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Tutorial: i) Choose to do any 2 of the following exercises.

1. Consider the system of equations formed by the Friedmann-Lemaître equa-
tion with non-vanishing cosmological constant (Λ = 8πGN ρΛ),

H2 ≡
(
ȧ

a

)2

=
8πGN

3
(ρm + ρΛ)− k

a2
, (1)

and the dynamical evolution equation for the scale factor,

ä = −4πGN
3

(ρm + 3 pm − 2 ρΛ) a . (2)

i) Show that H2 +Ḣ = ä/a and use the previous equations to obtain Ḣ in
terms of the pressure and density. What is its qualitative time evolution
(increases or decreases with the expansion)?

ii) Consider now the possibility that Λ = Λ(t). Why this is allowed by
the Cosmological Principle? Show that the equation

ρ̇Λ + ρ̇m + 3H (ρm + pm) = 0 (3)

is a �rst integral of the previous system; that is, a di�erential equation of
smaller order that can replace Eq. (2). For ρ̇Λ 6= 0 there is an exchange
of energy between matter and vacuum. Show in detail that any of these
three equations (1),(2) and (3) can be derived from the other two. What
happens for strictly constant Λ? Integrate Eq. (3) in this case and provide
the explicit form of ρm(a) as a function of the scale factor, assuming that
matter is non-relativistic. Hint: You can trade the derivative with respect
the cosmic time for the derivative with respect to the scale factor with the
help of d/dt = aHd/da (why?).

iii) If the matter energy-momentum tensor Tµν is non-conserved in the
presence of a variable ρΛ, what is the conserved energy-momentum tensor
now? Write it down explicitly: T̃µν = Tµν+?.

iv) Using the FLRW metric explicitly, re-derive equation (3) from the
local covariant conservation law of T̃µν , i.e. ∇µT̃µν = 0.
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v) Starting from equation (2), prove that the deceleration parameter of
the universe (q ≡ − ä a/ȧ2) in the presence of several �uids with constant

equation of state parameters ωn (for radiation, matter, vacuum energy
etc) can be written, at a given cosmological redshift z, as

q(z) =
∑
n

(1 + 3ωn)
Ωn(z)

2
, (4)

where Ωn(z) = ρn(z)/ρc(z) are the various cosmological parameters, which
are normalized to satisfy the sum rule

∑
n Ωn(z) = 1 at any value of the

redshift z. Evaluate this formula for z = 0 in the ΛCDM model and show
that the current value of the acceleration parameter reads

q0 =
Ω0
m

2
− ΩΛ =

3Ωm − 2

2
, (5)

where the second equality is valid only for a spatially �at universe (why?).
What is the value of q0 according to the present data? Explain the meaning
of this numerical value and its sign.

2. Let us make some study on the time evolution and the age of the universe.
i) Show that the formulae giving the cosmic time as a function of the scale
factor is

t− t1 =

∫ a(t)

a1

da

aH(a)
(6)

where H = ȧ/a is the expansion rate. What is the formula that gives the
cosmic time in terms of the cosmological redshift, t = t(z)?

ii) In general these integrals cannot be solved by quadrature, but there are
some interesting cases that can be worked out easily (see the Table below).
Compute a = a(t) during the matter and radiation dominated epoch for
the Einstein-de Sitter's Universe. Then compute the age of each of the
universes in the Table in units of the present Hubble time H−1

0 (Solution:
a) t0 = 2/(3H0), b) t0 = 1/H0, c) t0 =∞.). Explain physically the result
of case c).

(a) ΩM = 1 ΩΛ = 0 (Einstein-de Sitter's Universe)
(b) ΩM ' 0 ΩΛ ' 0 (Milne's Universe)
(c) ΩM = 0 ΩΛ = 1 (In�ationary Universe)

iii) Compute numerically the realistic age of our universe assuming the
standard ΛCDM model of cosmology. To this end, take the latest data
released by the PLANCK satellite (February 2015) on the cosmological
parameters (assuming zero spatial curvature). Express the result in Gi-
gayears (Gyr), recall that 1 Gyr = 109 yr. Compare the obtained result
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with the numerical age of the Einstein-de Sitter's Universe. Does it pay
to take into account the radiation epoch in the calculation? Why?

(Note: You can use the analytic results of Exercise 3 below to cross-check
your numerical computation.)

iv) Check numerically what is the impact of the spatial curvature term
Ωk on the age computation. Use the PLANCK data on Ωk. (Notice that
in this case it is not possible to cross-check your numerical answer with
the analytical results of Exercise 3.)

3. Let us now face the age computation of the ΛCDM model analytically,
again with vanishing spatial curvature, which is realistic (why?). You will
be able to cross-check the numerical results of the previous problem with
the analytical results obtained here.

i) Use equations (1) and (3) to show that the Hubble rate H = H(t) in
the matter-dominated epoch can be obtained by solving the di�erential
equation

Ḣ +
3

2
H2 =

Λ

2
, (7)

ii) Solve explicitly this equation for the case of the ΛCDM model with
Λ 6= 0, assuming that the universe is spatially �at. Express your result as

H(t) =
√

Ω0
Λ H0 coth

(
3H0

√
Ω0

Λ

2
t

)
, (8)

where H0 is the Hubble rate at present. Check that for Λ = 0 you obtain
an expected result. Which one? Derive explicitly a(t) from it.

iii) Consider again the matter-dominated epoch. Verify that the cosmic
time t is related with the cosmological redshift z as follows:

t(z) =
2

3
√

Ω0
ΛH0

sinh−1

(√
Ω0

Λ

Ω0
m

(1 + z)−3/2

)
. (9)

What is the limit Ω0
Λ → 0 of this expression? And what is the limit for

z →∞? Explain your results.

iv) Let us compute the age of the universe in the ΛCDM model for the
present values of the cosmological parameters. If Ω0

k 6= 0, the age cannot
be given as a simple analytical formula. However, for Ω0

k = 0 you can
easily use the previous results to obtain an analytical expression for the
age of the universe. Prove the following beautiful formula:

t0 =
2

3
√

Ω0
ΛH0

sinh−1

(√
Ω0

Λ

Ω0
m

)
=

2

3H0

tanh−1
√

Ω0
Λ√

Ω0
Λ

. (10)
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where the second equality is the most convenient one. Check it!

v) Verify in detail that for Λ → 0 you recover the age of the Einstein-de
Sitter universe given in Exercise 2 above, and also the �rst correction to
this result for small values of Λ. Namely, show that

t0 =
2

3
H−1

0 (1 +
1

3
Ω0

Λ + ...) (11)

Take the ratio of this result with the exact result, and check if it departs
signi�cantly from one for the current value of Ω0

Λ.

vi) In contrast to the exact formula (10) (which is quite nice but also
quite opaque) the approximate formula (11) is numerically crude, but
is qualitatively very useful since it transparently shows that for a non-
vanishing and positive Λ the age of the universe is larger than without
it. However, can you feel the intuitive meaning of this result beyond the
mathematical result? Explain physically why an universe with Λ > 0 is
necessarily older than another one with Λ = 0 (with the same matter
content). Justify your answer, clearly showing that you fully understand
the physical reason.

vii) Evaluate Eq. (10) with the PLANCK results for the cosmological pa-
rameters and check that your result coincides very approximately with the
age of the universe computed by direct numerical integration in Exercise
2 iii). Compare also with the result quoted by the published paper on
PLANCK observations.

