Top quark pole mass measurements in ATLAS

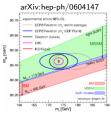
Davide Melini

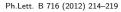
University of Granada & IFIC Valencia

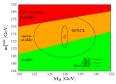
TAE, 23rd September 2015

Universidad de Granada

Outline

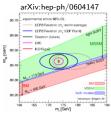

- Top quark relevance
- Measure m_{top}^{pole} using $t\bar{t}$ +jet.
- The measurement at 7Tev.
- Outlook to 8Tev data.
- Conclusions.

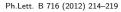


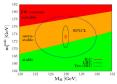

The top quark

Why is the top quark important?

- The only (almost)free quark
- Heaviest particle in Standard Model (SM)
- Important in EWSB mechanism:
 - Strongest coupling to Higgs boson.
 - M_{top}, M_W, M_H test the SM.
- Plays a role in EW vacuum stability.
- Important in many new physics (NP) models.




Measuring the Top-quark properties with high accuracy is a test on the validity of the SM.


The top quark

Why is the top quark important?

- The only (almost)free quark
- Heaviest particle in Standard Model (SM)
- Important in EWSB mechanism:
 - Strongest coupling to Higgs boson.
 - M_{top}, M_W, M_H test the SM.
- Plays a role in EW vacuum stability.
- Important in many new physics (NP) models.

Measuring the Top-quark properties with high accuracy is a test on the validity of the SM.

Let's focus on the top-quark mass!

Quarks masses are parameters of the SM Lagrangian:

- They are not observables, due to confinement.
- Some observables depend on these parameters \rightarrow fit is possible!.
- Precise values depend on the renormalization scheme used.
- NLO is required to fix renormalization scheme.

Two most used mass definitions, related one to eachother through QCD:

Quarks masses are parameters of the SM Lagrangian:

- They are not observables, due to confinement.
- Some observables depend on these parameters \rightarrow fit is possible!.
- Precise values depend on the renormalization scheme used.
- NLO is required to fix renormalization scheme.

Two most used mass definitions, related one to eachother through QCD:

- pole mass $\rightarrow m^{\text{pole}}$
 - on-shell renormalization

(free particles =physical mass, quarks $\mathcal{O}(\Lambda_{QCD}) \approx 0.2 GeV$ ambiguity)

• pole of the propagator

Quarks masses are parameters of the SM Lagrangian:

- They are not observables, due to confinement.
- Some observables depend on these parameters \rightarrow fit is possible!.
- Precise values depend on the renormalization scheme used.
- NLO is required to fix renormalization scheme.

Two most used mass definitions, related one to eachother through QCD:

- pole mass $\rightarrow m^{\text{pole}}$
 - on-shell renormalization

(free particles =physical mass, quarks $\mathcal{O}(\Lambda_{QCD}) \approx 0.2 GeV$ ambiguity)

- pole of the propagator
- running mass $\rightarrow m^{run}(\mu)$
 - MS or $\overline{\text{MS}}$ renormalization
 - scale dependent
 - quite far from the pole of the propagator

NLO is necessary to have a consistent mass definition.

Quarks masses are parameters of the SM Lagrangian:

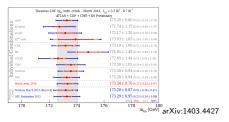
- They are not observables, due to confinement.
- $\bullet~$ Some observables depend on these parameters $\rightarrow~$ fit is possible!.
- Precise values depend on the renormalization scheme used.
- NLO is required to fix renormalization scheme.

Two most used mass definitions, related one to eachother through QCD:

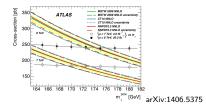
- pole mass $\rightarrow m^{\text{pole}}$
 - on-shell renormalization

(free particles =physical mass, quarks $\mathcal{O}(\Lambda_{QCD}) \approx 0.2 GeV$ ambiguity)

- pole of the propagator
- running mass $\rightarrow m^{run}(\mu)$
 - MS or $\overline{\text{MS}}$ renormalization
 - scale dependent
 - quite far from the pole of the propagator


NLO is necessary to have a consistent mass definition.

