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Superfluid ≠ Bose-Einstein Condensate (BEC)

Worth a Nobel Prize (2001)lim
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But BEC is not the same as Superfluidity!!
(but in 3D BEC and SF are intimately related...) 



Landau’s criterion
Consider a moving object: 

Spectrum of liquid 4He

Finite critical velocity
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Problem: How to define the SF properties at T > 0?



Fisher’s criterion

ME Fisher 
et al PRA (1973) 

Thermodynamics: 
Superfluidity = non-vanishing Helicity Modulus 
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Superfluid density: 
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Twisted BC’s 
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 Interacting Bose fluids  (BEC) in 2D
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Absence of BEC (T > 0)

Nelson & Kosterlitz 
PRL (1977) 

Universal Jump
of the SF density
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Superfluidity in 2D (Experiments)
2D 4He films: Torsional oscillator measurements 

Experiment: DJ Bishop & JD Reppy PRL (1978)
Theory: Ambegaokar, Halperin, Nelson & Siggia PRL (1978)

TBKT

Dissipation  
Peak

Tc  Shift 



Prof. Fisher meets One dimension

So what is the origin of this SF signal?

A clear rise due to the superfluid 
transition in the 1D channel is observed 
above 2.8 nm under a low pressure, in 
addition to the bulk one. 

Channel diameter dependence of the superfluidity

FSM-16 Pore size: 2.8 nm
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FIG. 1. (a) Pressure isotherms of 4He adsorbed on FSM-16
that has 1D pores 18 Å in diameter as shown in the inset.
The abscissa n indicates the amount adsorbed on the present
sample cell having the adsorption area of 195 m2. The dotted
lines are the saturated vapor pressures (P0) at respective tem-
peratures. Much lower pressure than P0 indicates the adsorp-
tion of 4He atoms on the pore walls. (b) Adsorption energy,
2≠U!≠n"0 K#!R, of the 4He adatoms as a function of n, which
indicates layer formations on the pore walls of FSM-16. The
4He atoms are adsorbed on the pore walls up to no to form the
first layer. The second layer is promoted above no with the en-
ergy about 30 K. The energy becomes equal to the latent heat
(7 K) of the bulk liquid above nf .

several coverages by the usual adiabatic heat pulse method
[4]. To identify the quantum fluids of the adatoms by the
isotope effect, we also measured the 3He heat capacities.

The pressure isotherms of 4He are shown in Fig. 1(a).
The dotted line shows the saturated vapor pressure P0 at
each temperature. The isotherms show that P becomes
P0 above 3.7 mmol and that it is much smaller than P0 at
n , 3.4 mmol. In many pores of the diameter 20–40 Å,
4He atoms are adsorbed on the pore walls up to the pres-
sure about 0.3P0. Then, the P isotherms [Fig. 1(a)] in-
dicate that the 4He atoms are adsorbed on the pore walls
up to nf $ 3.4 mmol, or a slightly larger amount below
3.7 mmol.

From the temperature dependence of the pressure P
at a constant amount n, one can obtain an isosteric heat
of sorption qst by qst ! 2R%≠ lnP!≠"1!T #&n!const, where

R is the gas constant [9]. We obtained qst down to the
temperature where P becomes 0.1 Pa and at T . 1.2 K.
Extension of qst"T # to T ! 0 K was done from the heat
capacity C data using the following relation:

qst"T # !
5
2

RT 2
≠U"0 K#

≠n
2

Z T

0

≠C"T 0#
≠n

dT 0, (1)

where 2≠U!≠n"0 K#, the adsorption energy, was set to
agree with the qst result obtained from the pressure mea-
surement [4]. Figure 1(b) shows 2≠U!≠n"0 K#!R as
a function of n. With increasing n, it decreases mo-
notonously due to the increase in interaction between the
adatoms. Above no ($2.4 mmol), the dependence devi-
ates upward. This stepwise change shows the promotion
of a new layer. Above nf ($3.5 mmol), the adsorption
energy becomes equal to the latent heat (7 K) of the bulk
4He liquid. From these results, we conclude that the sec-
ond layer is promoted above no as shown by the right inset
of Fig. 1(b) and that it is completed at nf .

