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Part I

(Ultra)(Relativistic)HIC:what for ?
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Preface: why study (ultra relativistic) heavy-ion collisions

STARTING POINT: QCD is the theory of strong interaction

FUNDAMENTAL QUESTION: How do collective and macroscopic
properties of matter emerge from the interactions of elementary
particles ?

HEAVY-ION PHYSICS addresses this question in the regime of the
highest temperature and densities accessible in the laboratories

HOW ? By colliding nucleus (or ions) and looking for specific signals

Example: looking for the quark-gluon plasma, i.e. a new state of matter,
using specific probes
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Part II

Confinement and Deconfinement in QCD
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Confinement

Confinement

QCD is a non-abelian gauge theory (Yang-Mills theory)

The gauge bosons self interact

Exhibit asymptotic freedom at short distances
(remember the sign of the coefficient of the log in αs because of gluon loops)

Exhibit confinement, which can also be attributed to gluon self coupling

If V (r ) > 2mπ, 2 π’s pop up from the vacuum and the qq̄
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Deconfinement

Deconfining the quark and gluons

The potential between a static q − q̄ pair grows linearly with r at
large distances

This is the expected behaviour at normal conditions:
T = 0 and ρ ' 0.17 nucleons /fm3

Is there a regime where the quarks and the gluons can be free ?
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Deconfinement

The phase diagram of strongly interacting matter

At normal conditions, the quark and gluon are confined within
hadrons
whereas they behave as if they were free over very short
distances

At high T or ρ, it was postulated that they could really be free,
i.e. deconfined

We suggest [...] the existence of a different phase of the
vacuum in which quarks are not confined.”

N. Cabibbo, G. Parisi, PLB 59 (1975) 67
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Deconfinement

When the asymptotic freedom leads to deconfinement

Increasing the density [decreasing the distance] or increasing the
temperature [increasing the momenta] may bring the matter into a
regime where asymptotic freedom would be naturally at work

This could result into a screening of the long-range confining potential
Numerical simulations from the QCD lagrangian (Lattice QCD) show this
at high T and high ρ

F. Karsch et al., PLB 605 (2001) 579

When T ↗, the long range potential decreases and becomes flat
T /Tc =0.58, 0.66, 0.74, 0.84, 0.9, 0.94, 0.97, 1.06 et 1.15 (top to bottom)
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Deconfinement: the ideal case vs lattice QCD

Equation of state: ideal case vs lattice QCD

Lattice QCD results hint at a phase transition near Tc ∼ 170 MeV
The ideal-case values a priori not reached:

the coupling remains “strong”
The GQP is expected to behave like a liquid rather than a gas
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Deconfinement: the ideal case vs lattice QCD

Rapidly evolving field
Phase diagram as function of (scientific) time

C
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[Reminder: Quarks: 1964 ; Scaling: 1967 ; Asymptotic Freedom: 1973; Charm quark: 1974; ...]
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Part III

Heavy-Ion Collisions: the quest for a
phase transition
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Deconfinement: where ? how ?

Melting the matter

If quarks and gluons effectively become free at high T and/or ρ,
appearance of new d.o.f.

One expects a phase transition
Where can this happen ?:

in the Universe 10−5 second after the Big-Bang
in the core of neutron stars
in ultra-relativistic nucleus-nucleus collisions
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Deconfinement: where ? how ?

Conditions reached in a nucleus-nucleus collision

Temperature: T= 100-1000 MeV
(1 MeV = 10 billion degrees)

[up to a million times the temperature at the center of the sun ]

Pressure: P = 100− 300 MeV/fm3

(1 fm = 10−15m,1MeV/fm3 = 1028atm)
[at center of earth : 3.6 millions atm.]