But how to measure them in experiments?


The top-quark mass: measurements

Two methods to measure top-quark pole mass:

- Kinematic reconstruction→ top is reconstructed from its decay products.
 - High experimental precision.
 - *m*^{reco} should be close to *m*^{pole}, but it is not well defined.

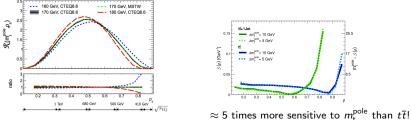
- Inferred from cross section $\rightarrow \sigma_{t\bar{t}}$ depends on the pole mass of the top-quark.
 - Well defined teoretically (NLO fixes the renormalization scheme).
 - Less sensitivity to *m*^{pole} and larger experimental errors.

The top-quark mass: a new method

Use $t\bar{t} + 1$ JET ! \longrightarrow

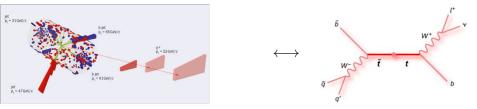
- relatively big sample (30% of $t\bar{t}$).
- available at NLO (renormalization scheme fixed).
- radiation depends on m_{top}^{pole} .

The top-quark mass: a new method

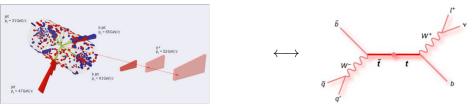

Use $t\bar{t} + 1$ JET ! \longrightarrow

- relatively big sample (30% of $t\bar{t}$).
- available at NLO (renormalization scheme fixed).
- radiation depends on m_{top}^{pole} .

Use the variable:


$$\mathcal{R}\left(m_{t}^{\text{pole}},\rho_{s}\right) = \frac{1}{\sigma_{t\bar{t}+1-\text{jet}}} \frac{\mathrm{d}\sigma_{t\bar{t}+1-\text{jet}}}{\mathrm{d}\rho_{s}}\left(m_{t}^{\text{pole}},\rho_{s}\right) \;; \qquad \text{where} \quad \rho_{s} = \frac{340\text{GeV}}{\sqrt{s_{t\bar{t}+1-\text{jet}}}}$$

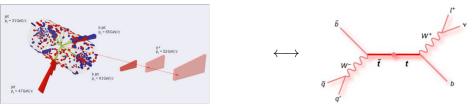
The 7TeV analysis: The event reconstruction


 $t\bar{t}$ + 1-jet events have to be reconstructed from final particles detected.

Event is accepted if it has 1 lepton and at least 5 jets, two of them tagged as *b*-jets.

The 7TeV analysis: The event reconstruction

 $t\bar{t}$ + 1-jet events have to be reconstructed from final particles detected.

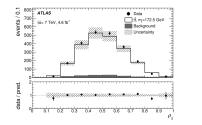


Event is accepted if it has 1 lepton and at least 5 jets, two of them tagged as *b*-jets.

- leptonic W: lepton + reconstructed neutrino + constraint on m_W
- hadronic W: two non b-tagged jets satisfying m_W and distance constraints
- Tops: combine *b*-jets with the *W*'s in such a way to minimize the mass difference between the two tops.
- Extra jet: the leading p_T jet between the remaining ones.

The 7TeV analysis: The event reconstruction

 $t\bar{t}$ + 1-jet events have to be reconstructed from final particles detected.


Event is accepted if it has 1 lepton and at least 5 jets, two of them tagged as *b*-jets.