The same conclusion was deduced from the cri-
terion by the compressibility kT defined by kT !
S!"n2RT # %≠ lnP!≠n&21

T!const [7,8]. Similar to the case of
4He adsorbed on graphite [7], we observed a minimum of
kT at n $ 2.4 mmol, which indicates formation of a new
layer above that amount [10].

Heat capacity isotherms of T ! 0.1 and 0.2 K are
shown in Figs. 2(a) and 2(b) for the 3He and 4He adatoms,

FIG. 2. Heat capacity isotherms of 3He (a) and 4He (b). Quali-
tatively different dependencies above about no indicate that the
second layer adatoms are Fermi and Bose fluids, respectively.
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FSM16 has uniform 
hexagonal silicate 
channels. 

TEM of FSM16 (2.8 nm)

Synthesis of FSM16 Distribution of pore size

1D nano-porous media, FSM16

S. Inagaki et al., Toyota Central R & D Lab.
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The helicity modulus vanishes in 1D!

sure. The abscissa is the normalized temperature divided by
T!, and the frequency change in the ordinate is divided by
the contribution of superfluid outside powders at absolute
zero, "fb0. The contribution of superfluid outside powders is
shown as a solid curve in the figure. As seen, the sets of data
fall on the universal curve above T /T!=0.92!2.0 K" and de-
viate from the curve. For the 2.2 nm sample, although there
is a slight deviation from the curve at low temperatures, no
rapid increase is observed.17 On the contrary, a clear rapid
increase is observed for the 2.8 nm sample at T /T!

=0.41!0.89 K" and for the 4.7 nm sample at T /T!

=0.84!1.80 K". This rapid increase can be attributed to de-
coupling from the oscillation due to the superfluid in the 1D
channel.

The decoupling of superfluid in the channel was found to
depend strongly on the channel diameter. For the 4.7 nm
sample, the ratio between the decoupled superfluid and the
total liquid in the channel, Din is #30% at the lowest tem-
perature. It agrees with the ratio defined in the same way for
4He outside powder, Dout. On the contrary, for 2.8 nm
sample, Din is small as #10%, compared with Dout#30%.

Change in the Q factor is shown as a function of normal-
ized temperature in Fig. 1!b". As the temperature is de-
creased, Q−1 for all samples has a break at T!. For the 2.2 nm
sample, Q−1 decreases monotonously below this break. In
contrast, Q−1 for the 2.8 nm sample has a significantly large
peak at T /T!=0.37!0.80 K". In addition, Q−1 for the 4.7 nm
sample also has a peak at T /T!$0.76!1.62 K", which is
more ambiguous and broader than that for the 2.8 nm

sample. For both, the peak temperature, Tpeak, is located be-
low the temperature where the resonance frequency exhibits
a rapid increase.

Figure 2 shows the change in the resonance frequency and
Q factor for the 2.8 nm sample under pressures. The abscissa
is the normalized temperature divided by T! of each pressure
while the frequency change "f! in the ordinate is corrected
by multiplication of the density ratio, %#!0.1 MPa"& /#!P",
and is shifted to fall on the universal curve. Above around
T /T!=0.4, all sets of data are in good agreement with each
other and below this temperature they separate depending on
pressure. For 0.11 MPa, a rapid increase in "f! is observed at
T /T!=0.41. As the pressure is increased, the increase in "f!
shifts to lower temperature and its magnitude becomes small.
As the pressure is increased further, no increase is observed
above 2.3 MPa. The observed increase in "f! is accompa-
nied by a dissipation. At high temperatures, Q−1 for all pres-
sures falls on the universal curve which decreases with de-
creasing temperature. For 0.11 MPa, Q−1 starts to increase at
around T /T!=0.5 and takes a maximum value at T /T!

=0.36. Tpeak shifts to a lower temperature by pressurization,
accompanied by a decrease in peak height. Above 2.3 MPa,
no additional increase in Q−1 is observed.

It is important to note that Tpeak coincides with the tem-
perature at the steepest slope of the increase in "f!, and that
Tpeak shifts to a lower temperature by pressurization. This
suggests that the superfluid in the channel grows around Tpeak
as the temperature is decreased. Thus, we can conclude that
the superfluid onset in the 1D channel takes place slightly
above Tpeak. Here, we define TC in the channel from the
resonance frequency as the intersection of the extrapolation
from high temperatures and the steepest increase.