4. Let us consider scalar �elds in cosmology. We have derived on the back-
board the explicit expressions for the energy density and pressure, and we
found

ρφ =
1

2
φ̇2 + V (φ)

pφ =
1

2
φ̇2 − V (φ) (12)

i) In our derivation we used Minkowskian spacetime, and of course assu-
med that φ does not depend on the space coordinates (why?). Show that
these equations also hold for the FLRW metric, which means you have to
make explicit use of the homogeneity and isotropy of spacetime.

ii) Use the above equations to determine the equation of motion for φ in
the FLRW metric.

iii) Recompute the density and pressure in the case when φ is not homo-
geneous but is still isotropic.

iv) Show that in the last case the equation of state ωφ = pφ/ρφ reads

ωφ = −1 +
φ̇2/V (φ) + 1

3 (∇φ)
2
/V (φ)

1 + 1
2 φ̇

2/V (φ) + 1
2 (∇φ)

2
/V (φ)

(13)
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Explain what is the meaning of (∇φ)
2
in this context, and check that the

above result boils down to the standard one (which we discussed on the
blackboard) for homogeneous scalar �elds.

v) Explain how space inhomogeneities could make that scalar �eld φ to
appear as being phantom-like, without really being a phantom �eld. What
is the quantitative condition on the time and space variations of the �eld
so as to ful�l this phantom-like behavior? Compare it with the standard
quintessence case. Could a time-independent scalar �eld look quintessence
or phantom-like?

5. The idea that the vacuum energy could be a dynamical variable in the
expanding Universe has been proposed by some authors, see e.g. th papers
arXiv:0907.4555, arXiv:1409.7048, arXiv:1412.3785 and arXiv:1509.03298
and references therein. Consider the following types of dynamical vacuum
models in which the dynamics of the vacuum is provided by a truncated
power series of the Hubble rate:

A1 : Λ = a0 + a2H
2

A2 : Λ = a0 + a1Ḣ + a2H
2

B1 : Λ = b0 + b1H

B2 : Λ = b0 + b1H + b2H
2 (14)

C1 : Λ = c1H + c2H
2

C2 : Λ = c1Ḣ + c2H
2

To solve models B1 and B2 is complicated, but still doable. Models A1 and
A2, however, are easier, and I propose you to solve A1 here. Speci�cally:

i) Explain �rst why A2 is easier than B1 or B2. You have to understand
that there is a relation between Ḣ and H2. Which one? And why this
helps? Or, put another way, why things become more complicated with
models B1 and B2? Write down the corresponding di�erential equation
for the Hubble function and compare it with that of models A1 and A2.

ii) Solve now model A1 explicitly and show that the solutions giving the
matter density, the vacuum energy density and the Hubble function, are
given by equations (4.2), (4.3) and (4.5) of arXiv:1409.7048 in the special
case that α = 0 (equivalently, ξ = 1, see the text).

iii) Compute the transition redshift (where deceleration �ips into accele-
ration) for model A1. Show that is given by Eq. (4.8). Evaluate it nu-
merically and compare the result with the ΛCDM model. Use the inputs
from PLANCK 2015. Notice that the transition redshift of the ΛCDM
model can be obtained as a particular case of that of model A1.

iv) Show that model C2 is excluded by the simple reason that it does not
have a transition redshift. Explain qualitatively why is so, but prove it
rigorously.
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Cosmology-Theory (Taller de Altas Energias 2015)

1 Exercises on FLRW cosmologies

n Cosmological constant in the ΛCDM and beyond

1. Consider the system of equations formed by the Friedmann-Lemâıtre equation with
non-vanishing cosmological constant (Λ = 8πGNρΛ),

H2 ≡
(
ȧ

a

)2
= 8πGN

3 (ρm + ρΛ)− k

a2 , (1.1)

and the dynamical evolution equation for the scale factor,

ä = −4πGN
3 (ρm + 3pm − 2ρΛ) a. (1.2)

a) Show that H2 + Ḣ = ä/a and provide an explicit expression for Ḣ in terms of
the pressure and density. What is its qualitative time evolution (increases or
decreases with the expansion)?

b) Consider now the possibility that Λ = Λ(t). Show that the equation

ρ̇Λ + ρ̇m + 3H (ρm + pm) = 0 (1.3)

is a first integral of the previous system; that is, a differential equation of smaller
order that can replace Eq. (1.2). For ρ̇Λ 6= 0 there is an exchange of energy
between matter and vacuum. Show in detail that any of these three equations
(1.1), (1.2) and (1.3) can be derived from the other two. What happens for
strictly constant Λ? Integrate Eq. (1.3) in this case, i.e. provide the explicit
form of ρm(t), assuming that matter is non-relativistic.

c) If the matter energy-momentum tensor Tµν is non-conserved in the presence of
a variable ρΛ, what is the conserved energy-momentum tensor now? Write it
down explicitly: T̃µν = Tµν+? Is it compatible with the Cosmological Principle
to assume that ρΛ might not be strictly constant?

d) Using the FLRW metric explicitly, re-derive equation (1.3) from the local covari-
ant conservation law of T̃µν , i.e. ∇µT̃µν = 0.

e) Starting from equation (1.2), prove that the deceleration parameter of the uni-
verse (q ≡ −äa/ȧ2) in the presence of several fluids with constant equation of
state parameters ωn (for radiation, matter, vacuum energy, etc.) can be written,
at a given cosmological redshift z, as

q(z) =
∑
n

(1 + 3ωn)Ωn(z)
2 , (1.4)

where Ωn(z) = ρn(z)/ρc(z) are the various cosmological parameters, which are
normalized to satisfy the sum rule

∑
n Ωn(z) = 1 at any value of the redshift z.

Evaluate this formula for z = 0 in the ΛCDM model and show that the current
value of the acceleration parameter reads

q0 = Ω0
m

2 − ΩΛ = 3Ωm − 2
2 , (1.5)
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where the second equality is valid only for a spatially flat universe (why?). What
is the value of q0 according to the present data? Explain the meaning of this
numerical value and its sign.

2. Let us make some study on the time evolution and the age of the universe.

a) Show that the formulae giving the cosmic time as a function of the scale factor
is

t− t1 =
∫ a(t)

a1

da
aH(a) (1.6)

where H = ȧ/a is the expansion rate. What is the formula that gives the cosmic
time in terms of the cosmological redshift, t = t(z)?

b) In general these integrals cannot be solved by quadrature, but there are some
interesting cases that can be worked out easily (see the Table below). Compute
a = a(t) during the matter and radiation dominated epoch for the Einstein-de
Sitter’s Universe. Then compute the age of each of the universes in the Table in
units of the present Hubble time H−1

0 . (Solution: i) t0 = 2/(3H0), ii) t0 = 1/H0,
iii) t0 =∞.) Explain physically the result of case iii).

i) ΩM = 1 ΩΛ = 0 Einstein-de Sitter’s Universe
ii) ΩM ' 0 ΩΛ ' 0 Milne’s Universe
iii) ΩM = 0 ΩΛ = 1 Inflationary Universe

c) Compute numerically the realistic age of our universe assuming the standard
ΛCDM model of cosmology. To this end, take the latest data released by the
PLANCK satellite (February 2015) on the cosmological parameters (assuming
zero spatial curvature). Express the result in Gigayears (Gyr), recall that 1 Gyr
= 109 yr. Compare the obtained result with the numerical age of the Einstein-de
Sitter’s Universe. Does it pay to take into account the radiation epoch in the
calculation? Why?
(Note: You can use the analytic results of Exercise 3 below to cross-check your
numerical computation.)

d) Check numerically what is the impact of the spatial curvature term Ωk on the
age computation. Use the PLANCK data on Ωk. (Notice that in this case it is
not possible to cross-check your numerical answer with the analytical results of
Exercise 3.)