Density: ρ = 1− 10ρ0 the density of a gold nucleus
(ρ0 = 3 1024g/cm3)

(density of a gold atom : 19 g/cm3)
Volume: nearly 2000 fm3

nucleus radius: r = 1.2A1/3 fm; lead (A = 208) ∼ 7.1 fm
(4/3πr3 ↔ 1500 fm3)

Duration: about 10 fm/c (i.e. 3 10−23s)
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Deconfinement: where ? how ?

Energy density and center-of-mass energy

Stronger energy rise for HIC lately (first colliders, see next slides)

Energy density computed with the “Bjorken estimate”: εBj =
dET
dy

1
τ0πR2
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Deconfinement: where ? how ?

Heavy-ion accelerators

FIXED-TARGET EXPERIMENTS :
√

sNN =
√

2mNEN
LBL-Bevalac, Berkeley (1980-1990): EN = 1.15 GeV→ √sNN = 2.4 GeV
BNL-AGS, Brookhaven (1985-1995): EN = 10.5 GeV→ √sNN = 4.8 GeV
CERN-SPS, Geneva (1987-2004): EN = 157 GeV→ √sNN = 17.3 GeV
GSI-SIS, Darmstadt: EN = 1.5 GeV→ √sNN = 2.5 GeV
GSI-FAIR, Darmstadt (2018+): EN = 35 GeV→ √sNN = 8.3 GeV

http://www.gsi.de
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2mNEN
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Deconfinement: where ? how ?

Heavy-ion accelerators

COLLIDER EXPERIMENTS :
√

sNN = 2EN (in symmetric collisions)

BNL-RHIC, Brookhaven (2000): EN = 100 GeV→ √sNN = 200 GeV
CERN-LHC, Geneva (2009): EN = 2760 GeV→ √sNN = 5520 GeV

[so far “only”, EN = 1380 GeV→ √sNN = 2760 GeV]

COMPARISONS:
Pros for colliders: cms energy (1 to nearly 3 orders of magnitude higher)

[can’t do anything against momentum conservation]
Cons for colliders: collision rate ( 8000 per sec at the LHC vs. 107 per sec at FAIR)

[ can’t beat a target density with a (collimated) beam]

REMARK: The LHC in the fixed-target mode :
√

sNN = 72 GeV
→ energy comparable to RHIC, with extremely high rate

Strong motivation for A Fixed Target ExpeRiment @ LHC
(AFTER@LHC)
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Part IV

Tuning an Heavy-Ion Collision:
the centrality
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Tuning an HIC

Smooth phase transition↔ complications

We must study properties of the medium in detail
without a smoking-gun phase-transition signature

Most of observables will show
a smooth dependence on energy

Apart from changing the beam energy and colliding species,
one can select (bias) the geometry of the collisions

Preferred way of varying the energy density
(↔ centrality, impact parameter b)
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Tuning an HIC

Two important definitions: Npart and Ncoll

QGP Physics – J. Stachel / K. Reygers: 3. Basics of N+N and A+A Collisions 33 

N
part

 and N
coll

 in Nucleus-Nucleus-Collisions

 Centrality can be described via

 N
coll

: number of inelastic nucleon-nucleon collisions

 N
part

: number of nucleons which underwent at least one inelastic nucleon-         

        nucleon collisions

 This simplifies the comparison between theory and experiment and between 

different experiments 

 Typically not directly measured but determined from Glauber calculations

Energy in beam

direction (EZDC)

Spectators

Participants

Charged Particle Multiplicity (Nch)

or transverse energy (ET) at 

central rapidities

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 28, 2015 20 / 27



Tuning an HIC

Two important definitions: Npart and Ncoll

QGP Physics – J. Stachel / K. Reygers: 3. Basics of N+N and A+A Collisions 33 

N
part

 and N
coll

 in Nucleus-Nucleus-Collisions

 Centrality can be described via

 N
coll

: number of inelastic nucleon-nucleon collisions

 N
part

: number of nucleons which underwent at least one inelastic nucleon-         

        nucleon collisions

 This simplifies the comparison between theory and experiment and between 

different experiments 

 Typically not directly measured but determined from Glauber calculations

Energy in beam

direction (EZDC)

Spectators

Participants

Charged Particle Multiplicity (Nch)

or transverse energy (ET) at 

central rapidities

S
lid

e
bo

rr
ow

ed
fro

m
K

.R
ey

ge
rs

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 28, 2015 20 / 27



Tuning an HIC

Pratical example with ALICE (2011 PbPb data)

Cynthia Hadjidakis       HIF CERN     June 3rd 2013

Centrality of the collision in Pb-Pb

13

Npart = 2        Ncoll = 1

Npart = 5        Ncoll = 6

Pb-Pb cent.    Npart = 360    Ncoll = 1500

Centrality of the collisions

semi-central collision central collision

b

Spectators

Participants

b impact parameter

Multiplicity measurements with forward or 

central detectors

Relate the measured multiplicity in A-A 

collisions to Npart and Ncoll

Centrality determination

b = 0

→ Glauber model used to determine the geometry of the collision

p-Pb cent.      Npart = 16      Ncoll = 15
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Tuning an HIC

Glauber model for pA and AA collisions

Input:
density profile of the nucleus: Woods-Saxon
inelastic nucleon-nucleon cross section (which is a function of the
collisions energy: σinel.

NN (
√

s))
Nucleons travel on straight trajectories along the beam axis (after a
nucleon-nucleon collisions)
Nucleon-nucleon cross section is independent of the number of
collisions a nucleon underwent before [neglect the possible decrease of the inelastic

nucleon-nucleon cross section for the consecutive scattering]
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Tuning an HIC

Number of Nucleon-Nucleon Collisions Ncoll

front view :

Nuclear thickness : integral of the density on z as function of the distance~s from
the nucleus center:

∫
ρ(~s, z)dz = TA(~s)

A: density integrated over the volume: A =
∫

TA(~s)d2s
Collision nucleon “luminosity” :dTAB(~s) = TA(~s)TA(~s−~b)d2s
Nucleon overlap function as function of b: TAB(b) =

∫
TA(~s)TA(~s−~b)d2s

Average number of collisions: overlap times the cross section

〈Ncoll (b)〉 = TAB(b)× σinel.
NN
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Tuning an HIC

Number of participants Npart

Proba that a given nucleon from A scatters with another from B:
P = TB(~s)

B × σinel.
NN

Proba that a given nucleon from A scatters with none from B: (1−P)B

Proba that a given nucleon from A scatters with at least one from
B:1− (1−P)B

Number of participant in A:
〈NA

part (b)〉 = A
∫ TA(~s)

A (1− (1− TB(~s)
B × σinel.

NN )B)d2s

Total mean number of participant: 〈NA
part (b)〉+ 〈NB

part (b)〉
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Tuning an HIC

Glauber Monte Carlo (probabilistic Glauber approach)

As illustrated by the ALICE example, the experiments use
Glauber MC to determine Npart vs Ncoll

A given simulated collision translates into observables: ET , Ntracks, ...

Configuration generated with Woods-Saxon density profile

Impact parameter b determined randomly from dσ/db = 2πb

Like many MC code, one collision is switched on if two nucleons are

closer than
√

σinel
NN /π

The larger the number of collisions is,
the larger the energy released is,
the larger the energy density is
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Part V

Snapshots of a nucleus-nucleus collision
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Snapshots of a nucleus-nucleus collision

Evolution stages of a nucleus-nucleus collision

1 initial collision: t ≤ tcoll ' 2R
γboost

cms c
2 thermalisation: equilibrium is reached : t ≤ 1fm/c
3 expansion and cooling : t ≤ 10− 15fm/c
4 hadronisation
5 Chemical freeze-out: the inelastic collisions stop

→ the yields are fixed
6 Kinetic freeze-out : the elastic collisions stop

→ the spectra are fixed : t ≤ 3− 5fm/c
Measurement at stage 5 & 6 to learn about stage 3
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