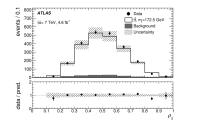
- leptonic W: lepton + reconstructed neutrino + constraint on m_W
- hadronic W: two non b-tagged jets satisfying m_W and distance constraints
- Tops: combine *b*-jets with the *W*s in such a way to minimize the mass difference between the two tops.
- Extra jet: the leading p_T jet between the remaining ones.

All the variables to compute $\mathcal{R}^{\mathsf{reco}}\left(m_t^{\mathsf{pole}},
ho_s
ight)$ are then available!

The 7TeV analysis: The unfolding

$$\mathcal{R}^{\text{reco}}\left(m_{t}^{\text{pole}},\rho_{s}\right) = \frac{1}{\mathsf{N}_{t\bar{t}+1-\text{jet}}}\frac{\mathsf{d}\mathsf{N}_{t\bar{t}+1-\text{jet}}}{\mathsf{d}\rho_{s}}$$

Reconstructed level \neq parton level


Only at parton level we can fit data to theoretical predictions.

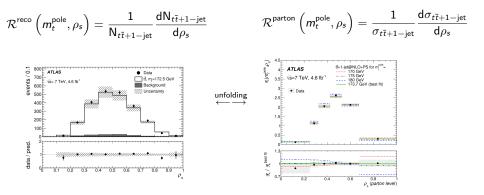
Need to correct for the detector and hadronization effects:

unfolding

The 7TeV analysis: The unfolding

$$\mathcal{R}^{\text{reco}}\left(m_{t}^{\text{pole}},\rho_{s}\right) = \frac{1}{\mathsf{N}_{t\bar{t}+1-\text{jet}}}\frac{\mathsf{d}\mathsf{N}_{t\bar{t}+1-\text{jet}}}{\mathsf{d}\rho_{s}}$$

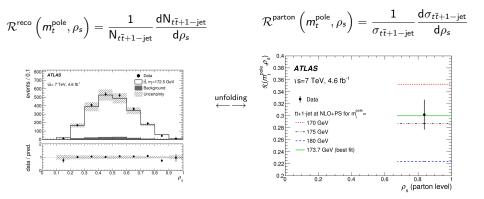
Reconstructed level \neq parton level


Only at parton level we can fit data to theoretical predictions.

Need to correct for the detector and hadronization effects:

unfolding

$$\begin{split} t\bar{t} + 1\text{-jet (reco)} &\longrightarrow t\bar{t} + 1\text{-gluon (parton)} \longrightarrow t\bar{t} + 1\text{-jet (parton)} \\ \mathcal{R}^{\text{cor-data}}(\rho_s) \equiv \left[\left(\mathcal{M}^{-1} \otimes \mathcal{R}^{\text{det-data}}(\rho_s) \right) \cdot \left(\frac{\mathcal{R}^{l\bar{t}+g}(\rho_s)}{\mathcal{R}^{l\bar{t}+g}(\rho_s)} \right)^{-1} \right] \cdot \left(\frac{\mathcal{R}^{l\bar{t}+1\text{-jet}}(\rho_s)}{\mathcal{R}^{l\bar{t}+g}(\rho_s)} \right), \end{split}$$


The 7TeV analysis: Results

 $m_t^{
m pole} = 173.7 \pm 1.5(
m stat) \pm 1.4(
m syst)^{+1.0}_{-0.5}(
m theory) \,\, {
m GeV}$

Total uncertainty is $\sigma(m_t^{\text{pole}}) = {+2.3 \atop -2.1} \text{GeV}.$

The 7TeV analysis: Results

 $m_t^{
m pole} = 173.7 \pm 1.5(
m stat) \pm 1.4(
m syst)^{+1.0}_{-0.5}(
m theory)$ GeV

