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BHH - dimers and trimers

The Bose-Hubbard Hamiltonian (BHH):

HBHH =
U

2

M∑
j=1

a†ja
†
jajaj −

K

2

M∑
j=1

(
a†j+1aj + a†jaj+1

)
u ≡

NU

K

Dimer (M=2): minimal BHH; Bosonic Josephson junction; Pendulum physics [1,5].

Driven dimer: Landau-Zener dynamics [2], Kapitza effect [3], Zeno effect [4], Standard-map physics [5].

Trimer (M=3): minimal model for chaos; Coupled pendula physics.

Triangular trimer: minimal model with topology, Superfluidity [6], Stirring [7].

Coupled trimers: minimal model for mesoscopic thermalization [8,9].
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Scope

• The recent experimental realization of confining potentials with toroidal shapes [1]

has opened a new arena of studying superfluidity in low dimensional circuits.

In particular a discrete ring has been realized [2].

HBHH =
U

2

M∑
j=1

a†ja
†
jajaj −

K

2

M∑
j=1

(
a†j+1aj + a†jaj+1

)
• The hallmark of superfluidity is a metastable non-equilibrium steady-state current.

• The traditional paradigm is based on the Landau criterion and the BdG stability analysis [3-5].

• We challenge the traditional paradigm and highlight the role of chaos in the analysis.
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The Model (non-rotating ring)

A Bose-Hubbard system with M sites and N bosons:

H =

M∑
j=1

[
U

2
a†ja
†
jajaj −

K

2

(
a†j+1aj + a†jaj+1

)]

In a semi-classical framework:

aj =
√
nj eiϕj , [ϕj ,ni] = iδij

z = (ϕ1, · · · ,ϕM , n1, · · · ,nM )

This is like M coupled oscillators with H = H(z)

H(z) =

M∑
j=1

[
U

2
n2
j −K

√
nj+1nj cos (ϕj+1−ϕj)

]

The dynamics is generated by the Hamilton equation:

ż = J∂H , J =

 0 I

−I 0


(DNLS)

Classically there is a single

dimensionless parameter:

u =
NU

K

Rescaling coordinates:

ñ = n/N

[ϕj , ñi] = i~δij

~ =
1

N



The model (rotating ring)

In the rotating reference frame we have a Coriolis force,

which is like magntic field B = 2mΩ. Hence is is like having flux

Φ = 2πR2m Ω =
M2

2π

(
m

meff

)
Ω

K

Note: there are optional experimental realizations.

H =

M∑
j=1

[
U

2
a†ja
†
jajaj −

K

2

(
ei(Φ/M)a†j+1aj + e−i(Φ/M)a†jaj+1

)]

Summary of model parameters:

The ”classical” dimensionless parameters of the DNLS are u and Φ.

The mumber of particles N is the ”quantum” paramater.

The system has effectively d = M−1 degrees of freedom.

M = 2 Bosonic Josephson junction (Integrable)

M = 3 Minimal circuit (mixed chaotic phase-space)

M ≥ 4 High dimensional chaos (Arnold diffusion)

M →∞ Continuous ring (Integrable)



The many-body spectrum

We characterize each eigenstate |α〉 of the BHH by (Iα, Eα) and colorcode by Mα

The expected location of a vortex state, and the maximum current state, are encircled by © and ©
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|m〉 =
(
ã†m

)N
|0〉 m = 1...M

Im = N ×
(
K

M

)
sin

(
1

M
(2πm− Φ)

)
Iα ≡ −

〈
∂H
∂Φ

〉
α

ρij ≡
1

N
〈a†jai〉α = reduced probability matrix

Mα ≡ [trace(ρ2)]−1 ∈ [1,M ]

Mα = 1 for coherent state (condensation).

Mα ∼M for maximally fragmented or chaotic state.

Constructing the regime diagram:

For every (Φ, u) value we plot max{Iα}

Φ/π

u
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Regime diagram

The I of the maximum current state is imaged as a function of (Φ, u)

solid lines = spectral stability borders (Landau); dashed lines = dynamical stability borders (BdG)
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The traditional paradigm associates vortex states with stationary fixed-points

in phase space. Consequently the Landau criterion, and more generally the

Bogoliubov de Gennes linear-stability-analysis, are conventionally used to de-

termine the viability of superfluidity.

• We challenge the application of the traditional paradigm to low-dimensional circuits.

• We highlight the role of chaos in the “stability analysis”.

• We identify novel types of states that can support superfluidity.



Stability analysis of the excited vortex state

The dynamics is generated by the Hamilton equation: ż = J∂H(z) (DNLS)

Coherent states are supported by fixed-points of the classical Hamiltonian: ∂H(z) = 0

Technical note: The cyclic degree of freedom has to be separated (N is constant of motion).

Linear stability analysis (Bogoliubov de Gennes): ż = JAz where Aν,µ = ∂ν∂µH

Spectral stability: Energy local extremal points (Landau criterion) – based on A diagonalization

Dynamical stability: Zero Lyapunov exponents (real BdG frequencies) – based on JA diagonalization

Schematic illustration of the energy landscape E = H(z)

E

dynamically

stable state

z

chaotic
pond

z



Stability of the ”ground” vortex state

(digression)

The ground-state vortex can destabilize as well:

Quantum transition: Mott transition for u > N2/M

Classical transition: Self-trapping for u > something

Note: upper state is like ground state for U 7→ −U

2N
Mott regime
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Beyond the traditional view

• Dynamical instability of a vortex state does imply that superfluidity is diminished.

Kolmogorov-Arnold-Moser (KAM) structures ; Chaotic and irregular vortex states.

• Dynamical stability of a vortex state does not imply in general strict stability.

For M > 3 the KAM tori do not block transport (Arnold diffusion).

• One should take into account quantum fluctuations (uncertainty width of a coherent state).

Stability is required within a Plank cell around the fixed-point. Regime-diagram is ~ dependent.

chaotic
pond

z



Regime Diagram for M = 3

A stable vortex state carries current:

Im =
N

M
K sin

(
1

M
(2πm−Φ)

)
Here: M=3; m=1; Im ∼ N

M
K

Spectral stability (solid line):

u >
3− 12 sin2

(
Φ
3
− π

6

)
4 sin

(
Φ
3
− π

6

)
Dynamical instability (dashed line):

u >
9

4
sin

(
π

6
−

Φ

3

)
& Φ <

π

2

Swap transition (dotted line):

u = 18 sin

(
π

6
−

Φ

3

)

I of maximal current state:

Φ/π

u
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Spectral vs dynamical stability

Poincare section n2 = n3 at the vortex energy.

(1) Spectral stability; (2) Dynamical stability.

red trajectories = large positive current

blue trajectories = large negative current

The Vortex fixed-points are located along the symmetry axis:

n1 = n2 = · · · = N/M, ϕi − ϕi−1 =

(
2π

M

)
m

Φ/π

u
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Swap transition

In (3) and (4) dynamical stability is lost ; chaotic motion.

But the chaotic trajectory is confined within a chaotic pond;

uni-directional chaotic motion; superfluidity persists!

At the separatrix swap-transition superfluidity diminishes.

Swap transition (dotted line):

u = 18 sin

(
π

6
−

Φ

3

)
(non-linear resonance) Φ/π

u
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Phase space tomography (I)
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Phase space tomography (II)
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Representative Wavefunctions (M = 3)

We use standard Fock basis representation.

Images of |ψ(n)|2 = |〈n|Eα〉|2

(a) Regular coherent vortex state.

(b) Self-trapped state (“bright soliton”).

(c) Typical state in the chaotic sea.
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Launching trajectories at the vicinity of the vortex fixed-point we encounter 3 possibilities.

A trajectories might be:

• locked at the vortex fixed point

(regular vortex state (a))

• chaotic but unidirectional

(chaotic vortex state (d))

• quasi-periodic in phase-space

(breathing vortex state (e))

Panels of (d) and (e):

Left: quantum eigenstates.

Right: underlying classical dynamics.
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What about M = 4 ?

n2

n4

n1

n3

n3

n2

n4

n1

Regular vortex state Irregular vortex state

But there is a dramatic difference compared to M = 3



”Large” rings (M > 3)

M = 4 , N = 16 M = 5 , N = 11
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• Energy surface is 2d− 1 dimensional (reminder: d = M − 1)

• KAM tori are d dimensional

• Arnold diffusion: the KAM tori in phase space are not effective in blocking the transport on the

energy shell if d > 2.

• As u becomes larger this non-linear leakage effect is enhanced, stability of the motion is

deteriorated, and the current is diminished.

• Due to the finite uncertainty width of the vortex state superfluidity can diminish even in the

spectrally stable region.



Semiclassical reproduction of the regime diagram M = 4

We launch a Gaussian cloud of trajectories that has an uncertainty width that corresponds to N .

Then we calculate the cloud-averaged current I(t).

The criterion for quasi-stability is I(tH) & (1/2)I(0) where tH ∝ Nd (Heisenberg time)

In practice: the fraction of trajectories that escape is used as a measure for the stability.
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Results are displayed for clouds that have uncertainty width ∆ϕ ∼ π/2 (left) and ∆ϕ ∼ π/4 (right).



Concluding Remarks regarding superfluidity

• The essence of superfluidity is the possi-

bility to witness metastable vortex states

(”dissipationless current”)

• The standard spectral stability analysis

implies that vortex states whose rotation

velocity is less than a critical velocity are

metastable (”Landau criterion”)

• We challenge the application of the tra-

ditional BdG analysis to low-dimensional

superfluid circuits.

• We have highlighted a novel type of su-

perfluidity that is supported by irregular

or chaotic or breathing vortex states.

unstable vortex state

stable vortex state fragmented states

u ~ 0
u > 0

αE excitations
one−particle

u < 0
bright soliton band

I/N

• In a larger perspective we emphasize that the role of chaos should be recognized in the analysis of

superfluidity. Furthermore we believe that a global understanding of the mixed phase-space

structure is essential in order to analyse dynamical processes such as phase-slips.



The minimal model for thermalization [CK,AV,DC, NJP (2015)]

The FPE description makes sense if the sub-systems are chaotic.

Minimal model for a chaotic sub-system: BHH trimer.

Minimal model for thermalization: BHH trimer + monomer
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The fluctuation-diffusion-dissipation relation

Rate of energy absorption (work):

A(ε) = ∂εDε + β(ε)Dε, Ẇ = 〈A〉

Dε =

∫ ∞
0

dω

2π
ω2 C̃ε(ω) S̃(ω)

System
Driving

(ω)

W

S

Derivation:

∂ρ

∂t
=

∂

∂ε

(
g(ε)D(ε)

∂

∂ε

(
1

g(ε)
ρ

))
= − ∂

∂ε

(
A(ε)ρ− ∂

∂ε
[D(ε)ρ]

)

M. Wilkinson (1988), based on the diffusion picture of Ott (1979)

C. Jarzynski (1995) - adding FPE perspective.

D. Cohen (1999) - adding FDT perspective + addressing the quantum case.

G. Bunin, L. D’Alessio, Y. Kafri, A. Polkovnikov (2011) - adding NFT based derivation.



Thermalization of two subsystems

Rate of energy transfer [FPE version]:

A(ε) = ∂εDε + (β1 − β2)Dε

Dε =

∫ ∞
0

dω

2π
ω2 S̃(1)(ω) S̃(2)(ω)

subsystem 1 subsystem 2

A

Derivation: [Tikhonenkov, Vardi, Anglin, Cohen (PRL 2013)]

The diffusion is along constant energy lines: ε1 + ε2 = E
The proper Liouville measure is: g(ε) = g1(ε)g2(E − ε)

Note: After canonincal preparation of the two subsystems:

〈A(ε)〉 =

(
1

T1

− 1

T2

)
〈Dε〉

MEQ version: Hurowitz, Cohen (EPL 2011)

NFT version: Bunin, Kafri (arXiv 2012)



QCC and quantum anomalies

? Can we trust QCC

? Is the dynamics described by FPE

? Can we use the LRT Kubo estimate for D

Driven integrable system (e.g. ”Kicked Rotor”) -

quasi-linear behavior shows up only for large driving amplitude.

Driven chaotic system (e.g. ”Sinai Billiard” with moving wall) -

Linear response applies; D is a linear functional of S(ω).

[Instead of ”chaos” one can assume system coupled to a bath]

Quantized integrable system ; no QCC

Quantized chaotic systems ; restricted QCC [Cohen (PRL 1999); Cohen, Kottos (PRL 2000)]

Landau-Zener related anomaly [Wilkinson and followers]

Anderson-localization related anomaly [QKR and follow-up works]

Sparsity related semi-linear anomaly [line of study initiated 2005]



Diffusion in “sparse” networks

Transition rates:

wnm = w0 exp
[
−
εnm

T

]
exp

[
−
rnm

ξ

]

Sparsity parameter (s� 1 means “sparse”):

s ≡
(
d

Ωd
nc

)−1/d ξ

r0

Result for the diffusion coefficient:

D ≈ EXPd+2

(
1

s

)
e−1/s Dlinear

For the non-degenerate Mott hopping model

s depends on the temperature, and use EXPd+3

rd0 =

(
∆ξ

T

)
ξd ; s =

(
T

∆ξ

)1/d

[Y. de Leeuw, D. Cohen, Diffusion in sparse networks, PRE (2012)]
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Concluding Remarks regarding thermalization

1. BEC trimers are the minimal building blocks for thermalization

2. The generic package deal: diffusion, LRT and QCC.

3. FPE based FD phenomenology for mesoscopic thermalization

4. Beyond FPE - statistics of dwell times due to sticky dynamics

5. Beyond LRT - sparsity - resistor network picture - semilinear response

6. FD phenomenology for sparse (glassy) systems