3. Let us now face the age computation of the ΛCDM model analytically, again with
vanishing spatial curvature, which is realistic (why?). You will be able to cross-check
the numerical results of the previous problem with the analytical results obtained
here.

a) Use equations (1.1) and (1.3) to show that the Hubble rate H = H(t) in the
matter-dominated epoch can be obtained by solving the differential equation

Ḣ + 3
2H

2 = Λ
2 . (1.7)
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b) Solve explicitly this equation for the case of the ΛCDM model with Λ 6= 0,
assuming that the universe is spatially flat. Express your result as

H(t) =
√

Ω0
ΛH0 coth

3H0
√

Ω0
Λ

2 t

 , (1.8)

where H0 is the Hubble rate at present. Check that for Λ = 0 you obtain an
expected result. Which one? Derive explicitly a(t) from it.

c) Consider again the matter-dominated epoch. Verify that the cosmic time t is
related with the cosmological redshift z as follows:

t(z) = 2
3
√

Ω0
ΛH0

sinh−1

√Ω0
Λ

Ω0
m

(1 + z)−3/2

 . (1.9)

What is the limit Ω0
Λ → 0 of this expression? And what is the limit for z →∞?

Explain your results.
d) Let us compute the age of the universe in the ΛCDM model for the present values

of the cosmological parameters. If Ω0
k 6= 0, the age cannot be given as a simple

analytical formula. However, for Ω0
k = 0 you can easily use the previous results

to obtain an analytical expression for the age of the universe. Prove the following
beautiful formula:

t0 = 2
3
√

Ω0
ΛH0

sinh−1

√Ω0
Λ

Ω0
m

 = 2
3H0

tanh−1
√

Ω0
Λ√

Ω0
Λ

, (1.10)

where the second equality is the most convenient one. Check it!
e) Verify in detail that for Λ → 0 you recover the age of the Einstein-de Sitter

universe given in Exercise 2 above, and also the first correction to this result for
small values of Λ. Namely, show that

t0 = 2
3H
−1
0

(
1 + 1

3Ω0
Λ + . . .

)
. (1.11)

Take the ratio of this result with the exact result, and check if it departs signifi-
cantly from one for the current value of Ω0

Λ.
f) In contrast to the exact formula (1.10) (which is quite nice but also quite opaque)

the approximate formula (1.11) is numerically crude, but is qualitatively very
useful since it transparently shows that for a non-vanishing and positive Λ the
age of the universe is larger than without it. However, can you feel the intuitive
meaning of this result beyond the mathematical result? Explain physically why
an universe with Λ > 0 is necessarily older than another one with Λ = 0 (with
the same matter content). Justify your answer, clearly showing that you fully
understand the physical reason.

g) Evaluate Eq. (1.10) with the PLANCK results for the cosmological parameters
and check that your result coincides very approximately with the age of the
universe computed by direct numerical integration in Exercise 2.c). Compare
also with the result quoted by the published paper on PLANCK observations.
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Solution:

1. a) The first part can be derived using the Hubble rate definition, or on the other hand,
using the Friedmann equations. For the time being we will only proceed using the
definition H ≡ ȧ/a (the second way involves steps which are quite similar as those
we will do in next subsection). If we take a time derivative,

Ḣ = ä

a
− ȧ

a2 ȧ =⇒ H2 + Ḣ = ä

a
(1.12)

To provide an explicit expression for Ḣ in terms of the pressure and density, we
may use the Friedmann equations. Solving for Ḣ and considering (1.1) and (1.2),

Ḣ = ä

a
−H2 = −4πGN

3 (ρm + 3pm − 2ρΛ)− 8πGN
3 (ρm + ρΛ) + k

a2

= −4πGN
3 (ρm + 3pm − 2ρΛ + 2ρm + 2ρΛ) + k

a2

= −4πGN
3 (3ρm + 3pm) + k

a2

= −4πGN (ρm + pm) + k

a2 .

(1.13)

We can also arrive to this expression taking a time derivative in (1.1), and using
the energy conservation equation, ρ̇m = −3H(ρm + pm) (since now Λ is a constant,
ρ̇Λ = 0; GN is also assumed to be a constant),

2HḢ = 8πGN
3 ρ̇m + 2 k

a3 ȧ =⇒ Ḣ = −4πGN (ρm + pm) + k

a2 . (1.14)

1In any case, with the expansion the term proportional to the spatial curvature k
does not play any role. Assuming an equation of state pm = wmρm (wm > 0), then
Ḣ ∼ −4πGN (1 + wm)ρm. Since ρm decreases with expansion, this means that Ḣ
becomes less negative with time, i.e. Ḣ increases with expansion.

b) Let us try to find a first integral equation of the system of equations formed by (1.1)
and (1.2). For this purpose, we will use the relation that we have found previously,
i.e. ä/a = H2 + Ḣ. Now we may use (1.1) and (1.2), whereas Ḣ can be found taking
a time derivative of (1.1) (it is done in the r.h.s. of (1.14), but we must be aware
that in that case we set Λ = constant, and now we are in the case Λ = Λ(t) and then
ρ̇Λ 6= 0). Joining all expressions, it follows that:

− 4πGN
3 (ρm + 3pm − 2ρΛ) = 8πGN

3 (ρm + ρΛ)− k

a2 + 4πGN
3H (ρ̇m + ρ̇Λ)+ k

a2 . (1.15)

Solving for ρ̇Λ + ρ̇m, we arrive to the desired equation:

ρ̇Λ + ρ̇m + 3H (ρm + pm) = 0. (1.16)

In fact, any of these three equations (1.1), (1.2) and (1.3), are not independents.
Let us show that any one of them can be derived from the other two. For example,
we just have proved that (1.1) + (1.2) =⇒ (1.3).

1The second way we have mentioned to prove (1.12) consists in to use this last expression for Ḣ and add H2

given by the first Friedmann equation. We end up with −(4πGN/3)(ρm + 3pm − 2ρΛ), which is effectively ä/a.
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Otherwise, if we start with (1.1) and (1.3): we take a time derivative to (1.1) and
then we use (1.3), we obtain the well-known equation:

Ḣ = −4πGN (ρm + pm) + k

a2 . (1.17)

If we use this result (which, remember, comes from the combination of (1.1) and
(1.3)) plus the equation (1.1), in the identity ä/a = H2 + Ḣ, we end up with (1.2):

ä

a
= 8πGN

3 (ρm + ρΛ)− k

a2 − 4πGN (ρm + pm) + k

a2

= 4πGN
3 (2ρm + 2ρΛ − 3ρm − 3pm)

= −4πGN
3 (ρm + 3pm − 2ρΛ) .

(1.18)

And finally, let us proceed starting with (1.2) and (1.3). Because in equation (1.1)
does not appear the pressure, we must exclude it. For instance, from (1.3) we have:

ρ̇Λ + ρ̇m + 3H(ρm + pm) = 0 =⇒ 3pm = − 1
H

(ρ̇Λ + ρ̇m)− 3ρm. (1.19)

Substituting into equation (1.2) yields

ä

a
= −4πGN

3

(
ρm −

1
H

(ρ̇Λ + ρ̇m)− 3ρm − 2ρΛ

)
= 4πGN

3

(
a

ȧ
(ρ̇m + ρ̇Λ) + 2 (ρm + ρΛ)

)
.