Total uncertainty is $\sigma(m_t^{\text{pole}}) = {+2.3 \atop -2.1} \text{GeV}.$

Davide Melini

8TeV improvements

Description	Value	%
	[GeV]	
m_t^{pole}	173.71	
Statistical uncertainty	1.50	0.9
Scale variations	(+0.93, -0.44)	(+0.5, -0.3)
Proton PDF (theory) and α_s	0.21	0.1
Total theory systematic uncertainty	(+0.95, -0.49)	(+0.5, -0.3)
Jet energy scale (including b-jet energy scale)	0.94	0.5
Jet energy resolution	0.02	< 0.1
Jet reconstruction efficiency	0.05	< 0.1
b-tagging efficiency and mistag rate	0.17	0.1
Lepton uncertainties	0.07	< 0.1
Missing transverse momentum	0.02	0.1
MC statistics	0.13	< 0.1
Signal MC generator	0.28	0.2
Hadronization	0.33	0.2
ISR/FSR	0.72	0.4
Colour reconnection	0.14	< 0.1
Underlying event	0.25	0.1
Proton PDF (experimental)	0.54	0.3
Background	0.20	0.1
Total experimental systematic uncertainty	1.44	0.8
Total uncertainty	(+2.29, -2.14)	(+1.3, -1.2)

@8Tev much more events

 \rightarrow

- less statistical uncertainty.
- different binning of *R*^{parton} possible. (increasing sensitivity)

The top-quark running mass can also be measured (theoretical work in progress).

 $\approx 1~\text{GeV}$ uncertainty or less is possible.

Conclusions and outlook

Conclusions:

- Top-quark is important for SM and BSM scenarios.
- Is essential to well define the quark mass we want to measure.
- A measurement using 7Tev data has been done of m_t^{pole}. It is the first and most precise measurements of m_t^{pole}.

Outlook (or "my job"):

- Using 8TeV data is possible to reduce to ≤ 1 GeV the total uncertainty on m_t^{pole} .
- First measurement of the top-quark running mass.

Thanks for you attention!

(thanks to P.Fernandez and A.Irles for the 7TeV analysis and 8TeV help, to supervisors M.Vos, J.Fuster, R.Pittau for even more help and support)

Backup

Renormalizations:

Renormalized propagator:

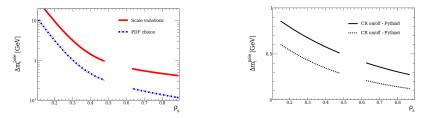
$$S(p) = - \frac{\imath}{\not p - m_t^0 + \Sigma^R(p,m_t^0,\mu)}$$

On-shell renormalization (pole mass) - Z_2 and Z_m are determined by means of:

$$\Sigma^R(p) = 0$$
 and $\frac{\partial \Sigma^R}{\partial \not p} = 0$ for $\not p = m$

 $\overline{\mathrm{MS}}$ renormalization: counterterm to subtract $(1/\epsilon + \gamma_E - \ln 4\pi)$

$$S^R_{o.s.}(p) \sim \frac{i}{\not \! p - m_{\rm pole}} \hspace{0.2cm} ; \hspace{0.2cm} S^R_{\overline{\rm MS}} \sim \frac{i}{\not \! p - m_{\rm MS} - (A-B)m_{\rm MS}}$$


Pole vs $\overline{\text{MS}}$ mass:

Relation pole/ $\overline{\rm MS}$ mass at 4 loops $[\bar{m} = \bar{m}(\bar{m})$ and $\bar{\alpha}_S = \alpha_S(\bar{m})/\pi]$ (P.Marquard et al, PRL'15)

 $m_{\text{pole}} = \bar{m} \times \left[1 + c_1 \bar{\alpha}_S + + c_2 \bar{\alpha}_S^2 + c_3 \bar{\alpha}_S^3 + c_4 \bar{\alpha}_S^4 + \dots \right] ; c_4 \bar{m}_t \bar{\alpha}_S^4 \approx 200 \text{ MeV}$

For top quarks: $m_{\text{pole}} = \bar{m}[1 + 0.046 + 0.010 + 0.003 + 0.001 + \dots]$

PDF, scale, color reconnection uncertainties:

