 1-σ

error bar of about 7%; more precisely we find a ρDM (R0) = 0.385±0.027GeV cm−3

for the Einasto profile and ρDM (R0) = 0.389±0.025GeV cm−3 for the NFW. This

is in contrast to the standard assumption that ρDM(R0) is about 0.3 GeV cm−3

with an uncertainty of a factor of 2 to 3. A very precise determination of the

local halo density is very important for interpreting direct dark matter detection

experiments. Indeed the results we produced, together with the recent accurate

determination of the local circular velocity, should be very useful to considerably

narrow astrophysical uncertainties on direct dark matter detection.

aEmail: catena@sissa.it
bEmail: ullio@sissa.it

M. Weber, W. de Boer: Constraints on Galactic Dark Matter 9
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Fig. 6: The local DM densities ρ⊙,DM are shown for different fits with different parameters. The numbers correspond to the numbers
of the fit results in Table 5.

model is not very sensitive to this inner region, the parameters
of the bulge will not be varied anymore.

To optimize the remaining parameters in order to best de-
scribe the data, the following χ2 function was minimized using
the Minuit package (James and Roos 1975)

χ2 =
(Mcalc

tot − D)2

σ2Mtot

+
(vcalc⊙ − D)2

σ2v⊙
+
(ρcalctot − D)2

σ2ρtot
+

(Σcalcvis − D)
2

σ2
Σvis

+
(Σcalctot − D)2

σ2
Σtot

+
(rcalcd − D)2

σ2rd
+

(RCcalc
S lope − D)

2

σ2RCS lope
+
((A − B)calc − D)2

σ2A−B
(18)

The index calc means the observables were calculated from the
fitted parameters, while D denotes the experimental data for the
observable and σ its error. The constraints have been summa-
rized in Table 4.

The fit shows a more than 95% positive correlation between
the local dark matter density and the scale length of DM halo a
and an equally large negative correlation with the scale length rd
of the baryonic disc. Consequently, it is difficult to leave param-
eters free in the fit. Therefore the fit was first performed for fixed
values of a (rows 1-3 of Table 5) and then rd was fixed (rows 4-
7). With the other free parameters all experimental constraints
could be met, as indicated by the χ2 values in brackets below the
fitted values in Table 5. Of course, the total mass changed for the
different fits. Fig. 6 shows the resulting local DM density versus
the total mass, as calculated from the fitted parameters. It shows
that in spite of the small errors for the local density in individual
fits the spread in density is still quite large.

The fit was repeated for other halo profiles, which gave simi-
larly good χ2 values, as shown by rows 9-11 in Table 5. So with
the present data one cannot distinguish the different halo profiles.

Sofar only spherical halos have been discussed. Allowing
oblate halos with a ratio of short-to-long axis of 0.7 the local

DM density increases by about 20%, as shown by the last row
of Table 5. As mentioned before, dark discs can enhance this
value considerably more, so the uncertainty usually quoted for
the local dark matter density in the range of 0.2 to 0.7 GeV cm−3
(0.005 - 0.018 M⊙ pc−3) (Amsler et al. 2008; Gates et al. 1995)
is still valid in spite of the considerably improved data.

5. Conclusion
In this analysis five different halo profiles are compared with
recent dynamical constraints as summarized in Table 4. The
change of slope in the RC around 10 kpc (Fig. 3) was ignored, so
the monotonical decreasing RC for the smooth halo profiles do
not describe the data well. The change of slope may be related
to a ringlike DM substructure , as indicated by the structure in
the gas flaring (Kalberla et al. 2007) and by the structure in the
diffuse gamma radiation (de Boer et al. 2005). Such a ringlike
structure of DM gives a perfect description of the rotation curve,
especially the fast decrease between 6 and 10 kpc. If the DM sub-
structure is included, the local DM density increases above the
values found in this analysis, so the values quoted here should
be considered lower limits.

The astronomical constraints are consistent with a density
model of the Galaxy consisting of a central bulge, a disc and an
extended DM halo with a cuspy density profile and a local DM
density between 0.2 GeV cm−3 (0.005 M⊙ pc−3) and 0.4 GeV
cm−3 (0.01 M⊙ pc−3), as shown in Fig. 6. Strong positive and
negative correlations between the parameters were found in the
fit and they are causing the obvious correlations between ρ⊙,DM
and Mtot in Fig. 6. For non-spherical haloes these values can be
enhanced by 20%. If dark discs are considered, densities up to
0.7 GeV cm−3 (0.018 M⊙ pc−3) can be easily imagined, so the
previous quoted range of 0.2 - 0.7 GeV cm−3 (0.005 - 0.018 M⊙
pc−3) seems still valid. This range is considerably larger than the
values quoted by analyses which used a Markov Chain method
to minimize the likelihood; they find ρ⊙,DM = 0.39 ± 0.03 GeV
cm−3 (Catena and Ullio 2009) and ρ⊙,DM = 0.32 ± 0.07 GeV
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A novel determination of the local dark
matter density

Riccardo Catenaa

Piero Ulliob

a,bSISSA, Scuola Internazionale Superiore di Studi Avanzati,

Via Beirut 2-4, I-34014 Trieste, Italy and

INFN, Istituto Nazionale di Fisica Nucleare,

Sezione di Trieste, I-34014 Trieste, Italy

Abstract

We present a novel study on the problem of constructing mass models for the

Milky Way, concentrating on features regarding the dark matter halo component.

We have considered a variegated sample of dynamical observables for the Galaxy,

including several results which have appeared recently, and studied a 7- or 8-

dimensional parameter space - defining the Galaxy model - by implementing a

Bayesian approach to the parameter estimation based on a Markov Chain Monte

Carlo method. The main result of this analysis is a novel determination of the

local dark matter halo density which, assuming spherical symmetry and either an

Einasto or an NFW density profile is found to be around 0.39 GeV cm−3 with a 1-σ

error bar of about 7%; more precisely we find a ρDM (R0) = 0.385±0.027GeV cm−3

for the Einasto profile and ρDM (R0) = 0.389±0.025GeV cm−3 for the NFW. This

is in contrast to the standard assumption that ρDM(R0) is about 0.3 GeV cm−3

with an uncertainty of a factor of 2 to 3. A very precise determination of the

local halo density is very important for interpreting direct dark matter detection

experiments. Indeed the results we produced, together with the recent accurate

determination of the local circular velocity, should be very useful to considerably

narrow astrophysical uncertainties on direct dark matter detection.

aEmail: catena@sissa.it
bEmail: ullio@sissa.it
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The Dark Matter Density in the Solar

Neighborhood reconsidered

W. de Boer, M. Weber

Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie (KIT), P.O.
Box 6980, 76128 Karlsruhe, Germany

Abstract. The peculiar dip in the outer rotation curve at a distance of 9 kpc, which
was recently confirmed by precise measurements with the VERA VLBI array in Japan,
suggests donut-like substructures in the dark matter (DM) halo, since spherical or elliptical
distributions will not cause a dip. Additionally, such a donut-like DM structure seems to be
required by the dip in the gas flaring of the disk. In this paper we consider the impact of such
DM substructure in the disk on the rotation curve, the gas flaring, the local DM density and
the local surface density. A global fit shows that the rotation curve is best described by an
NFW DM profile complemented by two donut-like DM substructures at radii of 4.2 and 12.4
kpc, which coincide with the local dust ring and the Monocerus ring of stars, respectively.
Both regions have been suggested as regions with tidal streams from ”shredded” satellites,
thus enhancing the plausibility for additional DM. If real, the radial extensions of these
nearby ringlike structures enhance the local dark matter density by a factor of four to about
1.3±0.3 GeV/cm3. We find that i) this higher DM density is perfectly consistent with the
local gravitational potential determining the surface density and ii) the s-shaped gas flaring
is explained. Such a possible enhancement of the local DM density is of great interest for
direct DM searches and the ringlike structure would change the directional dependence of
gamma rays for indirect DM searches.

Keywords: Dark Matter Profile, Dark Matter Substructure, Rotation Curve, Dark Matter
Density, Gas Flaringar
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The Dark Matter Density in the Solar

Neighborhood reconsidered

W. de Boer, M. Weber

Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie (KIT), P.O.
Box 6980, 76128 Karlsruhe, Germany

Abstract. The peculiar dip in the outer rotation curve at a distance of 9 kpc, which
was recently confirmed by precise measurements with the VERA VLBI array in Japan,
suggests donut-like substructures in the dark matter (DM) halo, since spherical or elliptical
distributions will not cause a dip. Additionally, such a donut-like DM structure seems to be
required by the dip in the gas flaring of the disk. In this paper we consider the impact of such
DM substructure in the disk on the rotation curve, the gas flaring, the local DM density and
the local surface density. A global fit shows that the rotation curve is best described by an
NFW DM profile complemented by two donut-like DM substructures at radii of 4.2 and 12.4
kpc, which coincide with the local dust ring and the Monocerus ring of stars, respectively.
Both regions have been suggested as regions with tidal streams from ”shredded” satellites,
thus enhancing the plausibility for additional DM. If real, the radial extensions of these
nearby ringlike structures enhance the local dark matter density by a factor of four to about
1.3±0.3 GeV/cm3. We find that i) this higher DM density is perfectly consistent with the
local gravitational potential determining the surface density and ii) the s-shaped gas flaring
is explained. Such a possible enhancement of the local DM density is of great interest for
direct DM searches and the ringlike structure would change the directional dependence of
gamma rays for indirect DM searches.