(1.20)

If we multiply both sides of the equation by aȧ, we get:

ȧä = 4πGN
3

(
a2 (ρ̇m + ρ̇Λ) + 2aȧ (ρm + ρΛ)

)
. (1.21)

It turns out that both side of the equation are total derivatives, this can be rewritten
as:

1
2

dȧ2

dt = 4πGN
3

d
dt
(
a2 (ρm + ρΛ)

)
. (1.22)

Setting the integration constant equal to −k, leads to

ȧ2 = 8πGN
3 a2 (ρm + ρΛ)− k =⇒ H2 ≡

(
ȧ

a

)2
= 8πGN

3 (ρm + ρΛ)− k

a2 . (1.23)

For strictly constant Λ (assuming GN = constant), we have that ρ̇Λ = Λ̇/(8πGN ) =
0 =⇒ ρΛ = constant. Moreover, for non-relativistic matter with equation of state wm
(constant), ρm + pm = (1 +wm)ρm. Then the energy conservation equation becomes:
ρ̇m = −3H(1 + wm)ρm. Now we may use: ρ̇m = ȧρ′m = aHρ′m (the prime here
denotes a derivative respect the scale factor: ()′ ≡ d/da), obtaining:

aHρ′m = −3H(1 + wm)ρm =⇒
∫ dρm

ρm
= −3(1 + wm)

∫ da
a
. (1.24)

Performing the integrals and solving for ρm, we obtain:

ρm(a(t)) = ρ0
m

(
a0
a(t)

)3(1+wm)
. (1.25)
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To get an expression explicitly function of t, we should find the scale factor a(t) and
substitute in (1.25). This could be find solving the first Friedmann equation (1.1):

ȧ

a
=

√
8πGN

3 (ρm(a) + ρΛ)− k

a2 (1.26)

Notice that for k = 0 (flat universe), we can directly find an expression for ρm.
In this particular case, the Hubble rate is related with ρm via the first Friedmann
equation,

H =

√
8πGN

3 (ρm + ρΛ). (1.27)

Plugging this expression into the energy conservation equation and integrating, yields:∫ dρm
ρm

√
8πGN

3 (ρm + ρΛ)
= −3(1 + wm)

∫
dt. (1.28)

We can solve this integral with Wolframalpha, for instance. The result is:

− 2√
8πGN

3 ρΛ
tanh−1

(√
1 + ρm

ρΛ

)
= −3(1 + wm)t− C̃, (1.29)

where C̃ is some constant of integration. Solving for ρm we finally arrive to:

ρm(t) = ρΛ
[
tanh2

(√
6πGNρΛ(1 + wm)t+ C

)
− 1

]
; (1.30)

here C̃ has been redefined.

c) The Einstein equations with a cosmological constant Λ, are:

Gµν − Λgµν = 8πGNTµν . (1.31)

Here GN is the gravitational constant and Gµν ≡ Rµν − (1/2)gµνR is the Einstein
tensor, which satisfies ∇µGµν = 0 due to the Bianchi identities. Notice that (1.31)
can be rewritten in the following way:

Gµν = 8πG(Tµν + ρΛgµν) ≡ 8πGN T̃µν , with ρΛ ≡
Λ

8πGN
. (1.32)

Of course, the Bianchi identities are still satisfied, which means that in the presence
of a variable ρΛ what is conserved now is T̃µν = Tµν + ρΛgµν instead Tµν .

The Cosmological Principle states that the distribution of matter in the universe
is homogeneous and isotropic when viewed on a large enough scale. However, this
only means that ρΛ 6= ρΛ(x) but ρΛ = ρΛ(t) is allowed. So if we assume that ρΛ is
a spatially homogeneous function of the cosmic time, it is still compatible with the
Cosmological Principle.

Note that this possibility has a price: in order to still fulfil the Bianchi identities
we would need either a time dependent gravitational constant, G = G(t), or to admit
the possibility that matter exchanges energy with vacuum (hence that matter is not
self-conserved; see next subsection), or a combination of the two possibilities [2].
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d) The FLRW metric for a spatially flat universe is:

ds2 = dt2 − a2(t)δijdxidxj . (1.33)

The stress-energy tensor of a perfect fluid with 4-velocity uµ reads

Tµν = (ρm + pm)uµuν − pmδµν , (1.34)

where, for a comoving observer, uµ = δµ0 and uµ = δ0
µ (since the metric is just the

FLRW, which is comoving to the (cosmic) medium, the spatial components of the
four-velocity vanish, i.e. ui = ui = 0). Adding the extra piece, we deal with:

T̃µν = (ρm + pm)uµuν − pmδµν + ρΛδ
µ
ν , (1.35)

which must satisfy the local covariant conservation law: ∇µT̃µν = 0. It is easier if we
contract this equation with uν . Then:

0 = uν∇µT̃µν = uν∇µ
(
(ρm + pm)uµuν − pmδµν + ρΛδ

µ
ν

)
= uν∇µ(ρm + pm)uµuν + uν(ρm + pm)

(
(∇µuµ)uν + uµ∇µuν

)
− uν∇µpmδµν + uν∇µρΛδ

µ
ν

= uµ∇µρm + uµ∇µpm + (ρm + pm)∇µuµ − uν∇νpm + uν∇νρΛ

= uµ∇µρm + (ρm + pm)∇µuµ + uν∇νρΛ.

(1.36)

In this last development we have used that uµ is normalized to 1 (uµuµ = 1, it is a
4-velocity) and also that its integral curves are geodesics, i.e. uµ∇µuν = 0. Since
uµ = δµ0 , we get:

ρ̇Λ + ρ̇m + (ρm + pm)∇µuµ = 0. (1.37)

Now we just have to compute the four-divergence ∇µuµ. Using Γµµσ = ∂σ ln
√
−g, it

is easy to see that
∇µuµ = 1√

−g
∂µ
(√
−guµ

)
. (1.38)

For our particular spacetime background, g = −a6 =⇒
√
−g = a3, and uµ = δµ0 .

Therefore,

∇µuµ = 1
a3∂µ

(
a3δµ0

)
= 1
a3

da3

dt = 1
a3 3a2ȧ = 3H. (1.39)

Coming back to (1.37) with this last result, the desired equation follows:

ρ̇Λ + ρ̇m + 3H(ρm + pm) = 0. (1.40)

e) From equation (1.2), we have that the deceleration parameter of the universe in the
presence of matter and vacuum energy is given by:

q = − äa
a2 = 4πG

3 (ρm + 3pm − 2ρΛ) a
2

ȧ2 = 4πG
3H2 (ρm + 3pm − 2ρΛ)

= 1
2

8πG
3H2 (ρm + 3pm − 2ρΛ) = 1

2ρc
(ρm + 3pm − 2ρΛ) ,

(1.41)

where the definition of the critical density ρc ≡ 3H2/(8πG) has been used. It should
be pointed out, that our starting point already takes into account that the equation
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of state for the vacuum component is already wΛ = −1, i.e. pΛ = −ρΛ. Thus we can
write (1.41) as:

q = 1
2ρc

(ρm + 3pm + ρΛ + 3pΛ) . (1.42)

In the presence of several fluids with constant equation of state parameters ωn (pn =
wnρn; for radiation, matter, vacuum energy etc.), this last expression generalizes to:

q = 1
2ρc

∑
n

(ρn + 3pn) = 1
2ρc

∑
n

(ρn + 3wnρn)

= 1
2
∑
n

(1 + 3wn) ρn
ρc

=
∑
n

(1 + 3wn) Ωn(z)
2 ,

(1.43)

where we have defined the various cosmological parameters Ωn(z) = ρn(z)/ρc(z),
satisfying the sum rule

∑
n Ωn(z) = 1 at any value of the redshift z.

