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BHH - dimers and trimers

The Bose-Hubbard Hamiltonian (BHH):
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Dimer (M=2): minimal BHH; Bosonic Josephson junction; Pendulum physics [1,5].

Driven dimer: Landau-Zener dynamics [2], Kapitza effect [3], Zeno effect [4], Standard-map physics [5].
Trimer (M=3): minimal model for chaos; Coupled pendula physics.
Triangular trimer: minimal model with topology, Superfluidity [6], Stirring [7].

Coupled trimers: minimal model for mesoscopic thermalization [8,9].
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Scope

The recent experimental realization of confining potentials with toroidal shapes [1]
has opened a new arena of studying superfluidity in low dimensional circuits.
In particular a discrete ring has been realized [2].
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The hallmark of superfluidity is a metastable non-equilibrium steady-state current.
The traditional paradigm is based on the Landau criterion and the BAG stability analysis [3-5].
We challenge the traditional paradigm and highlight the role of chaos in the analysis.

Torodial Ring [1] Discrete ring [2] Bode-Hubbard Model
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The Model (non-rotating ring)

A Bose-Hubbard system with M sites and /N bosons:
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In a semi-classical framework:
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This is like M coupled oscillators with H = H(z)

M
U
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The dynamics is generated by the Hamilton equation:
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(DNLS)

Classically there is a single
dimensionless parameter:
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Rescaling coordinates:
n = n/N
[pj, i) = ihdi;




The model (rotating ring)

In the rotating reference frame we have a Coriolis force,

which is like magntic field B = 2m{). Hence is is like having flux
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Note: there are optional experimental realizations.
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Summary of model parameters:

The ”classical” dimensionless parameters of the DNLS are v and .
The mumber of particles NV is the ”quantum” paramater.
The system has effectively d = M —1 degrees of freedom.

M =2 Bosonic Josephson junction (Integrable)
M =3 Minimal circuit (mixed chaotic phase-space)
M >4 High dimensional chaos (Arnold diffusion)

M — Continuous ring (Integrable)




The many-body spectrum

We characterize each eigenstate |a) of the BHH by (Z,, En) and colorcode by Mg
The expected location of a vortex state, and the maximum current state, are encircled by (O and ()
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Constructing the regime diagram:

For every (®,u) value we plot max{/, }

reduced probability matrix

e [1,M]

for coherent state (condensation).

for maximally fragmented or chaotic state.




Regime diagram

The I of the maximum current state is imaged as a function of (¥, u)
solid lines = spectral stability borders (Landau); dashed lines = dynamical stability borders (BdG)
M =1 M =5
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The traditional paradigm associates vortex states with stationary fixed-points
in phase space. Consequently the Landau criterion, and more generally the
Bogoliubov de Gennes linear-stability-analysis, are conventionally used to de-
termine the viability of superfluidity.

e We challenge the application of the traditional paradigm to low-dimensional circuits.
e We highlight the role of chaos in the “stability analysis”.

e We identify novel types of states that can support superfluidity.




Stability analysis of the excited vortex state

The dynamics is generated by the Hamilton equation: 2 = JOH(z) (DNLS)
Coherent states are supported by fixed-points of the classical Hamiltonian: 9H(z) =0

Technical note: The cyclic degree of freedom has to be separated (/N is constant of motion).

Linear stability analysis (Bogoliubov de Gennes): 2 = JAz where A, , = 0,0, H
Spectral stability: Energy local extremal points (Landau criterion) — based on A diagonalization

Dynamical stability: Zero Lyapunov exponents (real BdG frequencies) — based on J.A diagonalization

Schematic illustration of the energy landscape FE = H(z)
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Stability of the ”ground” vortex state

A 4 Mott regime

(digression) 2
The ground-state vortex can destabilize as well: sdf trapping

Quantum transition: Mott transition for v > N2 /M
Classical transition: Self-trapping for u > something

Note: upper state is like ground state for U — —U
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Beyond the traditional view

e Dynamical instability of a vortex state does imply that superfluidity is diminished.

Kolmogorov-Arnold-Moser (KAM) structures ~» Chaotic and irregular vortex states.

e Dynamical stability of a vortex state does not imply in general strict stability.
For M > 3 the KAM tori do not block transport (Arnold diffusion).

e One should take into account quantum fluctuations (uncertainty width of a coherent state).

Stability is required within a Plank cell around the fixed-point. Regime-diagram is h dependent.
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Regime Diagram for M =3

A stable vortex state carries current:
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Spectral vs dynamical stability

(1) Spectral stability; (2) Dynamical stability.

5
Poincare section ny = n3 at the vortex energy. Al
3
red trajectories = large positive current )

blue trajectories = large negative current

The Vortex fixed-points are located along the symmetry axis:
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Swap transition

In (3) and (4) dynamical stability is lost ~ chaotic motion.
But the chaotic trajectory is confined within a chaotic pond,;
uni-directional chaotic motion; superfluidity persists!

At the separatrix swap-transition superfluidity diminishes.

Swap transition (dotted line):
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Phase space tomography (I)
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Phase space tomography (II)
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Representative Wavefunctions (M = 3)

We use standard Fock basis representation.
Images of [¢(n)]* = |(n|Eq)|*

(a) Regular coherent vortex state.
(b) Self-trapped state (“bright soliton”).
(c) Typical state in the chaotic sea.

Launching trajectories at the vicinity of the vortex fixed-point we encounter 3 possibilities.

A trajectories might be:

e locked at the vortex fixed point

(regular vortex state (a))

e chaotic but unidirectional
(chaotic vortex state (d))

e quasi-periodic in phase-space
(breathing vortex state (e))

Panels of (d) and (e):
Left: quantum eigenstates.

Right: underlying classical dynamics.




What about M =4 7

Regular vortex state Irregular vortex state

But there is a dramatic difference compared to M = 3
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Energy surface is 2d — 1 dimensional (reminder: d = M — 1)
KAM tori are d dimensional

Arnold diffusion: the KAM tori in phase space are not effective in blocking the transport on the
energy shell if d > 2.

As u becomes larger this non-linear leakage effect is enhanced, stability of the motion is
deteriorated, and the current is diminished.

Due to the finite uncertainty width of the vortex state superfluidity can diminish even in the

spectrally stable region.




Semiclassical reproduction of the regime diagram M =4

We launch a Gaussian cloud of trajectories that has an uncertainty width that corresponds to V.
Then we calculate the cloud-averaged current I(t).

The criterion for quasi-stability is I(tz) = (1/2)I(0) where tg o N¢ (Heisenberg time)

In practice: the fraction of trajectories that escape is used as a measure for the stability.

Results are displayed for clouds that have uncertainty width Ay ~ 7/2 (left) and Ay ~ 7 /4 (right).




Concluding Remarks regarding superfluidity

The essence of superfluidity is the possi-
bility to witness metastable vortex states

(”dissipationless current”)

The standard spectral stability analysis
implies that vortex states whose rotation
velocity is less than a critical velocity are

metastable (”Landau criterion”)

We challenge the application of the tra-
ditional BdAG analysis to low-dimensional

superfluid circuits.

We have highlighted a novel type of su-
perfluidity that is supported by irregular

or chaotic or breathing vortex states.

In a larger perspective we emphasize that the role of chaos should be recognized in the analysis of
superfluidity. Furthermore we believe that a global understanding of the mixed phase-space

structure is essential in order to analyse dynamical processes such as phase-slips.




The minimal model for thermalization [ck,Av,Dc, NJP (2015)]

The FPE description makes sense if the sub-systems are chaotic.
Minimal model for a chaotic sub-system: BHH trimer.

Minimal model for thermalization: BHH trimer + monomer
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The fluctuation-diffusion-dissipation relation

Rate of energy absorption (work):
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Derivation:

v = 5 (sepeg (o50)) -

M. Wilkinson (1988), based on the diffusion picture of Ott (1979)

C. Jarzynski (1995) - adding FPE perspective.
D. Cohen (1999) - adding FDT perspective + addressing the quantum case.

G. Bunin, L. D’Alessio, Y. Kafri, A. Polkovnikov (2011) - adding NFT based derivation.




Thermalization of two subsystems

Rate of energy transfer [FPE version]:

Ale) = 0.D:+ (b1 — B2)D-
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2 30 (1) ) ()
27T

Derivation: [Tikhonenkov, Vardi, Anglin, Cohen (PRL 2013)]

The diffusion is along constant energy lines: &1 +¢e9=¢&

The proper Liouville measure is:  g(e) = ¢g1(€)g2(E — €)

Note: After canonincal preparation of the two subsystems:

MEQ version: Hurowitz, Cohen (EPL 2011)

NFT version: Bunin, Kafri (arXiv 2012)




QCC and quantum anomalies

? Can we trust QCC
? Is the dynamics described by FPE
? Can we use the LRT Kubo estimate for D

Driven integrable system (e.g. ”Kicked Rotor”) -
quasi-linear behavior shows up only for large driving amplitude.

Driven chaotic system (e.g. ”Sinai Billiard” with moving wall) -
Linear response applies; D is a linear functional of S(w).

[Instead of ”chaos” one can assume system coupled to a bath]

Quantized integrable system ~~+ no QCC

Quantized chaotic systems ~» restricted QCC [Cohen (PRL 1999); Cohen, Kottos (PRL 2000)]
Landau-Zener related anomaly [Wilkinson and followers]

Anderson-localization related anomaly [QKR and follow-up works]

Sparsity related semi-linear anomaly [line of study initiated 2005]




Diffusion in

Transition rates:
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Sparsity parameter (s < 1 means “sparse”):

J ~1/d ¢
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Result for the diffusion coeflicient:
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[Y. de Leeuw, D. Cohen, Diffusion in sparse networks, PRE (2012)]




Concluding Remarks regarding thermalization

. BEC trimers are the minimal building blocks for thermalization

. The generic package deal: diffusion, LRT and QCC.

. FPE based FD phenomenology for mesoscopic thermalization

. Beyond FPE - statistics of dwell times due to sticky dynamics

. Beyond LRT - sparsity - resistor network picture - semilinear response

. FD phenomenology for sparse (glassy) systems