Keywords: Dark Matter Profile, Dark Matter Substructure, Rotation Curve, Dark Matter
Density, Gas Flaringar
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Abstract

We present a novel study on the problem of constructing mass models for the

Milky Way, concentrating on features regarding the dark matter halo component.

We have considered a variegated sample of dynamical observables for the Galaxy,

including several results which have appeared recently, and studied a 7- or 8-

dimensional parameter space - defining the Galaxy model - by implementing a

Bayesian approach to the parameter estimation based on a Markov Chain Monte

Carlo method. The main result of this analysis is a novel determination of the

local dark matter halo density which, assuming spherical symmetry and either an

Einasto or an NFW density profile is found to be around 0.39 GeV cm−3 with a 1-σ

error bar of about 7%; more precisely we find a ρDM (R0) = 0.385±0.027GeV cm−3

for the Einasto profile and ρDM (R0) = 0.389±0.025GeV cm−3 for the NFW. This

is in contrast to the standard assumption that ρDM(R0) is about 0.3 GeV cm−3

with an uncertainty of a factor of 2 to 3. A very precise determination of the

local halo density is very important for interpreting direct dark matter detection

experiments. Indeed the results we produced, together with the recent accurate

determination of the local circular velocity, should be very useful to considerably

narrow astrophysical uncertainties on direct dark matter detection.

aEmail: catena@sissa.it
bEmail: ullio@sissa.it

•  DM density profile  
(DM density at the galactic centre) 

Phase-space structure in the local dark matter distribution 3

for all six halos with about 200 million particles within R200. Fur-
ther details of the halos and their characteristics can be found in
Springel et al. (2008).

In the following analysis we will often compare the six level-2
resolution halos, Aq-A-2 to Aq-F-2. To facilitate this comparison,
we scale the halos in mass and radius by the constant required to
give each a maximum circular velocity of Vmax = 208.49 km/s,
the value for Aq-A-2. We will also sometimes refer to a coordi-
nate system that is aligned with the principal axes of the inner halo,
and which labels particles by an ellipsoidal radius rell defined as
the semi-major axis length of the ellipsoidal equidensity surface on
which the particle sits. We determine the orientation and shape of
these ellipsoids as follows. For each halo we begin by diagonal-
ising the moment of inertia tensor of the dark matter within the
spherical shell 6 kpc < r < 12 kpc (after scaling to a com-
mon Vmax). This gives us a first estimate of the orientation and
shape of the best fitting ellipsoid. We then reselect particles with
6 kpc < rell < 12 kpc, recalculate the moment of inertia tensor
and repeat until convergence. The resulting ellipsoids have minor-
to-major axis ratios which vary from 0.39 for Aq-B-2 to 0.59 for
Aq-D-2. The radius restriction reflects our desire to probe the dark
matter distribution near the Sun.

3 SPATIAL DISTRIBUTIONS

The density of DM particles at the Earth determines the flux of
DM particles passing through laboratory detectors. It is important,
therefore, to determine not only the mean value of the DM density
8 kpc from the Galactic Centre, but also the fluctuations around this
mean which may result from small-scale structure.

We estimate the local DM distribution at each point in our
simulations using an SPH smoothing kernel adapted to the 64
nearest neighbours. We then fit a power law to the resulting dis-
tribution of ln ρ against ln rell over the ellipsoidal radius range
6 kpc < rell < 12 kpc. This defines a smooth model density
field ρmodel(rell). We then construct a density probability distribu-
tion function (DPDF) as the histogram of ρ/ρmodel for all particles
in 6 kpc < rell < 12 kpc, where each is weighted by ρ−1 so that
the resulting distribution refers to random points within our ellip-
soidal shell rather than to random mass elements. We normalise the
resulting DPDFs to have unit integral. They then provide a prob-
ability distribution for the local dark matter density at a random
point in units of that predicted by the best fitting smooth ellipsoidal
model.

In Fig. 1 we show the DPDFs measured in this way for all
resimulations of Aq-A (top panel) and for all level-2 halos after
scaling to a common Vmax (bottom panel). Two distinct compo-
nents are evident in both plots. One is smoothly and log-normally
distributed around ρ = ρmodel, the other is a power-law tail to high
densities which contains less than 10−4 of all points. The power-
law tail is not present in the lower resolution halos (Aq-A-3, Aq-
A-4, Aq-A-5) because they are unable to resolve subhalos in these
inner regions. However, Aq-A-2 and Aq-A-1 give quite similar re-
sults, suggesting that resolution level 2 is sufficient to get a reason-
able estimate of the overall level of the tail. A comparison of the six
level 2 simulations then demonstrates that this tail has similar shape
in different halos, but a normalisation which can vary by a factor
of several. In none of our halos does the fraction of the distribu-
tion in this tail rise above 5× 10−5. Furthermore, the arguments of
Springel et al (2008) suggest that the total mass fraction in the in-
ner halo (and thus also the total volume fraction) in subhalos below
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Figure 2. Top four panels: Velocity distributions in a 2 kpc box at the Solar
Circle for halo Aq-A-1. v1, v2 and v3 are the velocity components parallel
to the major, intermediate and minor axes of the velocity ellipsoid; v is the
modulus of the velocity vector. Red lines show the histograms measured
directly from the simulation, while black dashed lines show a multivari-
ate Gaussian model fit to the individual component distributions. Residuals
from this model are shown in the upper part of each panel. The major axis
velocity distribution is clearly platykurtic, whereas the other two distribu-
tions are leptokurtic. All three are very smooth, showing no evidence for
spikes due to individual streams. In contrast, the distribution of the velocity
modulus, shown in the upper left panel, shows broad bumps and dips with
amplitudes of up to ten percent of the distribution maximum. Lower panel:
Velocity modulus distributions for all 2 kpc boxes centred between 7 and
9 kpc from the centre of Aq-A-1. At each velocity a thick red line gives the
median of all the measured distributions, while a dashed black line gives
the median of all the fitted multivariate Gaussians. The dark and light blue
contours enclose 68% and 95% of all the measured distributions at each ve-
locity. The bumps seen in the distribution for a single box are clearly present
with similar amplitude in all boxes, and so also in the median curve. The
bin size is 5 km/s in all plots.

•  Velocity distribution of DM particles 
Central and escape velocities 
Deviations from Maxwellian distribution 

Lancaster is here	  
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Observations of the Cosmic microwave Background can be used to determine the 
components of our Universe  

Dark Energy 

Dark Matter 

Baryons 

68.5% 

26.6% 

WMAP and Planck precision data of the 
CMB anisotropies allow the determination 
of cosmological parameters 

4.9% 

The dark matter abundance is measured accurately 

Spin values

Authors
1 Instituto de F́ısica Teórica, UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, E-28049, Madrid, Spain and

2 Departamento de F́ısica Teórica, Universidad Autónoma de Madrid, Cantoblanco, E-28049, Madrid, Spain

Here abstract.

ΩΛh
2 = 0.3116± 0.009 (1)

Ωch
2 = 0.1196± 0.003 (2)

Ωbh
2 = 0.02207± 0.00033 (3)

COBE, WMAP, Planck 

Planck 2013 
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The Standard Model does not contain any viable candidate for DM 

Dark Matter is one of the clearest hints of Physics Beyond the SM  

Neutrinos constitute a tiny part of (Hot) 
dark matter 

1

σSI = 10−9 pb

σSD = 10−5 pb

mχ = 50 GeV

ϵ = 300 kg yr (1)

σSI = 0

σSD = 10−3 pb

mχ = 70 GeV

ϵ = 300 kg yr (2)

σSI = 10−8 pb

σSD = 10−5 pb

mχ = 10 GeV

ϵ = 300 kg yr (3)

ϵGe = 300 kg yr ϵSi = 40 kg yr (4)

(fp/fn)Ge = 0.79 (5)

(fp/fn)Si = 1 (6)

(fp/fn)Xe = 0.70 (7)

(fp/fn)Na = 0.92 (8)

(fp/fn)F = 0.9 (9)

(10)

Ωνh
2 =

∑
i mνi

91.5eV
! 0.003 (11)

Hot dark matter not consistent with 
observations on structure formation. 
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Cosmology 101 

Dark Matter and Neutrinos

David G. Cerdeño
September 11, 2015

Question 1 (Boltzman Equation 1)

In the derivation of Boltzmann’s equation for the evolution of the number density of massive species inthe
Early Universe we expanded the Liouville operator, L̂, that acts on the density distribution function.
Prove that for a FRW universe the following relation holds

L̂ = pµ
@

@xµ
� �µ

�⇢p
�p⇢

@

@pµ

= E
@

@t
�H|~p|2 @

@E
(1)

For a isotropic homogeneous Universe, the FRW metric reads

ds2 = dt2 � a2(t)

✓
dr2

1� kr2
+ r2(d✓2 + sin2 ✓d�2)

◆
(2)

from where the elements of the (diagonal) metric can be readily extracted

g00 = 1

g11 =
�a(t)2

1� kr2

g22 = �r2a(t)2

g33 = �r2 sin2 ✓a(t)2 (3)

The a�ne connection tensor, reads in general

�µ
⌫� =

1

2
gµ�(g�⌫,� + g��,⌫ � g⌫�,�) (4)

Notice that, being homogeneous and isotropic, there is no dependence on the position x or three-
momentum p. Only the derivatives wrt x0 = t and p0 = E are di↵erent from zero. Thus, using that we
can write

L̂ = pµ
@

@xµ
� �µ

�⇢p
�p⇢

@

@pµ

= E
@

@t
� �0

�⇢p
�p⇢

@

@E
(5)
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Friedmann-Lemaître-Robertson-Walker (FLRW) metric for a homogeneous 
and isotropic universe that is expanding (or contracting) 
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Components of the metric	  

a(t) is the scale parameter 	  

k = curvature 
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Question 1 (Boltzman Equation 1)

In the derivation of Boltzmann’s equation for the evolution of the number density of massive species inthe
Early Universe we expanded the Liouville operator, L̂, that acts on the density distribution function.
Prove that for a FRW universe the following relation holds
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WIMP dilution 
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Question 1 (Boltzman Equation 1)

In the derivation of Boltzmann’s equation for the evolution of the number density of massive species inthe
Early Universe we expanded the Liouville operator, L̂, that acts on the density distribution function.
Prove that for a FRW universe the following relation holds
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Similarly, most of the elements of the a�ne connection vanish. one can prove that (since the deriva-
tives wrt any index other than zero vanish)

�0
ij =

1

2
g0�(g�i,j + g�j,i � gij,�)

= �1

2
g0�gij,�

=
ȧ

a
hij

�i
0j =

1

2
gi�(g�0,j + g�j,0 � g0j,�)

=
1

2
gi�g�j,0

=
ȧ

a
�ij (6)

where hij = I3. Thus we are left with

L̂ = E
@

@t
�H|~p|2 @

@E
(7)

where we have defined the Hubble parameter in terms of the derivative of the scale factor

H =
ȧ(t)

a(t)
(8)

2

k=0  for a flat Universe 

CHAPTER 1

FREEZE OUT OF MASSIVE SPECIES

Disclaimer: These notes may (and most likely will) contain typographical erorrs and must

be used with care. They are solely meant as a guideline of the materials that will be covered

in the class but by no means can substitute the basic references.

1.1 Preliminaries

The Hubble parameter for a radiation-dominated Universe reads

H = 1.66 g
1/2

⇤
T 2

M
P

. (1.1)

It is customary to define the dimensionless parameter x = m/T and extract the explicit x
dependence from the Hubble parameter to define H(m) as follows

H(m) = 1.66 g
1/2

⇤
m2

M
P

= Hx2 . (1.2)

where

M
P

= 1.22⇥ 10

19

GeV/c2 (1.3)

We define the yield as a fraction of the number density and the entropy density as

Y =

n

s
. (1.4)

Dark Stuff.

By D. G. Cerdeño, IPPP, University of Durham
1
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LECTURE 6 - Thermal history of the Universe I

In the next three lectures we will take a closer look at the thermodynamical evolution of the Universe as it expands
from an initially hot and dense state. The notion of local thermal equilibrium is extremely important in determining
how the temperature, energy density and entropy density of the Universe evolve with the Hubble expansion, so we
will begin by reviewing some of the basic aspects of systems of both relativistic and non-relativistic particles in
thermal equilibrium. On the other hand, departures from thermal equilibrium will allow some species to acquire a
significant cosmological abundance. This is behind the origin of the Cosmic Microwave Background and Big Bang
nucleosynthesis, which we will analyze in more detail later on.

Review of equilibrium thermodynamics

The perfect black body form of the CMB is the best evidence we have for local thermal equilibrium in the early
Universe. In general, thermal equilibrium is the natural state for which a system of interacting particles evolves. By
the time the CMB was “emitted” at photon decoupling, 379 000 years had passed since the initial singularity, which
means that the Universe had more than enough time to reach this state. We expect that in the very early Universe
most particles were also in thermal equilibrium with photons, so it is important to recall the basic properties of
particle distributions in thermal equilibrium.

A system of particles in kinetic equilibrium has a phase space occupancy f given by the familiar Bose-Einstein
or Fermi-Dirac distributions at temperature T :

f(p) =
1

e
E�µ
T ± 1

, (1)

where E = |p|2 +m2 is the energy of the particles, µ the chemical potential and the + sign corresponds to fermions
while the � to bosons. Furthermore, if a species is in chemical equilibrium, its chemical potential is related to the
chemical potentials of the species it interacts with. For example, if a species A interacts with species B, C and D
via scattering processes of the form:

A+B ⇤⌅ C +D , (2)

then chemical equilibrium implies µA + µB = µC + µD. Local thermal equilibrium is achieved for species which are
both in kinetic and chemical equilibrium.

The phase space distribution allows one to compute the associated number density n, energy density ⇤ and
pressure p for a dilute and weakly-interacting gas of particles with g internal degrees of freedom:

n = g

�
d3p

(2⇥)3
f(p) ,

⇤ = g

�
d3p

(2⇥)3
E(p)f(p) ,

p = g

�
d3p

(2⇥)3
|p|2

3E(p)
f(p) . (3)
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A system of particles in kinetic equilibrium has a phase space occupancy f given by the 
Bose-Einstein or Fermi-Dirac distributions at temperature T: 

The phase space distribution allows one to compute the associated number density n, 
energy density ρ and pressure p for a dilute and weakly-interacting gas of particles 
with g internal degrees of freedom: 

Note that the expression for the pressure agrees with our previous analysis of the energy-momentum tensor, p =
n⌃�mv2⌥/3, with the factor 3 associated with the assumed isotropy of the momentum distribution. Also, the number
of internal degrees of freedom g corresponds to the number of spin states or polarizations of the particle. For example,
an electron has two spin states ±1/2 and similarly a photon has two possible polarizations, so that ge = g� = 2.

Let us now compute the above expressions in two asymptotic limits - relativistic and non-relativistic particles,
which will be su⌅cient for our discussion of how the di⇥erent particle species evolve in an expanding universe. We
will consider the case |µ| ⌅ T and neglect all chemical potentials, since all evidence indicates that this is a good
approximation [1].

(a) Relativistic species

For T ⇧ m, the Bose-Einstein and Fermi-Dirac distributions reduce to:

f(y) =
1

ey ± 1
, (4)

where we have defined y = |p|/T . This implies for the particle number density that:
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1

ey ± 1
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2⌅2
T 3
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0
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It is then useful to use the following results:

1
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1

ex � 1
� 2

e2x � 1
,

⇤ +�

0

yn

ey � 1
dy = ⇥(n+ 1)�(n+ 1) , (6)

where ⇥(z) is the Riemann Zeta-function. For bosons, it is then straightforward to obtain:

nb =
g

2⌅2
T 3⇥(3)(2!)

=
g

⌅2
⇥(3)T 3 . (7)

Similarly, for fermions we have:
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implying nf = (3/4)nb. We can perform similar calculations for the energy density to obtain:

⇧b =
⌅2

30
gT 4 ,

⇧f =
7

8

⌅2

30
gT 4 . (9)

Finally, for both bosons and fermions, in the relativistic limit E ⇤ |p|, so that from Eq. (3) we have p = ⇧/3, as
expected.
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Note that the expression for the pressure agrees with our previous analysis of the energy-momentum tensor, p =
n⌃�mv2⌥/3, with the factor 3 associated with the assumed isotropy of the momentum distribution. Also, the number
of internal degrees of freedom g corresponds to the number of spin states or polarizations of the particle. For example,
an electron has two spin states ±1/2 and similarly a photon has two possible polarizations, so that ge = g� = 2.

Let us now compute the above expressions in two asymptotic limits - relativistic and non-relativistic particles,
which will be su⌅cient for our discussion of how the di⇥erent particle species evolve in an expanding universe. We
will consider the case |µ| ⌅ T and neglect all chemical potentials, since all evidence indicates that this is a good
approximation [1].
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expected.

2

(b) Non-relativistic species

For T � m, the exponential factor dominates the denominator in both the Bose-Einstein and Fermi-Dirac distribu-
tions in Eq. (1), so that the bosonic or fermionic nature of the particles becomes indistinguishable. Furthermore, we
have:

E = (|p|2 +m2)1/2 = m

�
1 +

|p|2

m2

⇥1/2

⇤ m+
|p|2

2m
. (10)

Defining x = |p|/
⇧
2mT , we have for the number density:
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and, taking n = 2 with �(3/2) =
⇧
�/2, we obtain:

n ⇤ g

�
mT

2�

⇥3/2

e�m/T , (13)

which gives the Boltzmann distribution. From Eq. (10) it easy to see that to leading order ⇥ = mn in this case. To
obtain the associated pressure, note that to leading order |p|2/E ⇤ |p|2/m, so that:

p ⇤ g

2�2
e�m/T (2mT )5/2

3m
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x4e�x2

dx
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e�m/TT

= nT , (14)

where we have used �(5/2) = 3
⇧
�/4. Notice that restoring the missing Boltzmann constant kB this corresponds to

the familar result for a non-relativistic perfect gas, p = nkBT . Since T � m, we have p � ⇥ and the pressure may
be neglected for a gas of non-relativistic particles, as we had anticipated.

Energy and entropy density

Let T denote the temperature of the photon bath in the early universe. If there are other relativistic species in the
early Universe, the total energy density of radiation is given by:

⇥r =
�2

30
g⇥(T )T

4 , (15)

where g⇥(T ) corresponds to the e⇥ective number of relativistic degrees of freedom present in the universe at the
temperature T , including both bosons and fermions. This may receive contributions from two types of species:

1. Thermal bath: relativistic species in thermal equilibrium with the photons Ti = T ⇥ mi:

gth⇥ (T ) =
⇤

bosons

gi +
7

8

⇤

fermions

gi . (16)
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Adding up all the relativistic species and allowing now for the possibility that some
species may have a kinetic temperature Ti, which differs from the temperature T of
those species which remain in thermal equilibrium, we get

ρ(T ) =
π2

30
g∗(T )T 4

s(T ) =
2π2

45
g∗s(T )T 3 , (9)

where now

g∗(T ) =
∑

bos

gi

(

Ti

T

)4

+
7

8

∑

fer

gi

(

Ti

T

)4

g∗s(T ) =
∑

bos

gi

(

Ti

T

)3

+
7

8

∑

fer

gi

(

Ti

T

)3

, (10)

and the sums are over all relativistic species of bosons and fermions.
If some species are “semirelativistic”, i.e., m = O(T ), ρ(T ) and s(T ) are to be

calculated from the integral formulas in Chapter 5, and Eq. (9) defines g∗(T ) and
g∗s(T ).

For as long as all species have the same temperature and p ≈ 1
3ρ, we have

g∗s(T ) ≈ g∗(T ). (11)

The electron annihilation, however, forces us to make a distinction between g∗(T )
and g∗s(T ).

According to the second law of thermodynamics the total entropy of the universe
never decreases; it either stays constant or increases. It turns out that any entropy
production in various processes in the universe is totally insignificant compared to
the total entropy of the universe1, which is huge, and dominated by the relativistic
species. Thus it is an excellent approximation to treat the expansion of the universe
as adiabatic, so that the total entropy stays constant, i.e.,

d(sa3) = 0. (12)

This now gives us the relation between a and T ,

g∗s(T )T 3a3 = const. (13)

We shall have much use for this formula.
In the electron annihilation g∗s changes from

g∗s = g∗ = 2 + 3.5 + 5.25 = 10.75 (14)

γ e± ν

to

g∗s = 2 + 5.25

(

Tν

T

)3

, (15)

1There may be exceptions to this in the very early universe, most notably inflation, where
essentially all the entropy of the universe supposedly was produced.

Thermal bath: relativistic species in thermal equilibrium with the photons 
 
Decoupled species: relativistic species not in thermal equilibrium (Ti) 
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The energy total density and entropy density can be easily computed 
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Figure 2: The expansion of the universe increases the volume element dV and decreases
the momentum space element d3p so that the phase space element d3pdV stays constant.

related to f(~p1) ? Since d3p2 = (a1/a2)3d3p1 and dV2 = (a2/a1)3dV1, we have

dN =
g

(2º)3
d3p1 dV1

e(p
1

°µ
1

)/T
1 ± 1

(dN evaluated at t1)

=
g

(2º)3
(a

2

a
1

)3d3p2 (a
1

a
2

)3dV2

e
(
a
2

a
1

p2 ° µ1)/T1 ± 1

(rewritten in terms of
p2, dp2, and dV2)

(6)

=
g

(2º)3
d3p2 dV2

e(p
2

°µ
2

)/T
2 ± 1

(defining µ2 and T2) ,

where µ2 ¥ (a1/a2)µ1 and T2 ¥ (a1/a2)T1. Thus the particles keep the shape of
a thermal distribution; the temperature and the chemical potential just redshift
/ a°1. (Exercise: For nonrelativistic particles, m¿ T ) E = m + p2/2m, there is
a corresponding, but diÆerent result. Derive this.)

Thus for as long as T / a°1 for the particle soup, the neutrino distribution
evolves exactly as if it were in thermal equilibrium with the soup, i.e., T∫ = T .
However, annihilations will cause a deviation from T / a°1. The next annihilation
event is the electron-positron annihilation.

The easiest ways to obtain the relation between the temperature T and the scale
factor a is to use entropy conservation.

From the fundamental equation of thermodynamics,

E = TS ° pV +
X

µiNi

we have
s =

Ω + p°P
µini

T
, (7)

for the entropy density s ¥ S/V . Since |µi| ø T , and the relativistic species
dominate, we approximate

s =
Ω + p

T
=

8
<

:

7º2

180 gT 3 fermions

2º2

45 gT 3 bosons .
(8)
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CHAPTER 1

FREEZE OUT OF MASSIVE SPECIES

Disclaimer: These notes may (and most likely will) contain typographical erorrs and must

be used with care. They are solely meant as a guideline of the materials that will be covered

in the class but by no means can substitute the basic references.

1.1 Preliminaries

We define the yield as a fraction of the number density and the entropy density as

Y =

n

s
(1.1)

Dark Stuff.
By D. G. Cerdeño, IPPP, University of Durham
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1.1 Preliminaries

We define the yield as a fraction of the number density and the entropy density as
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s
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The evolution of the entropy density as a function of the temperature is given by

s =
2π2

45
g∗sT

3 (1.2)
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2 FREEZE OUT OF MASSIVE SPECIES

g∗ =
∑

bosons

g

(

Ti

T

)4

+
7

8

∑

fermions

g

(

Ti

T

)4

(1.4)

The number density of relativistic and non-relativistic species reads

n =
geff

π2
ζ(3)T 3 (1.5)

where geff = g for bosons and geff = 3

4
g for fermions
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Then the Yield at equilibrium reads

Yeq =
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2π4
ζ(3)

geff

g∗s
(1.6)
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It is customary to define the Yield (equivalent to the number density but in a 
comoving volume) in terms of the entropy density (which scales as a3(t)) 

For relativistic particles, we have	  

For non-relativistic particles, we have	  



6 Thermal history of the Early Universe

We shall now apply the thermodynamics discussed in the previous section to the
evolution of the early universe.

The primordial soup initially consists of all the different species of elementary
particles. Their masses range from the heaviest known elementary particle, the
top quark (m ∼ 175 GeV) down to the lightest particles, the electron (m = 511
keV), the neutrinos (m = ?) and the photon (m = 0). In addition to the particles
of the standard model, there may be other, so far undiscovered, species. As the
temperature falls, the various particle species become nonrelativistic and annihilate
at different times.

Table 1: The particles in the standard model Particle Data Group, 2006

Quarks t 174.2 ± 3.3GeV t̄ spin=1
2 g = 2 · 2 · 3 = 12

b 4.20 ± 0.07GeV b̄ 3 colors
c 1.25 ± 0.09GeV c̄
s 95 ± 25MeV s̄
d 3–7MeV d̄
u 1.5–3.0MeV ū

72

Gluons 8 massless bosons spin=1 g = 2 16

Leptons τ− 1777.0 ± 0.3MeV τ+ spin=1
2 g = 2 · 2 = 4

µ− 105.658MeV µ+

e− 510.999keV e+

12
ντ < 18.2MeV ν̄τ spin=1

2 g = 2
νµ < 190keV ν̄µ

νe < 2 eV ν̄e

6

Electroweak W+ 80.403 ± 0.029GeV spin=1 g = 3
gauge bosons W− 80.403 ± 0.029GeV

Z0 91.1876±0.0021GeV
γ 0 (< 6 × 10−17eV) g = 2

11

Higgs boson (SM) H0 > 114.4GeV spin=0 g = 1 1

gf = 72 + 12 + 6 = 90
gb = 16 + 11 + 1 = 28

61

Number of relativistic degrees of freedom in the Standard Model 
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Number of relativistic degrees of freedom in the Standard Model 

55 3. Thermal History

7
8 ⇥ 12 = 96.25. The Higgs boson and the gauge bosons W±, Z0 annihilate next. This happens

roughly at the same time. At T ⇤ 10 GeV, we have g� = 96.26 � (1 + 3 · 3) = 86.25. Next,

the bottom quarks annihilate (g� = 86.25 � 7
8 ⇥ 12 = 75.75), followed by the charm quarks

and the tau leptons (g� = 75.75 � 7
8 ⇥ (12 + 4) = 61.75). Before the strange quarks had

time to annihilate, something else happens: matter undergoes the QCD phase transition. At

T ⇤ 150 MeV, the quarks combine into baryons (protons, neutrons, ...) and mesons (pions, ...).

There are many di�erent species of baryons and mesons, but all except the pions (�±,�0) are

non-relativistic below the temperature of the QCD phase transition. Thus, the only particle

species left in large numbers are the pions, electrons, muons, neutrinos, and the photons. The

three pions (spin-0) correspond to g = 3 · 1 = 3 internal degrees of freedom. We therefore get

g� = 2 + 3 + 7
8 ⇥ (4 + 4 + 6) = 17.25. Next electrons and positrons annihilate. However, to

understand this process we first need to talk about entropy.

Figure 3.4: Evolution of relativistic degrees of freedom g�(T ) assuming the Standard Model particle content.
The dotted line stands for the number of e�ective degrees of freedom in entropy g�S(T ).

3.2.3 Conservation of Entropy

To describe the evolution of the universe it is useful to track a conserved quantity. As we will

see, in cosmology entropy is more informative than energy. According to the second law of

thermodynamics, the total entropy of the universe only increases or stays constant. It is easy to

show that the entropy is conserved in equilibrium (see below). Since there are far more photons

than baryons in the universe, the entropy of the universe is dominated by the entropy of the

photon bath (at least as long as the universe is su⇥ciently uniform). Any entropy production

from non-equilibrium processes is therefore total insignificant relative to the total entropy. To

a good approximation we can therefore treat the expansion of the universe as adiabatic, so that

the total entropy stays constant even beyond equilibrium.
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Adding up all the relativistic species and allowing now for the possibility that some
species may have a kinetic temperature Ti, which differs from the temperature T of
those species which remain in thermal equilibrium, we get

ρ(T ) =
π2

30
g∗(T )T 4

s(T ) =
2π2

45
g∗s(T )T 3 , (9)

where now

g∗(T ) =
∑

bos

gi

(

Ti

T

)4

+
7

8

∑

fer

gi

(

Ti

T

)4

g∗s(T ) =
∑

bos

gi

(

Ti

T

)3

+
7

8

∑

fer

gi

(

Ti

T

)3

, (10)

and the sums are over all relativistic species of bosons and fermions.
If some species are “semirelativistic”, i.e., m = O(T ), ρ(T ) and s(T ) are to be

calculated from the integral formulas in Chapter 5, and Eq. (9) defines g∗(T ) and
g∗s(T ).

For as long as all species have the same temperature and p ≈ 1
3ρ, we have

g∗s(T ) ≈ g∗(T ). (11)

The electron annihilation, however, forces us to make a distinction between g∗(T )
and g∗s(T ).

According to the second law of thermodynamics the total entropy of the universe
never decreases; it either stays constant or increases. It turns out that any entropy
production in various processes in the universe is totally insignificant compared to
the total entropy of the universe1, which is huge, and dominated by the relativistic
species. Thus it is an excellent approximation to treat the expansion of the universe
as adiabatic, so that the total entropy stays constant, i.e.,

d(sa3) = 0. (12)

This now gives us the relation between a and T ,

g∗s(T )T 3a3 = const. (13)

We shall have much use for this formula.
In the electron annihilation g∗s changes from

g∗s = g∗ = 2 + 3.5 + 5.25 = 10.75 (14)

γ e± ν

to

g∗s = 2 + 5.25

(

Tν

T

)3

, (15)

1There may be exceptions to this in the very early universe, most notably inflation, where
essentially all the entropy of the universe supposedly was produced.

QCD Phase 
transition 
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Table 2: History of g∗(T )

T ∼ 200 GeV all present 106.75
T ∼ 100 GeV EW transition (no effect)
T < 170 GeV top annihilation 96.25
T < 80 GeV W±, Z0, H0 86.25
T < 4 GeV bottom 75.75
T < 1 GeV charm, τ− 61.75
T ∼ 150 MeV QCD transition 17.25 (u,d,g→ π±,0, 37 → 3)
T < 100 MeV π±, π0, µ− 10.75 e±, ν, ν̄, γ left
T < 500 keV e− annihilation (7.25) 2 + 5.25(4/11)4/3 = 3.36

This table gives what value g∗(T ) would have after the annihilation is over assuming

the next annihilation would not have begun yet. In reality they overlap in many cases.

The temperature value at the left is the approximate mass of the particle in question and

indicates roughly when the annihilation begins. The temperature is much smaller when the

annihilation ends. Therefore top annihilation is placed after the EW transition. The top

quark receives its mass in the EW transition, so annihilation only begins after the transition.

6.2 Neutrino decoupling and electron-positron annihilation

Soon after the QCD phase transition the pions and muons annihilate and for T =
20 MeV → 1 MeV, g∗ = 10.75. Next the electrons annihilate, but to discuss the
e+e−-annihilation we need more physics.

So far we have assumed that all particle species have the same temperature, i.e.,
the interactions among the particles are able to keep them in thermal equilibrium.
Neutrinos, however, feel the weak interaction only. The weak interaction is actually
not so weak when particle energies are close to the masses of the W± and Z0

bosons, which mediate the weak interaction. But as the temperature falls, the weak
interaction becomes rapidly weaker and weaker. Finally, close to T ∼ 1 MeV, the
neutrinos decouple, after which they move practically freely without interactions.

The momentum of a freely moving neutrino redshifts as the universe expands,

p(t2) = (a1/a2)p(t1) . (4)

From this follows that neutrinos stay in kinetic equilibrium. This is true in general
for ultrarelativistic (m ≪ T ⇒ p = E) noninteracting particles. Let us show this:

At time t1 a phase space element d3p1dV1 contains

dN =
g

(2π)3
f(p⃗1)d

3p1dV1 (5)

particles, where

f(p⃗1) =
1

e(p1−µ1)/T1 ± 1

is the distribution function at time t1. At time t2 these same dN particles are in a
phase space element d3p2dV2. Now how is the distribution function at t2, given by

g

(2π)3
f(p⃗2) =

dN

d3p2dV2
,
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QCD Phase transition 
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Figure 1: The functions g∗(T ) (solid), g∗p(T ) (dashed), and g∗s(T ) (dotted) calcu-
lated for the standard model particle content.

6.1 QCD phase transition

In the middle of the s quark annihilation, something else happens, however: the
QCD phase transition (also called the quark–hadron phase transition). This takes
place at T ∼ 150 MeV, t ∼ 20 µs. The temperature and thus the quark energies have
fallen so that the quarks lose their so called asymptotic freedom, which they have at
high energies. The interactions between quarks and gluons (the strong nuclear force,
or the color force) become important (so that the formulas for the energy density
in Chapter 5 no longer apply) and soon the phase transition takes place. There are
no more free quarks and gluons; the quark-gluon plasma has become a hadron gas.
The quarks and gluons have formed bound three-quark systems, called baryons, and
quark-antiquark pairs, called mesons. The lightest baryons are the nucleons: the
proton and the neutron. The lightest mesons are the pions: π±, π0. Baryons are
fermions, mesons are bosons.

There are very many different species of baryons and mesons, but all except
pions are nonrelativistic below the QCD phase transition temperature. Thus the
only particle species left in large numbers are the pions, muons, electrons, neutrinos,
and the photons. For pions, g = 3, so now g∗ = 17.25.

The temperature and thus the quark energies have fallen so that the quarks 
lose their asymptotic freedom 
 
There are no more free quarks and gluons; the quark-gluon plasma has 
become a hadron gas 
 
The lightest baryons are the nucleons: the proton and the neutron. The 
lightest mesons are the pions 
 
all except pions are nonrelativistic below the QCD phase transition 
temperature. 
 
Thus the only particle species left in large numbers are the pions (g=3), 
muons (4), electrons (4), neutrinos (2x3), and the photons (2). 
 
g*=17.25 
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2 FREEZE OUT OF MASSIVE SPECIES

g∗ =
∑

bosons

g

(

Ti

T

)4

+
7

8

∑

fermions

g

(

Ti

T

)4

(1.4)

relativistic species

n =
geff

π2
ζ(3)T 3 (1.5)

where geff = g for bosons and geff = 3

4
g for fermions Then the Yield at equilibrium

reads

Yeq =
45

2π4
ζ(3)

geff

g∗s
(1.6)

non-relativistic species

n = geff

(

mT

2π

)3/2

e−m/T (1.7)

Then the Yield at equilibrium reads

Yeq =
45

2π4

(π

8

)1/2 geff

g∗s

(m

T

)3/2
e−m/T (1.8)
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2 FREEZE OUT OF MASSIVE SPECIES

g⇤ =
X

bosons

g

✓
Ti

T

◆
4

+
7

8

X

fermions

g

✓
Ti

T

◆
4

(1.4)

relativistic species
n =

geff
⇡2

⇣(3)T 3 (1.5)

where geff = g for bosons and geff = 3

4

g for fermions Then the Yield at equilibrium
reads

Yeq =
45

2⇡4

⇣(3)
geff
g⇤s

⇡ 0.278
geff
g⇤s

(1.6)

non-relativistic species

n = geff

✓
mT

2⇡

◆
3/2

e�m/T (1.7)

Then the Yield at equilibrium reads

Yeq =
45

2⇡4

⇣⇡
8

⌘
1/2 geff

g⇤s

⇣m
T

⌘
3/2

e�m/T (1.8)

EXAMPLE 1.1

It is easy to estimate the value of the Yield that we need in order to reproduce the
correct DM relic abundance, ⌦h2 ⇡ 0.1, since

⌦h2 =
⇢�
⇢c

h2 =
m�n�h2

⇢c
=

m�Y0

s
0

h2

⇢c
, (1.9)

where Y
0

corresponds to the DM Yield today and s
0

is today’s entropy density.
We can assume that the Yield did not change since DM freeze-out and therefore

⌦h2 =
m�Yfs0h2

⇢c
. (1.10)

Using the measured value s
0

= 2970 cm�3 and the value of the critical density
⇢c = 1.054 ⇥ 10�5h2 GeV cm�3, as well as Planck’s result on the DM relic
abundance we arrive at

Yf ⇡ 3.55⇥ 10�10

✓
1 GeV

m�

◆
. (1.11)

Some useful quantities
s
0

= 2970 cm�3

⇢c = 1.054⇥ 10�5h2 GeV cm�3
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For non-relativistic particles,  
the “magic number  

is x~20	  

2 FREEZE OUT OF MASSIVE SPECIES

g∗ =
∑
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+
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)4

(1.4)

relativistic species

n =
geff

π2
ζ(3)T 3 (1.5)

where geff = g for bosons and geff = 3

4
g for fermions Then the Yield at equilibrium

reads

Yeq =
45

2π4
ζ(3)

geff

g∗s
(1.6)

non-relativistic species

n = geff

(

mT

2π

)3/2

e−m/T (1.7)

Then the Yield at equilibrium reads

Yeq =
45

2π4

(π

8

)1/2 geff

g∗s

(m

T

)3/2
e−m/T (1.8)

For DM masses in the  
range 1 GeV – 1 TeV	  
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TIME EVOLUTION OF THE NUMBER DENSITY 3

1.2 Time evolution of the number density

The evolution of the number density operator can be computed by applying the covari-
ant form of Liuville’s operator to the corresponding phase space distribution function.

Formally speaking, we have
L̂[f ] = C[f ] , (1.12)

where L̂ is the Liouville operator

L̂ =
d

d⌧
= pµ

@

@xµ
� �µ

�⇢p
�p⇢

@

@pµ
(1.13)

and C[f ] is the collisional operator, which takes into account processes which change
the number of particles (e.g., annihilations or decays). Gravity enters through the
affine connection �µ

�⇢.

One can show that in the case of a FRW Universe, for which f(xµ, pµ) = f(t, E),
we have

L̂ = E
@

@t
� �0

�⇢p
�p⇢

@

@E

= E
@

@t
�H|p|2 @

@E
(1.14)
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The time evolution of the phase space distribution function is dictated by 
Liouville’s operator (which ensures conservation of density in the phase space) 
and the Collisional operator, which encodes number changing processes 

The Liouville operator can be written in a covariant way  	  

Where the affine connection is related to derivatives of the metric as follows 	  

Dark Matter and Neutrinos

David G. Cerdeño
September 11, 2015

Question 1 (Boltzman Equation 1)

In the derivation of Boltzmann’s equation for the evolution of the number density of massive species inthe
Early Universe we expanded the Liouville operator, L̂, that acts on the density distribution function.
Prove that for a FRW universe the following relation holds

L̂ = pµ
@

@xµ
� �µ

�⇢p
�p⇢

@

@pµ

= E
@

@t
�H|~p|2 @

@E
(1)

For a isotropic homogeneous Universe, the FRW metric reads

ds2 = dt2 � a2(t)

✓
dr2

1� kr2
+ r2(d✓2 + sin2 ✓d�2)

◆
(2)

from where the elements of the (diagonal) metric can be readily extracted

g00 = 1

g11 =
�a(t)2

1� kr2

g22 = �r2a(t)2

g33 = �r2 sin2 ✓a(t)2 (3)

The a�ne connection tensor, reads in general

�µ
⌫� =

1

2
gµ�(g�⌫,� + g��,⌫ � g⌫�,�) (4)

Notice that, being homogeneous and isotropic, there is no dependence on the position x or three-
momentum p. Only the derivatives wrt x0 = t and p0 = E are di↵erent from zero. Thus, using that we
can write

L̂ = pµ
@

@xµ
� �µ

�⇢p
�p⇢

@

@pµ

= E
@

@t
� �0

�⇢p
�p⇢

@

@E
(5)

1

Notice that this terms incorporates gravity and the actual geometry of space-time. 	  
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If we apply this to the FRW metric, which only depends on t and E  

We find that Liouville operator can be greatly simplified 

Exercise 1	  

Ultimately, we are interested in the time evolution of the number density 

2 FREEZE OUT OF MASSIVE SPECIES

The evolution of the entropy density as a function of the temperature is given by1

s =
2⇡2

45

g⇤sT
3 (1.5)

where

g⇤s =
X

bosons

g

✓
T
i

T

◆
3

+

7

8

X

fermions

g

✓
T
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T

◆
3

(1.6)

g⇤ =

X

bosons

g

✓
T
i

T

◆
4

+

7

8

X

fermions

g

✓
T
i

T

◆
4

(1.7)

The phase space distribution function f describes the occupancy number in phase space
for a given particle, and distinguishes between fermions and bosons.

f =

1

e(E�µ)/T ± 1

, (1.8)

where the (�) sign corresponds to bosons and the (+) sign to fermions. E is the enery and
µ the chemical potential.

Using the expression of the phase space distribution function (1.8), and integrating in
phase space, we can compute a series of observables in the Unverse. In particular, the
number density of particles, n, the energy density, ⇢, and pressure, p, for a dilute and
weakly-interacting gas of particles with g internal degrees of freedom

n =

g

2⇡3

Z
f(p)d3p (1.9)

⇢ =

g

2⇡3

Z
E(p) f(p)d3p (1.10)

p =

g

2⇡3

Z |p|2

3E(p)
f(p)d3p (1.11)

(1.12)

Solving these integrals explicitly for relativistic and non-relativistic particles yields

relativistic species
n =

g
eff

⇡2

⇣(3)T 3 (1.13)

where g
eff

= g for bosons and g
eff

=

3

4

g for fermions Then the Yield at equilibrium
reads

Y
eq

=

45

2⇡4

⇣(3)
g
eff

g⇤s
⇡ 0.278

g
eff

g⇤s
(1.14)

non-relativistic species

n = g
eff

✓
mT

2⇡

◆
3/2

e�m/T (1.15)

Then the Yield at equilibrium reads

Y
eq

=

45

2⇡4

⇣⇡
8

⌘
1/2 g

eff

g⇤s

⇣m
T

⌘
3/2

e�m/T (1.16)

1To arrive at this equation, one can calculate s = (p + ⇢)/T for fermions and bosons, using the corresponding
expression for the phase space distribution function.
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Exercise 2	  

Dark Matter and Neutrinos

David G. Cerdeño
September 9, 2015

Question 1 (Boltzman Equation 1)

In the derivation of Boltzmann’s equation for the evolution of the number density of massive species inthe
Early Universe we expanded the Liouville operator, L̂, that acts on the density distribution function.
Prove that for a FRW universe the following relation holds

L̂ = pµ
@

@xµ
� �µ

�⇢p
�p⇢

@

@pµ

= E
@

@t
�H|~p|2 @

@E
(1)

Question 2 (Boltzman Equation 2)

Later, we performed an integral in momentum space that yielded

g

(2⇡)3

Z
d3~p

E


E
@f

@t
�H|~p|2 @f

@E

�
=

dn

dt
+ 3Hn (2)

Check this result.

Question 3 (Freeze out of DM particles)

Using Botlzmann equation, expressed in terms of the yield Y = n/s, which reads

dY

dx
= ��h�vi

x2

�
Y 2 � Y 2

eq

�
, (3)

define the quantity �Y ⌘ Y � Yeq and show that, for non-relativistic particles, the solution can be
approximated as

�Y = �
dYeq

dx

Yeq

x2

2�h�vi , 1 < x ⌧ xf (4)

�Y1 = Y1 =
xf

�
⇣
a+ b

3 x2
f

⌘ , x � xf (5)

Question 4 (Dark Matter relic density 1)

Consider a simple model in which the Dark Matter is a Dirac fermion, �, which only couples to the
Standard Model sector through the exchange of the a pseudoscalar particle A. The pseudoscalar A has
couplings g� to the dark matter and gb to b quarks as described by the Lagrangian

L = i
�
g��̄�

5�+ gbb̄�
5b
�
A

1

Prove the following relation  	  

4 FREEZE OUT OF MASSIVE SPECIES

Integrating over the phase space we can relate this to the time evolution of the number
density

g

2⇡3

Z
ˆL[f ] d3p =

g

2⇡3

Z
C[f ] d3p , (1.23)

EXAMPLE 1.2

Show that
g

2⇡3

Z
ˆL[f ]

E
d3p =

dn

dt
+ 3Hn (1.24)

Regarding the collisional operator, it encodes the microphysical description in terms of
Particle Physics, and incorporates all number-changing processes that create or deplete
particles in the thermal bath. For simplicity, let us concentrate in annihilation processes,
where SM particles (A, B) can annihilate to form a pair of DM particles (labelled 1, 2), or
viceversa (A,B $ 1, 2). The phase space corresponding to each particle is defined as

d⇧
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g
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(1.25)

and then
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Assuming no CP violation in the DM sector (T invariance) |M
12!AB

|2 = |M
AB!12

|2.
Also, energy conservation allow us to write

f
A

f
B

= feq

A

feq

B

= e�
EA+EB

T
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E1+E2
T

= feq
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feq
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(1.26)

This eventually leads to
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2⇡3

Z
C[f ]

E
d3p = �h�vi

�
n2 � n2

eq

�

where we have defined the thermally-averaged cross-section as

h�vi ⌘ 1
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Z
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� p
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(1.27)

We are thus left with the familiar form of Boltzmann equation

dn

dt
+ 3Hn = �h�vi

�
n2 � n2

eq

�
(1.28)

It is also customary to define the dimensionless variable

x =

m

T
(1.29)

Thus, we integrate Liouville’s operator in the momentum space  

Where we have divided by E for convenience 
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1.2 Time evolution of the number density

The evolution of the number density operator can be computed by applying the covari-
ant form of Liuville’s operator to the corresponding phase space distribution function.

Formally speaking, we have
L̂[f ] = C[f ] , (1.12)

where L̂ is the Liouville operator

L̂ =
d

d⌧
= pµ

@

@xµ
� �µ

�⇢p
�p⇢

@

@pµ
(1.13)

and C[f ] is the collisional operator, which takes into account processes which change
the number of particles (e.g., annihilations or decays). Gravity enters through the
affine connection �µ

�⇢.

One can show that in the case of a FRW Universe, for which f(xµ, pµ) = f(t, E),
we have

L̂ = E
@

@t
� �0

�⇢p
�p⇢

@

@E

= E
@

@t
�H|p|2 @

@E
(1.14)

Integrating over the phase space we can relate this to the time evolution of the number
density

g

2⇡3

Z
L̂[f ] d3p =

g

2⇡3

Z
C[f ] d3p , (1.15)

EXAMPLE 1.2

Show that
g

2⇡3

Z
L̂[f ]

E
d3p =

dn

dt
+ 3Hn (1.16)

Regarding the collisional operator, it encodes the microphysical description in terms
of Particle Physics, and incorporates all number-changing processes that create or
deplete particles in the thermal bath. For simplicity, let us concentrate in annihilation
processes, where SM particles (A, B) can annihilate to form a pair of DM particles
(labelled 1, 2), or viceversa (A,B $ 1, 2). The phase space corresponding to each
particle is defined as

d⇧i =
gi
2⇧3

d3pi

2Ei
(1.17)

and then
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Assuming no CP violation in the DM sector (T invariance) |M
12!AB |2 = |MAB!12

|2.
Also, energy conservation allow us to write

fAfB = feq
A feq

B = e�
EA+EB

T = e�
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(1.18)
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where we have defined the thermally-averaged cross-section as
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HEP	  School	  2015	  
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a,b=WIMP
1,2=SM (light) particles

SM particles assumed in thermal equilibrium

detailed balance

thermally averaged annihilation cross section:

gi=internal dof

We have defined the thermally averaged annihilation cross section 
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No CP violation in DM sector 

Energy Conservation 
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4 FREEZE OUT OF MASSIVE SPECIES

Assuming no CP violation in the DM sector (T invariance) |M
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Also, energy conservation allow us to write
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We are thus left with the familiar form of Boltzmann equation

dn

dt
+ 3Hn� h�vi

�
n2 � n2

eq

�
(1.20)
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Non-relativistic species 

Dark Matter and Neutrinos

David G. Cerdeño
September 9, 2015

Question 1 (Boltzman Equation 1)

In the derivation of Boltzmann’s equation for the evolution of the number density of massive species inthe
Early Universe we expanded the Liouville operator, L̂, that acts on the density distribution function.
Prove that for a FRW universe the following relation holds

L̂ = pµ
@

@xµ
� �µ

�⇢p
�p⇢

@

@pµ

= E
@

@t
�H|~p|2 @

@E
(1)

Question 2 (Boltzman Equation 2)

Later, we performed an integral in momentum space that yielded

g

(2⇡)3

Z
d3~p

E


E
@f

@t
�H|~p|2 @f

@E

�
=

dn

dt
+ 3Hn (2)

Check this result.

Question 3 (Freeze out of DM particles)

Using Botlzmann equation, expressed in terms of the yield Y = n/s, which reads

dY

dx
= ��h�vi

x2

�
Y 2 � Y 2

eq

�
, (3)

define the quantity �Y ⌘ Y � Yeq and show that, for non-relativistic particles, the solution can be
approximated as

�Y = �
dYeq

dx

Yeq

x2

2�h�vi , 1 < x ⌧ xf (4)

�Y1 = Y1 =
xf

�
⇣
a+ b

3 x2
f

⌘ , x � xf (5)

Question 4 (Dark Matter relic density 1)

Consider a simple model in which the Dark Matter is a Dirac fermion, �, which only couples to the
Standard Model sector through the exchange of the a pseudoscalar particle A. The pseudoscalar A has
couplings g� to the dark matter and gb to b quarks as described by the Lagrangian

L = i
�
g��̄�

5�+ gbb̄�
5b
�
A

1
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EXAMPLE 1.3

Using the yield defined in equation (1.4) we can simplify Boltzmann’s equation. No-
tice that

dY

dt
=

d

dt

⇣n
s

⌘
=

d

dt

✓
a3n

a3s

◆
=

1

a3s

✓
3a2ȧn+ a3

dn

dt

◆
=

1

s

✓
3Hn+

dn

dt

◆
(1.30)

Here we have used that the expansion of the Universe is isoentropic and thus a3s
remains constant. Also we use the definition of the Hubble parameter H =

ȧ

a

. This
allows us to rewrite Boltzmann equation as follows

dY

dt
= �s < �v >

�
Y 2 � Y 2

eq

�
. (1.31)

Now,

d

dt
(a3s) = 0 ! d

dt
(aT ) = 0 ! d

dt

⇣a
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⌘
= 0 (1.32)

which in turn leads to

dx

dt
= Hx (1.33)

and thus

dY

dt
=

dY

dx

dx

dt
=

dY

dx
Hx (1.34)

Using the results of Example 1.3 we can express Boltzmann equation (1.28) as

dY

dx
=

�sx < �v >

H(m)

�
Y 2 � Y 2

eq

�

= ��h�vi
x2

�
Y 2 � Y 2

eq

�
, (1.35)

where we have used the expression of the entropy density (1.5) in the last line and defined

� ⌘ 2⇡2

45

M
P

g⇤s

1.66 g
1/2

⇤
m

⇡ 0.26
g⇤s

g
1/2

⇤
M

P

m . (1.36)

1.2.1 Freeze out of relativistic species

The freeze-out of relativistic species is easy to compute, since the yield (1.14) has no
dependence on x

f

. Neutrinos are a paradigmatic example of relativistic particles and one
must in principle consider their contribution to the total amount of dark matter (after all,
they are dark).

Since neutrinos decouple while they are still relativistic, their yield reads

Y
eq

⇡ 0.278
g
eff

g⇤s
. (1.37)
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Integrating over the phase space we can relate this to the time evolution of the number
density

g
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Z
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Z
C[f ] d3p , (1.23)

EXAMPLE 1.2

Show that
g
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Z
ˆL[f ]

E
d3p =

dn

dt
+ 3Hn (1.24)

Regarding the collisional operator, it encodes the microphysical description in terms of
Particle Physics, and incorporates all number-changing processes that create or deplete
particles in the thermal bath. For simplicity, let us concentrate in annihilation processes,
where SM particles (A, B) can annihilate to form a pair of DM particles (labelled 1, 2), or
viceversa (A,B $ 1, 2). The phase space corresponding to each particle is defined as
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Assuming no CP violation in the DM sector (T invariance) |M
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Also, energy conservation allow us to write
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This eventually leads to
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where we have defined the thermally-averaged cross-section as
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We are thus left with the familiar form of Boltzmann equation

dn

dt
+ 3Hn = �h�vi

�
n2 � n2

eq

�
(1.28)

It is also customary to define the dimensionless variable

x =

m

T
(1.29)
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dependence on x
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. Neutrinos are a paradigmatic example of relativistic particles and one
must in principle consider their contribution to the total amount of dark matter (after all,
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they are dark).

Since neutrinos decouple while they are still relativistic, their yield reads

Y
eq

⇡ 0.278
g
eff

g⇤s
. (1.37)
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EXAMPLE 1.3

Using the yield defined in equation (1.4) we can simplify Boltzmann’s equation. No-
tice that

dY
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dt

⇣n
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⌘
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d
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✓
a3n

a3s

◆
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3a2ȧn+ a3
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◆
=
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3Hn+

dn
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◆
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Here we have used that the expansion of the Universe is isoentropic and thus a3s
remains constant. Also we use the definition of the Hubble parameter H =

ȧ

a

. This
allows us to rewrite Boltzmann equation as follows

dY

dt
= �s < �v >

�
Y 2 � Y 2

eq

�
. (1.31)

Now,

d

dt
(a3s) = 0 ! d

dt
(aT ) = 0 ! d

dt

⇣a
x

⌘
= 0 (1.32)

which in turn leads to

dx

dt
= Hx (1.33)

and thus

dY

dt
=

dY

dx

dx

dt
=

dY

dx
Hx (1.34)

Using the results of Example 1.3 we can express Boltzmann equation (1.28) as
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H(m)
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= ��h�vi
x2

�
Y 2 � Y 2

eq

�
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where we have used the expression of the entropy density (1.5) in the last line and defined
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3a2ȧn+ a3

dn

dt

◆
=

1

s

✓
3Hn+

dn

dt

◆
(1.30)

Here we have used that the expansion of the Universe is isoentropic and thus a3s
remains constant. Also we use the definition of the Hubble parameter H =

ȧ
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1.2.1 Freeze out of relativistic species

The freeze-out of relativistic species is easy to compute, since the yield (1.14) has no
dependence on x

f

. Neutrinos are a paradigmatic example of relativistic particles and one
must in principle consider their contribution to the total amount of dark matter (after all,
they are dark).

Since neutrinos decouple while they are still relativistic, their yield reads
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Question 1 (Boltzman Equation 1)

In the derivation of Boltzmann’s equation for the evolution of the number density of massive species inthe
Early Universe we expanded the Liouville operator, L̂, that acts on the density distribution function.
Prove that for a FRW universe the following relation holds

L̂ = pµ
@

@xµ
� �µ

�⇢p
�p⇢

@

@pµ

= E
@

@t
�H|~p|2 @

@E
(1)

Question 2 (Boltzman Equation 2)

Later, we performed an integral in momentum space that yielded

g

(2⇡)3

Z
d3~p

E


E
@f

@t
�H|~p|2 @f

@E

�
=

dn

dt
+ 3Hn (2)

Check this result.

Question 3 (Freeze out of DM particles)

Using Botlzmann equation, expressed in terms of the yield Y = n/s, which reads

dY

dx
= ��h�vi

x2

�
Y 2 � Y 2

eq

�
, (3)

define the quantity �Y ⌘ Y � Yeq and show that, for non-relativistic particles, the solution can be
approximated as

�Y = �
dYeq

dx

Yeq

x2

2�h�vi , 1 < x ⌧ xf (4)

�Y1 = Y1 =
xf

�
⇣
a+ b

3 x2
f

⌘ , x � xf (5)

Question 4 (Dark Matter relic density 1)

Consider a simple model in which the Dark Matter is a Dirac fermion, �, which only couples to the
Standard Model sector through the exchange of the a pseudoscalar particle A. The pseudoscalar A has
couplings g� to the dark matter and gb to b quarks as described by the Lagrangian

L = i
�
g��̄�

5�+ gbb̄�
5b
�
A
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EXAMPLE 1.3

Using the yield defined in equation (1.4) we can simplify Boltzmann’s equation. No-
tice that

dY

dt
=

d

dt

⇣n
s

⌘
=

d

dt

✓
a3n

a3s

◆
=

1

a3s

✓
3a2ȧn+ a3

dn

dt

◆
=

1

s

✓
3Hn+

dn

dt

◆
(1.30)

Here we have used that the expansion of the Universe is isoentropic and thus a3s
remains constant. Also we use the definition of the Hubble parameter H =

ȧ

a

. This
allows us to rewrite Boltzmann equation as follows

dY

dt
= �s < �v >

�
Y 2 � Y 2

eq

�
. (1.31)

Now,

d

dt
(a3s) = 0 ! d

dt
(aT ) = 0 ! d

dt

⇣a
x

⌘
= 0 (1.32)

which in turn leads to

dx

dt
= Hx (1.33)

and thus

dY

dt
=

dY

dx

dx

dt
=

dY

dx
Hx (1.34)

Using the results of Example 1.3 we can express Boltzmann equation (1.28) as

dY

dx
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H(m)

�
Y 2 � Y 2

eq

�

= ��h�vi
x2

�
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eq

�
, (1.35)

where we have used the expression of the entropy density (1.5) in the last line and defined

� ⌘ 2⇡2

45

M
P

g⇤s

1.66 g
1/2

⇤
m

⇡ 0.26
g⇤s

g
1/2

⇤
M

P
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1.2.1 Freeze out of relativistic species

The freeze-out of relativistic species is easy to compute, since the yield (1.14) has no
dependence on x

f

. Neutrinos are a paradigmatic example of relativistic particles and one
must in principle consider their contribution to the total amount of dark matter (after all,
they are dark).

Since neutrinos decouple while they are still relativistic, their yield reads

Y
eq

⇡ 0.278
g
eff

g⇤s
. (1.37)

NON-THERMAL DARK MATTER PRODUCTION 7

The term 1/�
Yf can generally be ignored (we can check this using the previously

derived (1.41) for x
f

⇡ 20), leading to

�

Y1 = Y1 =

x
f

�
⇣
a+

b

3 xf

⌘ (1.45)

The relic density can now be expressed in terms of this result as follows

⌦h2

=

m
�

Y1s
0

h2

⇢
c

⇡ 10

�10

GeV

�2

(a+

b

60

)

⇡ 10

�27

cm

3

s

�1

(a+

b

60

)

(1.46)

1.2.3 WIMPs

Equation (1.46) implies that in order to reproduce the correct relic abundance, dark mat-
ter particles must have a thermally averaged annihilation cross section (from now on we
will shorten this to simply annihilation cross section when referring to h�vi) of the order
h�vi ⇡ 10

�26

cm

3

s

�1.
We can now consider a simple case in which dark matter particles self-annihilate into

Standard Model ones through the exchange (e.g., in an s-channel) of a gauge boson. It is
easy to see that if the annihilation cross section is of order h�vi ⇠ G2

F

m2

WIMP

then the
correct relic density is obtained.

1.2.4 Special cases

The derivation of equation (1.46) relied on the expansion of h�vi in terms of plane waves.
This expansion can only be done when h�vi varies slowly with the energy (we can express
this in terms of the centre of mass energy s). However, there are some special cases in
which this does not happen and which deserve further attention.

Annihilation thresholds

Resonances

Finally

1.3 Non-thermal dark matter production

Non-thermal dark matter production

This leads to :	  

Question 3 (Freeze out of DM particles)

Using Botlzmann equation, expressed in terms of the yield Y = n/s, which reads

dY

dx
= ��h�vi

x2

�
Y 2 � Y 2

eq

�
, (15)

define the quantity �Y ⌘ Y � Yeq and show that, for non-relativistic particles, the solution can be
approximated as

�Y = �
dYeq

dx

Yeq

x2

2�h�vi , 1 < x ⌧ xf (16)

�Y1 = Y1 =
xf

�
⇣
a+ b

3 xf

⌘ , x � xf (17)

We can define the quantity:
�Y ⌘ Y � Yeq (18)

Equation (??) is now easier to solve, at least qualitatively.

• For early times, 1 < x ⌧ xf , the yield follows closely its equilibrium, Y ⇡ Yeq and we can assume
that d�Y /dx = 0, we find

�Y = �
dYeq

dx

Yeq

x2

2�h�vi (19)

�Yf ⇡
x2
f

2�h�vi (20)

where in the last line we have used that for large enough x, using (??) implies dYeq

dx ⇡ �Yeq

• For late times, x � xf , we can assume that Y � Yeq and thus �Y1 ⇡ Y1, leading to the following
equation

d�Y

dx
⇡ ��h�vi

x2
�2

Y , (21)

This is a separable equation that we integrate from the freeze-out time up to nowadays. In doing
so, it is customary to expand the thermally averaged annihilation cross section in powers of x�1

as h�vi = a+ b
x .

Z �Y1

�Yf

d�Y

�2
Y

= �
Z x1

xf

�h�vi
x2

dx , (22)
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WIMPs can be thermally produced in the early universe in just the right amount  
 

The freeze-out temperature (and hence the relic abundance) depends on the DM 
annihilation cross-section	  

A generic (electro)Weakly-Interacting Massive 
Particle can reproduce the observed relic 
density.	  
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2 FREEZE OUT OF MASSIVE SPECIES

g∗ =
∑

bosons

g

(

Ti

T

)4

+
7

8

∑

fermions

g

(

Ti

T

)4

(1.4)

relativistic species

n =
geff

π2
ζ(3)T 3 (1.5)

where geff = g for bosons and geff = 3

4
g for fermions Then the Yield at equilibrium

reads

Yeq =
45

2π4
ζ(3)

geff

g∗s
(1.6)

non-relativistic species

n = geff

(

mT

2π

)3/2

e−m/T (1.7)

Then the Yield at equilibrium reads

Yeq =
45

2π4

(π

8

)1/2 geff

g∗s

(m

T

)3/2
e−m/T (1.8)
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