If we evaluate this formula for z = 0 in the ΛCDM model, we must sum over
wm = 0 and wΛ = −1, so that the current value of the acceleration parameter reads:

q0 =
∑

ωn=0,−1
(1 + 3wn) Ω0

n

2 = Ω0
m

2 − Ω0
Λ. (1.44)

In particular, for a spatially flat universe Ω0
k = 0, and then the cosmic sum rule

implies: Ω0
m + Ω0

Λ = 1 =⇒ Ω0
Λ = 1− Ω0

m. Substituting into (1.44) yields:

q0
∣∣∣
flat

= Ω0
m

2 − Ω0
Λ = Ω0

m

2 − (1− Ω0
m) = 3Ω0

m − 2
2 . (1.45)

According to the present data [1], Ω0
m = 0.309 ± 0.006, which gives the following

value of q0: q0 = −0.537 ± 0.009 < 0. This parameter is a dimensionless measure of
the cosmic acceleration of the expansion of the space in a FLRW universe. The minus
sign and name ‘deceleration parameter’ are historical; at the time of definition ä was
thought to be negative (decelerating) giving rise to a positive q. However, present
data actually suggest that the expansion of the universe is accelerating (ä > 0).

2. a) From the definition of the Hubble rate, we have:

H(a) = ȧ

a
= 1
a

da
dt =⇒ t− t1 =

∫ t

t1
dt =

∫ a(t)

a1

da
aH(a) . (1.46)

We have the relation between the redshift and the scale factor: 1 + z = a0/a, where
a0 is the actual value of the scale factor that we take to be one. Differentiating:

da
a

= 1
a

(
−a2dz

)
= −adz = − dz

1 + z
. (1.47)

Then the cosmic time in terms of the cosmological redshift, t = t(z), will be given by
(notice that the minus sign will flip the order of integration):

t− t1 =
∫ z1

z

dz
(1 + z)H(z) . (1.48)

The expression of H(z) comes from the Friedmann equation. Let us rewrite it in some
other convenient way. If consider the definition of some cosmological parameters, as
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the curvature density ρk ≡ −3k/(8πGNa2), or the critical density ρ0
c ≡ 3H2

0/(8πGN ),
we can write (1.1) as follows:

H2 = 8πGN
3 (ρm + ρΛ)− k

a2 = 8πGN
3

(
ρm + ρΛ −

3k
8πGNa2

)
= 8πGN

3 (ρm + ρΛ + ρk) = H2
0

8πGN
3H2

0
(ρm + ρΛ + ρk)

= H2
0
ρ0
c

(ρm + ρΛ + ρk) .

(1.49)

Notice that in our development radiation has not been considered. Now we plug the
relations ρm(a) = ρ0

ma
−3 (this was found in class) and ρk(a) = ρ0

ka
−2 (and this comes

from its own definition), and define the cosmological parameters Ωi:

H2 = H2
0
ρ0
c

(
ρ0
ma
−3 + ρΛ + ρ0

ka
−2
)

= H2
0

(
Ω0
ma
−3 + ΩΛ + Ω0

ka
−2
)

= H2
0

(
Ω0
m(1 + z)3 + ΩΛ + Ω0

k(1 + z)2
)
.

(1.50)

It should be pointed out that in general ΩΛ ≡ ρΛ/ρ
0
c 6= Ω0

Λ; note that ΩΛ = Ω0
Λ only

holds if Λ = constant (as it is assumed in the ΛCDM model). Finally, (1.48) becomes

t− t1 = H−1
0

∫ z1

z

dz
(1 + z)

[
Ω0
m(1 + z)3 + ΩΛ + Ω0

k(1 + z)2]1/2 . (1.51)

b) In some intermediate step in (1.50), we have:

H2 = H2
0

(
Ω0
ma
−3 + Ω0

ra
−4 + ΩΛ + Ω0

ka
−2
)
. (1.52)

where the radiation contribution has been taken into account. For the Einstein-de
Sitter’s Universe we have ΩΛ = Ωk = 0, and Ωm = 1, Ωr = 0 during the MDE or
Ωm = 0, Ωr = 1 during the RDE. Expression (1.52) allows us to compute the a = a(t)
in each epoch. It follows that:

MDE: ȧ

a
= H0

√
Ω0
ma
−3/2 =⇒ a(t) =

(3
2H0Ω0

m
1/2
)2/3

t2/3,

RDE: ȧ

a
= H0

√
Ω0
ra
−2 =⇒ a(t) =

(
2H0Ω0

r
1/2)1/2

t1/2.

(1.53)

Now let us compute the age of some universes. To do so, we consider the expression
(1.51), and although in general this integral cannot be solved by quadrature, there are
some interesting cases that can be worked out easily. If we take t1 ' 0 (the beginning
of the universe) and t = t0 (the actual value of the cosmic time, i.e. the age of the
universe), then we integrate from z = 0 to z1 = ∞. At the beginning a1 = 0 which
means z1 =∞, whereas at present a = a0 = 1 =⇒ z = 0. Then it follows that

t0 = H−1
0

∫ ∞
0

dz
(1 + z)

[
Ω0
m(1 + z)3 + ΩΛ + Ω0

k(1 + z)2]1/2 . (1.54)

i) Einstein-dS’s Universe. In this case Ωm = 1 and ΩΛ = 0. Due to the cosmic
sum rule, we have Ωk = 0 (this universe only has matter). Then, from (1.54)

t0 = H−1
0

∫ ∞
0

dz
(1 + z)5/2 = 2

3H
−1
0 . (1.55)
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ii) Milne’s Universe. In this case Ωm ' 0 and ΩΛ ' 0. Due to the cosmic sum
rule, we have Ωk ' 1, i.e. pure curvature. In this case,

t0 = H−1
0

∫ ∞
0

dz
(1 + z)2 = H−1

0 . (1.56)

iii) Inflationary Universe. In this case Ωm = 0 and ΩΛ = 1 ⇐⇒ Ωk = 0. There-
fore,

t0 = H−1
0

∫ ∞
0

dz
1 + z

= H−1
0 ×∞. (1.57)

Physically, this means that a universe that has always been dominated by dark
energy (or the cosmological constant), has not had any beginning. He has always
been inflating, i.e. if ΩΛ = 1, we have an eternal inflationary universe. Solving
the Friedmann equation in this particular case, we obtain: a(t) ∼ exp(H0t). Thus
he also never stops to inflate.

c) Let us compute numerically the realistic age of our universe assuming the standard
ΛCDM model of cosmology. To this end, we will integrate numerically the expression
(1.54), taking into account the latest data released by the PLANCK satellite (Febru-
ary 2015) [1] on the cosmological parameters and assuming zero spatial curvature, i.e.
H0 = 67.7± 0.5 km · s−1/Mpc, Ω0

m = 0.309± 0.006, Ω0
Λ = 0.691± 0.006 and Ω0

k ' 0.
Using Mathematica we obtain:

t0
∣∣∣
ΛCDM

= H−1
0

∫ ∞
0

dz
(1 + z)

[
Ω0
m(1 + z)3 + Ω0

Λ
]1/2 ' 13.820(5) Gyr. (1.58)

which is of the order of the numerical age of the Einstein-de Sitter’s Universe, i.e.
t0
∣∣
E-dS = 9.636(3) Gyr , but the result with nonvanishing Λ is larger and hence can

be compatible with the age of the older globular clusters (which is not the case with
the EdS result!).

Notice that the expression that we have used in our computations, radiation has
not been considered. However, it does not matter because the radiation-dominated
epoch lasted very little compared with the others, say the matter-dominated epoch
or dark energy-dominated epoch. The contribution of this epoch to the total age is
negligible.

Now we can use expression (1.10) (see problem 3.d) for its derivation), to cross-
check the numerical computation. This reads,

t0 = 2
3H0

tanh−1
√

Ω0
Λ√

Ω0
Λ

. (1.59)

Plugging the required experimental values mentioned above, we obtain: t0 = 13.820(5)
Gyr, in agree with the previous numerical results.

d) If we repeat the numerical computation done in the subsection above, without ne-
glecting the spatial curvature term Ωk (according to PLANCK data, we have taken
Ωk ' 0.0008), we obtain t0k = 13.814(7) Gyr (. t0), which differs less than a 0.05%
from the previous value where we neglected curvature.
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3. Let us compute analytically the age of the universe of the ΛCDM model. We will take
again vanishing spatial curvature, i.e. k ' 0. The main reason because we neglect the
spatial curvature term, is due to inflation. The huge and faster expansion of the micro-
causal connected universe that took place during inflation, led to a spatially flat universe.
Inflation was the process that eliminated any possible residual curvature, and although it
is actually an extension of the current ΛCDM model, we believe in. Anyway, from the
actual experimental data [1] we know that Ω0

k < 10−3, such that this approximation is
completely justified (from theoretical as well as experimental point of view).

a) The equation (1.1) for a spatially flat universe reads:

H2 = 8πGN
3 (ρm + ρΛ) =⇒ 3

2H
2 = 4πGN (ρm + ρΛ) . (1.60)

Previously we have found an expression for Ḣ (see (1.13)). For k = 0 and in the
matter-dominated epoch (i.e. we neglect the pressure pm ' 0), this becomes: Ḣ '
−4πGNρm. Therefore,

Ḣ + 3
2H

2 = −4πGNρm + 4πGN (ρm + ρΛ) = 4πGN
Λ

8πGN
= Λ

2 . (1.61)

Solving this differential equation we can find the Hubble rate H = H(t) in the MDE.

b) Let us solve the equation, but first let us make appear the desired parameters. It
follows that:

Ω0
Λ ≡

ρΛ
ρ0
c

= Λ
8πGN

8πGN
3H2

0
= Λ

3H2
0
, (1.62)

where H0 is the Hubble rate at present. Then the equation under consideration can
be rewritten in the following way:

Ḣ = Λ
2 −

3
2H

2 = Λ
2

(
1− 3H2

0
Λ

H2

H2
0

)
= Λ

2

(
1− H2

Ω0
ΛH

2
0

)

= 3H2
0 Ω0

Λ
2

(
1− H2

Ω0
ΛH

2
0

)
.

(1.63)

Integrating and then solving for H(t), we arrive to desired expression:

H(t) =
√

Ω0
ΛH0 coth

3H0
√

Ω0
Λ

2 t

 . (1.64)

Comment: it seems that the integral should give a tanh−1(. . . ), however it is only true
if its argument is less than one in absolute value. For all real |x| > 1, d(coth−1 x)/dx =
(1− x2)−1, which is our case since 0 < Ω0

Λ < 1.
For Λ→ 0, i.e. Ω0

Λ → 0, we may use the Taylor expansion coth x = x−1 +x/3+ . . . ,

H(t) =
√

Ω0
ΛH0

 2
3H0

√
Ω0

Λt
+
H0
√

Ω0
Λ

2 t+ . . .

 ∣∣∣∣∣
Ω0

Λ=0

= 2
3t . (1.65)

If we evaluate this expression at present time, we find that t0 = 2/(3H0), as expected.
A matter-dominated universe with Λ = 0 corresponds to the Einstein-dS’s universe,
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whose age is given by (see (1.55)): t0 = 2/(3H0), in agree with what we have found
taking the limit Λ→ 0. Now we may recover the scale factor a(t) (1.53):

1
a

da
dt = 2

3t =⇒ a(t) ∝ t2/3. (1.66)

c) To find the relation between the cosmic time t and the cosmological redshift z, we
use the expression (1.51) found in the previous problem:

t− t1 = H−1
0

∫ z1

z

dz
(1 + z)

[
Ω0
m(1 + z)3 + Ω0

Λ + Ω0
k(1 + z)2]1/2 . (1.67)

If consider the matter-dominated epoch, i.e. neglecting radiation and curvature, and
we integrate from the beginning (t1 = 0 ⇐⇒ z1 =∞) to some redshift z, we have:

t(z) = H−1
0

∫ ∞
1+z

dz′

(1 + z′)
[
Ω0
m(1 + z′)3 + Ω0

Λ
]1/2

≡ H−1
0

∫ ∞
x

dx′

x′
[
Ω0
mx
′3 + Ω0

Λ

]1/2 = 1√
Ω0

ΛH0

∫ ∞
x

dx′

x′
[
1 + (Ω0

m/Ω0
Λ)x′3

]1/2 , (1.68)

where we have defined x′ ≡ 1 + z′. Using Wolframalpha to solve the integral, we
arrive to:

t(z) = 2
3
√

Ω0
ΛH0

sinh−1

√Ω0
Λ

Ω0
m

(1 + z)−3/2

 . (1.69)

If we take the limit Ω0
Λ → 0, we can Taylor expand: sinh−1 x = x− x3/6 + . . . ,

t(z) = 2
3
√

Ω0
ΛH0

√Ω0
Λ

Ω0
m

(1 + z)−3/2 − 1
6

(
Ω0

Λ
Ω0
m

)3/2

(1 + z)−9/2 + . . .

 ∣∣∣∣∣
Ω0

Λ=0

= 2
3
√

Ω0
mH0

(1 + z)−3/2 =⇒ (1 + z)−1 =
(3

2H0Ω0
m

1/2
)2/3

t2/3,

(1.70)

as we expect. That is the expression for the scale factor a(t) that we found in problem
2 subsection b). In that case we took the normalization so that a0 = 1, in such a
way that (1 + z)−1 = a(t). We get again the expression (1.53) for the MDE,

a(t) =
(3

2H0Ω0
m

1/2
)2/3

t2/3. (1.71)

Otherwise, if we take the limit z → ∞ (remember that bigger values of z means
that we are looking to the past, therefore z →∞ corresponds to the beginning of the
universe; we should obtain t→ 0, where a = 0),

t(z →∞) = 2
3
√

Ω0
ΛH0

sinh−1 (0) = 0, (1.72)

since sinh−1(0) = 0. This can be a kind of check.

d) Let us compute the age of the universe in the ΛCDM model for the present values
of the cosmological parameters, assuming Ω0

k = 0 (otherwise we can not find an
analytical expression; after all, we must use the previous results which carry the
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assumption Ω0
k = 0). Evaluating (1.69) in z = 0 (that is the actual redshift with the

used normalization, i.e. a0 = 1), we end up with:

t0 = 2
3
√

Ω0
ΛH0

sinh−1

√Ω0
Λ

Ω0
m

 . (1.73)

Using the cosmic sum rule, Ω0
m + Ω0

Λ = 1 =⇒ Ω0
m = 1 − Ω0

Λ, and using the relation
sinh−1 x = ln(x +

√
1 + x2), it follows that (for simplicity and for the moment we

exclude the proportionality factor):

t0 ∝ sinh−1
(√

Ω0
Λ

1− Ω0
Λ

)
= ln

(√
Ω0

Λ
1− Ω0

Λ
+
√

1 +
Ω0

Λ
1− Ω0

Λ

)

= ln

√ Ω0
Λ

1− Ω0
Λ

+ 1√
1− Ω0

Λ

 = ln
(

1 +
√

Ω0
Λ

)
− ln

√
1− Ω0

Λ

= ln
(

1 +
√

Ω0
Λ

)
− 1

2 ln
(
1− Ω0

Λ

)
= ln

(
1 +

√
Ω0

Λ

)
− 1

2 ln
[(

1−
√

Ω0
Λ

)(
1 +

√
Ω0

Λ

)]
= ln

(
1 +

√
Ω0

Λ

)
− 1

2 ln
(

1−
√

Ω0
Λ

)
− 1

2 ln
(

1 +
√

Ω0
Λ

)

= 1
2 ln

1 +
√

Ω0
Λ

1−
√

Ω0
Λ

 = tanh−1
√

Ω0
Λ,

(1.74)

since tanh−1 x = (1/2) ln
(

1+x
1−x

)
. Restoring the proportional constant,

t0 = 2
3H0

tanh−1
√

Ω0
Λ√

Ω0
Λ

. (1.75)

e) For Λ→ 0, i.e. Ω0
Λ → 0, we may use the Taylor expansion tanh−1 x = x+x3/3 + . . . ,

in (1.74)

t0 = 2
3H
−1
0

1√
Ω0

Λ

(√
Ω0

Λ + 1
3(Ω0

Λ)3/2 + . . .

)

= 2
3H
−1
0

(
1 + 1

3Ω0
Λ + . . .

)
.

(1.76)

If we strictly take Ω0
Λ = 0, we recover the age of the Einstein-de Sitter universe:

t0 = 2/(3H0), as we could expect. We had proven it in the previous subsection b) of
this problem 3 (see (1.65)).

Taking the ratio of this result with the exact result we check that for the current
value of Ω0

Λ, it differs from one but not significantly:

t0
∣∣
approx

t0
∣∣
exact

= 0.8578. (1.77)

f) Expression (1.76) states that the age of the universe with a non-vanishing and positive
Λ is larger than those without it. Intuitively, that is because the cosmic expansion of
an universe with a positive non-vanishing cosmological constant is accelerating. This
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means that the cosmic expansion was slower in the past, in such a way that it took the
universe longer to expand to its present size. Although both have the same matter
content, that universe with Λ 6= 0 take longer to reach its present rate of expansion.

g) The first part has already been done in problem 2, and in fact, we have seen that
the age of the universe computed by direct numerical integration coincides exactly
with that we obtain using the analytical formula (1.75). See exercise 2.c). We have
obtained: t0 = 13.820(5) Gyr, which is quite admissible if we compare this value with
that deduced from PLANCK observations [1]: t0

∣∣
PLANCK = 13.799± 0.021 Gyr.

2 More on FLRW cosmologies

n Dark Energy and scalar fields

6. Let us consider scalar fields in cosmology. We have derived on the blackboard the
explicit expressions for the energy density and pressure, and we found

ρφ = 1
2 φ̇

2 + V (φ), pφ = 1
2 φ̇

2 − V (φ). (2.1)

a) These equations follow easily in the Minkowskian spacetime and assuming that
φ does not depend on the space coordinates (why?). Show that these equations
also hold for the FLRW metric, which means you have to make explicit use of
the homogeneity and isotropy of spacetime.

b) Use the above equations to determine the equation of motion for φ in the FLRW
metric.

c) Recompute the density and pressure in the case when φ is not homogeneous but
is still isotropic.

d) Show that in the last case the equation of state ωφ = pφ/ρφ reads

ωφ = −1 +
φ̇2/V (φ) + 1

3(∇φ)2/V (φ)
1 + 1

2 φ̇
2/V (φ) + 1

2(∇φ)2/V (φ)
. (2.2)

Explain what is the meaning of (∇φ)2 in this context, and check that the above
result boils down to the standard one (which we discussed on the blackboard)
for homogeneous scalar fields.

e) Explain how space inhomogeneities could make that scalar field φ to appear as
being phantom-like, without really being a phantom field. What is the quanti-
tative condition on the time and space variations of the field so as to fulfil this
phantom-like behavior? Compare it with the standard quintessence case. Could
a time-independent scalar field look quintessence or phantom-like?

6. The expression for the energy-momentum tensor of the scalar field φ that we found is:

T φµν = ∇µφ∇νφ− gµν
(1

2g
αβ∇αφ∇βφ− V (φ)

)
. (2.3)

14



If ∇µφ is timelike, we can define a 4-velocity uµ = ∇µφ/|∇φ|, where the factor |∇φ| ≡
(∇σφ∇σφ)1/2 ensures the canonical normalization, i.e. uµuµ = 1. Then T φµν can be written
as that of a perfect fluid with 4-velocity uµ:

T φµν = ∇σφ∇σφuµuν − gµν
(1

2g
αβuαuβ∇σφ∇σφ− V (φ)

)
= ∇σφ∇σφuµuν − gµν

(1
2∇σφ∇

σφ− V (φ)
)

≡ (ρφ + pφ)uµuν − pφgµν .

(2.4)

We can identify ρφ + pφ = ∇σφ∇σφ, and pφ = (1/2)∇σφ∇σφ − V (φ). Then ρφ =
(1/2)∇σφ∇σφ + V (φ). Otherwise, we could have obtained these expressions looking at
the 00- and ii-components, since ρφ = T φ00 and pφ = T φii . However, this way is perhaps
unnatural since we are already assuming that T φµν takes that form of a perfect fluid.

a) φ does not depend on the space coordinates due to the cosmological principle. If the
universe feels the presence of a scalar field φ giving rise to a cosmological constant
effect, the scalar field must be invariant under translations and rotations in space.

The expressions for the density and pressure for the FLRW metric,

ds2 = dt2 − a2(t)
( 1

1− kr2 dr2 + r2dΩ2
)
, (2.5)

are (since the metric is diagonal, we have gtt = (gtt)−1 = 1):

ρφ = 1
2∇σφ∇

σφ+ V (φ) = 1
2g

ttφ̇2 + V (φ) = 1
2 φ̇

2 + V (φ),

pφ = 1
2∇σφ∇

σφ− V (φ) = 1
2g

ttφ̇2 − V (φ) = 1
2 φ̇

2 − V (φ),
(2.6)

which coincide with the expressions for ρφ and pφ in Minkowskian spacetime. Notice
that it happens because we have assumed a homogeneous field —as required by the
Cosmological Principle— and after all, the mentioned principle also invites us to look
for homogenous and isotropic spacetimes, which is the case of the FLRW metric. This
fact that ensures that ρφ and pφ take the same form in both backgrounds.

b) Notice that we have written T φµν in a perfect fluid form. Then we have the energy
conservation equation: ∇µT φµ0 = 0 =⇒ ρ̇φ+ 3H(ρφ+pφ) = 0, which has been derived
for the case we had Λ = Λ(t), some problem back (see problem 1 subsection d)).
Inserting the corresponding expressions, we have:

ρ̇φ = 1
22φ̇φ̈+ V ′(φ)φ̇ =

(
φ̈+ V ′(φ)

)
φ̇, ρφ + pφ = φ̇2 (2.7)

and the energy conservation equation becomes

φ̈+ 3Hφ̇+ V ′(φ) = 0 (2.8)

i.e. the equation of motion for φ in the FLRW metric.

c) For a non-homogeneous field but still isotropic, we have that ∂xφ = ∂yφ = ∂zφ (all
directions must be equivalent from the point of view of the scalar field). It can also
be implemented by considering φ = φ(t, r) (the field is invariant under SO(3)).
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Notice that in this case, gradients induce a non-vanishing energy flux, T 0
i , or mo-

mentum density, T i0, in such a way that T φµν can not be written in a perfect fluid form.
Therefore, we must proceed more generally using the general expression for T φµν (see
(2.3)), taking ρφ = T φ00, pφ = T φii (≡ (1/3)

∑
i T

φ
ii due to isotropy). If follows,

ρφ = φ̇2 −
(1

2 φ̇
2 − 1

2(~∇φ)2 − V (φ)
)

= 1
2 φ̇

2 + 1
2(~∇φ)2 + V (φ),

pφ = (∂iφ)2 +
(1

2 φ̇
2 − 1

2(~∇φ)2 − V (φ)
)

= 1
3(~∇φ)2 + 1

2 φ̇
2 − 1

2(~∇φ)2 − V (φ)

= 1
2 φ̇

2 − 1
6(~∇φ)2 − V (φ).

(2.9)

We have defined: (~∇φ)2 ≡ (∂xφ)2 + (∂yφ)2 + (∂zφ)2. Of course, all development has
been done in Minkowski space, for simplicity (just as before).

d) In this last case, the equation of state ωφ = pφ/ρφ reads

ωφ =
1
2 φ̇

2 − 1
6(~∇φ)2 − V (φ)

1
2 φ̇

2 + 1
2(~∇φ)2 + V (φ)

= −1 + 1 +
1
2 φ̇

2 − 1
6(~∇φ)2 − V (φ)

1
2 φ̇

2 + 1
2(~∇φ)2 + V (φ)

= −1 +
1
2 φ̇

2 + 1
2(~∇φ)2 + V (φ) + 1

2 φ̇
2 − 1

6(~∇φ)2 − V (φ)
1
2 φ̇

2 + 1
2(~∇φ)2 + V (φ)

= −1 +
φ̇2 + 1

3(~∇φ)2

V (φ) + 1
2 φ̇

2 + 1
2(~∇φ)2

= −1 +
φ̇2/V (φ) + 1

3(~∇φ)2/V (φ)
1 + 1

2 φ̇
2/V (φ) + 1

2(~∇φ)2/V (φ)
.

(2.10)

Perhaps the best way to understand the meaning of (~∇φ)2 in this context, is to
look at the energy density, which we have found to be ρφ = (φ̇2 + (~∇φ)2)/2 + V (φ).
Because now homogeneity is lost, we see that (~∇φ)2 is the cost of energy due to move
the field in space, as well as the kinetic energy is somehow the energy associated to
move the field in time. Note that for homogeneous scalar fields (~∇φ = 0), we recover
the standard expression mentioned in class:

ωφ → −1 + φ̇2/V (φ)
1 + 1

2 φ̇
2/V (φ)

' −1 + φ̇2

V (φ) ≡ −1 + ε. (2.11)

e) Let us find a condition on space inhomogeneities giving rise to a phantom-like equation
of state (i.e. wφ . −1), but still with a scalar field φ having a positive kinetic term.
If we enforce wφ to be smaller than minus one, we can find a condition involving φ̇
and ~∇φ. From (2.10), it follows:

− 1 +
φ̇2/V (φ) + 1

3(~∇φ)2/V (φ)
1 + 1

2 φ̇
2/V (φ) + 1

2(~∇φ)2/V (φ)
. −1 ⇐⇒ φ̇2 . −1

3(~∇φ)2. (2.12)

Notice however, that we must require to have φ̇2 > 0, which is only satisfied if the
gradient is purely imaginary: ~∇φ = iIm(~∇φ). Then the condition is:

φ̇2 .
1
3
[
Im(~∇φ)

]2
. (2.13)

If we perform a Taylor expansion, wφ becomes:

wφ ' −1 + 1
V (φ)

(
φ̇2 + 1

3(~∇φ)2
)
≡ −1 + ε, (2.14)
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with ε < 0 if (2.13) is satisfied. For the quintessence case we obtained wφ ' −1 + δ,
with δ > 0 in any case (δ = φ̇2/V (φ) for a homogeneous field). If we have a time-
independent scalar field, wφ ' −1 + (~∇φ)2/(3V (φ)), which behaves as quintessence
if the gradient is real, or as a phantom field if the gradient is purely imaginary.

7. a) If we replace the standard kinetic term in the Lagrangian density by 1
2ξg

µν∂µφ∂νφ,
being ξ some coefficient, we now deal with:

L → Lξ = 1
2ξg

µν∂µφ∂νφ− V (φ). (2.15)

The expression for wφ that we can derive using this Lagrangian density is completely
equivalent to take (2.10) and make the replacements: φ̇→

√
ξφ̇ and ~∇φ→

√
ξ~∇φ.

We end up with:

wξφ = −1 +
ξφ̇2/V (φ) + 1

3ξ(~∇φ)2/V (φ)
1 + 1

2ξφ̇
2/V (φ) + 1

2ξ(~∇φ)2/V (φ)

' −1 + ξ

V (φ)

(
φ̇2 + 1

3(~∇φ)2
)
.

(2.16)

For instance, for a homogeneous field wξφ = −1 + ξφ̇2/V (φ). Thus if ξ < 0, we have
wξφ . −1 (and the scalar field becomes a phantom field). We do not like this condition
because it implies we have a negative kinetic term, giving rise to deep problems in
QFT, e.g. unitarity could not be preserved or particle states do not have the standard
energy-momentum relation (E2 6= m2 + p2). Also, with a negative kinetic term we
can have an arbitrary large negative energy. Nothing of this kind is observed, which
casts serious doubt on possible existence of phantom fields [1].

b) The equation of state for the dark energy (DE) derived from PLANCK observations,
is [2]: w = −1.019+0.075

−0.080, which corresponds to a phantom-like behavior (w . −1).
Due to the serious problems that have been mentioned just before, maybe the most
realistic possibility to consider is to mimic the phantom behavior with a non-phantom
scalar field. In Ref.[1] some ideas are given to mimic a phantom field through a
dynamical cosmological term. The student can also try to do Exercise 5 in the list,
of which we do not provide an explicit solution here since the solutions can be found
in the arXiv. preprints cited there, see e.g. Ref.[3] below and even more specifically
Ref.[4]. In that exercise one finds specific examples of dynamical vacuum models that
can mimic a phantom field. So true phantom fields are actually not needed!
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[2] J. Solà, Cosmological constant and vacuum energy: old and new ideas,
J. Phys. Conf. Ser. (2013) 453 012015 [e-Print: arXiv:1306.1527].
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