The dissipation below TC is an evidence in the existence
of the superfluid in the 1D channel. The fluctuation of the
phase coherence of superfluid becomes large at around TC,
which may cause the phase slip by the expansion of quan-
tized vortex in the channel. We here apply the competing
barrier model of quantized vortex,18 in which the vortex ex-
pands to the channel across the superfluid flow by the ther-
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FIG. 1. !Color online" !a" Change in the resonance frequency
from T! for 2.2, 2.8, and 4.7 nm samples filled with liquid 4He
under low pressure. The abscissa is the normalized temperature di-
vided by T! and the frequency change in the ordinate is divided by
the contribution of superfluid outside powders at absolute zero.
Solid curve is the contribution of bulk superfluid. Arrows denote TC
in the channel. !b" Change in Q−1. Arrows denote Tpeak. Inset: sche-
matic sectional view of the channels filled with 4He.
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FIG. 2. !Color online" Change in the resonance frequency and
Q−1 for the 2.8 nm sample under various pressures. The frequency
change "f! in the ordinate is corrected by multiplication of the
density ratio, %#!0.1 MPa"& /#!P", and is shifted to fall on the uni-
versal curve.

TANIGUCHI, AOKI, AND SUZUKI PHYSICAL REVIEW B 82, 104509 !2010"

104509-2

J Taniguchi et al  PRB 2010

Suzuki Lab U E C2.8$nm channel sample

Pellets were prepared by sintering 
FSM16 and silver powder.

� Superfluidity 
� Freezing pressure 
� Elastic property
� Specific heat  

For the 2.8-nm channel sample, we measured

The thermal  de Broglie wavelength:
0.9 nm at 1 K
2.8 nm at  0.1 K

4He atoms in the 2.8-nm channel  is 
a quasi-1D system ?

(T� = 2.17 K)



Specific Heat of a He-filled Nanopore

Specific heat measurement of  4He in 1D channel:
Pore size 2.8 nm

Heat capacity of the sample pellet   Heat capacity of 4He in 
the 2.8 nm channel    

There is no anomaly of the specific heat at Tc, 
while it shows a bump at the higher temperature.

When the pressure is increased, TBump shifts to 
low temperature.  
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FIG. 3. C!T against T of the 4He adatoms as a function of n. (a) C!T is close to zero at the lowest temperature, for n , 2.4 mmol.
(b) Low temperature dependencies can be described as C!T ! a"n# 1 bT for n . 2.7 mmol, as shown by the solid lines. The first
term a"n# strongly depends on n and is assigned to the fluid layer. The coefficient b is constant at 1.4 mJ!K3 due to the inert layer.

respectively. When 3He and 4He are adsorbed, both heat
capacities are small and almost the same. Above about
no ($2.4 mmol), the 3He heat capacity for T ! 0.1 K
becomes much larger than that of 4He. The large 3He heat
capacity is due to the nuclear heat capacity caused by the
quantum atomic exchanges which are as large as the bulk
and the 2D 3He Fermi liquids [11]. The superfluid of the
4He adatoms has been observed for the present 18 Å pores
by a torsional oscillator [12]. Normalizing the adsorption
area of the torsional cell to that for the present measure-
ments, the superfluid appears above n ! 2.4 6 0.1 mmol
which agrees with no of the second layer onset.

The heat capacity above the coverage no consists of
two terms of the first inert and the second fluid layers.
To obtain the fluid heat capacity, temperature dependen-
cies of the 4He heat capacity C are plotted as C!T vs T
in Figs. 3(a) and 3(b). At the coverages lower than no ,
C!T is close to zero at the lowest temperature. However,
above n $ 2.7 mmol which is a little larger than the sec-
ond layer onset no ($2.4 mmol), C!T is likely to go to
a finite value at T ! 0 K. As shown by the solid lines in
Fig. 3(b), the low temperature dependencies below about
0.3 or 0.2 K are simply described as C!T ! a"n# 1 bT ,
using the constant of b ! 1.4 mJ!K3. The first term a"n#
is strongly dependent on n as shown in Fig. 4, and it be-
comes almost zero at nf . Since the property of the fluid
strongly depends on the density, a"n# is likely to be of the
second fluid layer. The bT term that does not depend on
n is of the first inert layer. Then, the heat capacity of the
fluid formed in the 1D pores becomes Cliq ! a"n#T .

To show the influence of the dimensionality of the sub-
strate, we compare the present results with those on the 2D
substrate of Hectorite [4]. In Fig. 2(b), the 4He isotherm
above no becomes maximum at nmax $ 2.7 mmol and
minimum at nf . Quite a similar isotherm was observed for
4He adsorbed on Hectorite [4]. The corresponding cover-
ages are no ! 24.3 mmol!m2, nmax $ 26 mmol!m2, and
nf $ 37 mmol!m2. The coverage dependence between
nmax and nf is caused by Cliq ! b"n#T2. This is the
phonon heat capacity of the 2D Bose liquid. The corre-

spondence indicates that Cliq ! a"n#T and b"n#T2 are
the dimensional properties of the fluids formed on the 1D
and 2D substrates, respectively.

In the 1D 18 Å pores, Cliq ! a"n#T of the second fluid
layer is understood to be the 1D phonon heat capacity,
because the transverse motion to the tunnel should be in
the ground state. From a"n#, the phonon velocity yI can
be obtained by

a !
2p2

3
L

hyI
k2

B , (2)

where L is the total 1D length. Here, we have to consider
the thickness of the inert first layer on the diameter d and
the area S of the cylindrical fluid films from which L is
given by L ! S!pd. Assuming the thickness of the first
layer is 3.5 Å, these are estimated to be d ! %"18 3.5# 3
2& Å and S ! "11!18# 3 195 m2, respectively. Thus, the
velocity yI was obtained as shown in Fig. 4.

The excitation spectrum of an interacting Bose fluid has
the phonon dispersion at small wave vectors whose wave
lengths are larger than the mean distance. We estimate the
strength of the interaction in the present 4He Bose fluid
in terms of Lieb’s solution for a 1D Bose system [13],

FIG. 4. Coverage dependence of a"n# (closed circles). From
Cliq ! a"n#T , the 1D phonon velocity yI was estimated, as
shown by squares.
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Finite intersect for C/T → 1D Phonons



 Landau’s criterion is violated in 1D

Continuum of 
excitations

Support of the dynamic structure  factorS(k,�)

Exact result for a 1D interacting Bose gas JS Caux and P Calabrese, PRA(R) (2006)



A detective story
Is it a finite size effect?
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FIG. 1: (Color online) QMC data (symbols) combined with
Luttinger liquid predictions (sold lines) for the particle num-
ber probability distribution at fixed system size (upper left
inset), scaling of the particle number probability distribution
(main panel) and the temperature dependence of the mean
number of particles (upper right inset) measured with respect
to the ground state value N0 = ρ0L.

ten as

Z = e−ϵ0L/T eπv/6LT
∑

N

e−πvNN2/2LT+µN/T

×
∑

J

e−πvJJ
2/2LT

∏

n̸=0

(

1− e−2πv|n|/LT
)−1

(3)

where J is an even integer indexing topological exci-
tations (winding) of the phase field φ, ϵ0 is the non-
universal ground state energy per unit length and v is the
phonon velocity given by the algebraic mean of vJ and
vN : v =

√
vJvN . By tracing out winding and phonon

modes, which cannot affect the density, we immediately
arrive at an expression for the particle number probabil-
ity distribution

P (N) =
e−

πvN
2LT

(N−N0)
2

θ3
(

0, e−πvN/2LT
) , (4)

where θ3(z, q) is a Jacoby Theta function of the third
kind. An immediate consequence of this result is that
LL theory predicts that the average number of particles
exhibits no temperature dependence, ⟨N −N0⟩ = 0 and
it is on this red herring that we will focus our attention
below. An equivalent expression for P (J) can be derived
in the same manner. However, it will be more useful to
work with a dual coordinate for J known as the wind-
ing number W which is easily measured in the QMC [8]
and is related to the wrapping of imaginary time particle
trajectories around the physical boundaries of the sample

P (W ) =
e−

πLT

2vJ
W 2

θ3
(

0, e−πLT/2vJ
) . (5)
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FIG. 2: (Color online) QMC data (symbols) combined with
Luttinger liquid predictions (sold lines) for the winding num-
ber probability distribution at fixed system size (upper left
inset), scaling of the winding number probability distribution
(main panel) and the superfluid fraction as a function of the
dimensionless scaling variable LT/vJ (upper right inset).

The strange inverse Boltzmann form of this distribution
can be understood by noting that in one dimension, the
superfluid density is proportional to the second moment
of the winding number distribution [8] and it is only when
fluctuations of the phase field φ are suppressed (phase
coherence with ⟨J⟩ ∼ 0) that the system will acquire a
finite superfluid response. As a consequence of Eq. (5),
the superfluid fraction will be a pure scaling function of
vJ/LT given by [9]

ρs
ρ

= 1−
πvJ
LT

∣

∣

∣

∣

∣

θ′′3 (0, e
−2πvJ/LT )

θ3
(

0, e−2πvJ/LT
)

∣

∣

∣

∣

∣

(6)

where θ′′j (z, q) ≡ ∂2
zθj(z, q).

The above theoretical predictions can be verified by
investigating the particle and winding number probabil-
ity distributions measured in the QMC for a range of
temperatures and system sizes. It is crucial to recognize
that the parameters of LL theory, vJ and vN , have no
temperature or finite size dependence and depend only
on the microscopic details of the high energy theory in
Eq. (1). Both P (N) and P (W ) are scaling functions of
LT/vJ,N , and fits of numerical data for an individual sys-
tem size at fixed temperature must produce values of vJ
and vN that work equally well at all L and T provided
the system is in a regime where the LL theory of Eq. (2)
is applicable. Figs. 1 and 2 present a summary of our
QMC data for L = 25 − 202 Å and T = 0.2 − 0.5 K.
The insets in the upper left hand corners of these figures
show the result of fitting to Eqs. (4) and (5) yielding
vJ = 18.88(2) ÅK and vN = 7.7(3) ÅK which combine
to give a Luttinger parameter of K =

√

vN/vJ = 0.64(4)
where the number in brackets gives the uncertainty in the
final digit. As mentioned earlier, the presence of Galilean

QMC: A DelMaestro & I Affeck  PRB(R) (2010)

J Taniguchi et al  PRB 2010
Suzuki Lab U E C2.8$nm channel sample

Pellets were prepared by sintering 
FSM16 and silver powder.

� Superfluidity 
� Freezing pressure 
� Elastic property
� Specific heat  

For the 2.8-nm channel sample, we measured

The thermal  de Broglie wavelength:
0.9 nm at 1 K
2.8 nm at  0.1 K

4He atoms in the 2.8-nm channel  is 
a quasi-1D system ?

Superfluidity and specific heat

0.1 MPa

�
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kB
=

~vK
L

<
~2⇥⇤
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m(4He)L
= Tmax

onset

' 0.2K

So what is the origin 
of the SF signal?



“Superfluidity?… it’s like pornography
I can’t define it but I know it when I see it.”

R. B. Laughlin in “Mesoscopic Protectorates”, 
talk at KITP (2000)

Laughlin’s criterion



Could it be a dynamical effect? Phase Slips

Langer-Ambegaokar PR (1967)
McCumber-Halperin PR (1970) 

Thermal Phase Slips (from GL theory)

�TPS = ⇥(T )e�
�F (T )
kBT

|T � Tc|/Tc ⇥ 1

ΓPS should be very small at 
low temperatures but
it is contradicted by

the experiment!
J Taniguchi et al  PRB 2010

Superfluidity and specific heat

0.1 MPa

S =

Z
dxd⇤ [i⇥ ⌅⌧� + · · · ] =

Z
dx [i⇥0⌅⌧� + · · · ]

Quantum Phase Slips:

Non-trivial Berry phase!

Khlebnikov PRA (2005)

�QPS ⇠ e�
~�v⇥0
kBT

⇢ = ⇢0 + �⇢



Torsional Oscillator (TO)

Andronikashvili’s Experiment
(As suggested by Landau)

Modern torsional oscillator
(As devised by JD Reppy)

F = 2ù
1

I
ô

qResonance frequency

Tosional measurement of 4He  in 1D  channel

Experimental technique  

Superfluidity  of  4He in  1D channel 
was  measured by means of a 
torsional oscillator.

When the superfluid transition takes 
place, the resonance frequency  
increases  because of  decoupling of 
the superfluid fraction from the 
oscillation. 



F = 2ù
1

I
ô

qResonance frequency

Tosional measurement of 4He  in 1D  channel

Experimental technique  

Superfluidity  of  4He in  1D channel 
was  measured by means of a 
torsional oscillator.

When the superfluid transition takes 
place, the resonance frequency  
increases  because of  decoupling of 
the superfluid fraction from the 
oscillation. 

What is being probed by the TO?

z }| {
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TO response function �n(⇥;T ) =
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Linear response theory 
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!0 ⇡ 2000 Hz

T Eggel, MAC & M Oshikawa PRL 2011



Momentum Response in d = 1

T Eggel, MAC & M Oshikawa PRL 2011

H 0(t) = H
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+
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i=1

V
ext
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H(t) = H
0

+
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i=1

V
ext

(xi �X(t)) Calculation of momentum
response akin to conductivity

in Solid state/Mesoscopic 
Physics

Suzuki Lab U E C2.8$nm channel sample

Pellets were prepared by sintering 
FSM16 and silver powder.

� Superfluidity 
� Freezing pressure 
� Elastic property
� Specific heat  

For the 2.8-nm channel sample, we measured

The thermal  de Broglie wavelength:
0.9 nm at 1 K
2.8 nm at  0.1 K

4He atoms in the 2.8-nm channel  is 
a quasi-1D system ?

⇥(x, t) = � i

~�(t) h[�(x, t),�(0, 0)]i

Model for the nano-pore potential: Periodic potential



Harmonic Fluid Description

H⇥ =
X

q ⇤=0

~v|q| b†(q)b(q) + · · · ~v
2⇤

Z
dx

h
K�1 (⇧x⌅)

2 +K (⇧x⇥)
2
i
=

Z
dx �(x)

P =
X

q ⇤=0

~q b†(q)b(q) + · · · = ~
⇤

Z
dx ⇧x⌅⇧x⇥ =

1

v2

Z
dx j�(x)

J =
mvK

⇤

Z
dx ⇧x⇥(x, t) =

Z
dx j(x, t)

∝ Energy current

Particle mass current

RG fixed point Hamiltonian (just phonons)

� = J +
vK

vF
P

Momentum  current
(including the leading 
irrelevant operator)

FDM Haldane PRL (1981
MAC et al RMP (2011)

J and P separately conserved by the fixed-point Hamiltonian

[H⇤, J ] = [H⇤, P ] = 0



Phase slips and Memory matrix

J and P are coupled and acquire a finite decay rate

�(⇥;T ) = Tr
n

V [⇥1+ iM(⇥;T )]�1 iM(⇥;T )�̂(T )
o

�̂(T ) ⇥ diag{⇥JJ ,⇥PP (T )} = �diag{M
2vK

~� ,
�(kBT )2

6~v3 }+ · · ·

M(�, T )  is a 2 x 2 matrix whose eigenvalues are the current decay 
rates (it can be evaluated perturbatively in HPS)

Phase Slips (for a periodic wall potential) Leading irr. operators

[HPS , J ] 6= 0 [HPS , P ] 6= 0

HPS =
X

n>0,m

~vgnm
�a20

Z
dx cos (2n⇤(x) +�knmx) �kmn = (2n�⇥0 � 2mG)
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sure. The abscissa is the normalized temperature divided by
T!, and the frequency change in the ordinate is divided by
the contribution of superfluid outside powders at absolute
zero, "fb0. The contribution of superfluid outside powders is
shown as a solid curve in the figure. As seen, the sets of data
fall on the universal curve above T /T!=0.92!2.0 K" and de-
viate from the curve. For the 2.2 nm sample, although there
is a slight deviation from the curve at low temperatures, no
rapid increase is observed.17 On the contrary, a clear rapid
increase is observed for the 2.8 nm sample at T /T!

=0.41!0.89 K" and for the 4.7 nm sample at T /T!

=0.84!1.80 K". This rapid increase can be attributed to de-
coupling from the oscillation due to the superfluid in the 1D
channel.

The decoupling of superfluid in the channel was found to
depend strongly on the channel diameter. For the 4.7 nm
sample, the ratio between the decoupled superfluid and the
total liquid in the channel, Din is #30% at the lowest tem-
perature. It agrees with the ratio defined in the same way for
4He outside powder, Dout. On the contrary, for 2.8 nm
sample, Din is small as #10%, compared with Dout#30%.

Change in the Q factor is shown as a function of normal-
ized temperature in Fig. 1!b". As the temperature is de-
creased, Q−1 for all samples has a break at T!. For the 2.2 nm
sample, Q−1 decreases monotonously below this break. In
contrast, Q−1 for the 2.8 nm sample has a significantly large
peak at T /T!=0.37!0.80 K". In addition, Q−1 for the 4.7 nm
sample also has a peak at T /T!$0.76!1.62 K", which is
more ambiguous and broader than that for the 2.8 nm

sample. For both, the peak temperature, Tpeak, is located be-
low the temperature where the resonance frequency exhibits
a rapid increase.

Figure 2 shows the change in the resonance frequency and
Q factor for the 2.8 nm sample under pressures. The abscissa
is the normalized temperature divided by T! of each pressure
while the frequency change "f! in the ordinate is corrected
by multiplication of the density ratio, %#!0.1 MPa"& /#!P",
and is shifted to fall on the universal curve. Above around
T /T!=0.4, all sets of data are in good agreement with each
other and below this temperature they separate depending on
pressure. For 0.11 MPa, a rapid increase in "f! is observed at
T /T!=0.41. As the pressure is increased, the increase in "f!
shifts to lower temperature and its magnitude becomes small.
As the pressure is increased further, no increase is observed
above 2.3 MPa. The observed increase in "f! is accompa-
nied by a dissipation. At high temperatures, Q−1 for all pres-
sures falls on the universal curve which decreases with de-
creasing temperature. For 0.11 MPa, Q−1 starts to increase at
around T /T!=0.5 and takes a maximum value at T /T!

=0.36. Tpeak shifts to a lower temperature by pressurization,
accompanied by a decrease in peak height. Above 2.3 MPa,
no additional increase in Q−1 is observed.

It is important to note that Tpeak coincides with the tem-
perature at the steepest slope of the increase in "f!, and that
Tpeak shifts to a lower temperature by pressurization. This
suggests that the superfluid in the channel grows around Tpeak
as the temperature is decreased. Thus, we can conclude that
the superfluid onset in the 1D channel takes place slightly
above Tpeak. Here, we define TC in the channel from the
resonance frequency as the intersection of the extrapolation
from high temperatures and the steepest increase.

The dissipation below TC is an evidence in the existence
of the superfluid in the 1D channel. The fluctuation of the
phase coherence of superfluid becomes large at around TC,
which may cause the phase slip by the expansion of quan-
tized vortex in the channel. We here apply the competing
barrier model of quantized vortex,18 in which the vortex ex-
pands to the channel across the superfluid flow by the ther-
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FIG. 1. !Color online" !a" Change in the resonance frequency
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Prediction: Frequency dependence
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FIG. 1. (Color online) Schematic of a twofold torsional oscillator.

Most data of the superfluid response were taken under the
oscillation amplitude of 0.92 (4.9) µm for the fh (fl) mode,
corresponding to the rim velocity of 14 (19) mm/s. We also
measured the superfluid response for the fh mode under the
rim velocity from 1.4 to 140 mm/s and confirmed that there
was no rim velocity dependence.

In order to extract the superfluid response of 4He in the
channel, we carried out measurements under the condition
when the channel was filled with solid N2 (the N2-filled
condition) in the same manner as the previous experiments.14

Under this condition, the increase in resonance frequency
came from the superfluid in the open space, whereas, when
the channel was filled with 4He (the 4He-filled condition), it
came from both the channel and the open space. We separated
the net frequency increase due to the superfluid in the channel
by subtracting the increase in resonance frequency for the
N2-filled condition from that for the 4He-filled condition. In
this paper, the magnitude of the superfluid fraction in the
channel ρs ch is normalized by the increase for the N2-filled
condition at absolute zero ρs b0. The magnitude at the lowest
temperature is less than 10% of ρs b0, which is about five
times smaller than that calculated from the mass of the liquid
in the channel and the χ factor of the open space. It may be
relevant to the random orientation of the channel. Although
the magnitude becomes small because of the orientation,
its temperature dependence is not influenced. Regarding the
energy dissipation, which is connected to the change in the
inverse of the Q factor #Q−1, the contribution of the superfluid
in the channel corresponds to the difference between N2- and
4He-filled conditions.

III. RESULTS AND DISCUSSION

Figures 2(a) and 2(b) show the temperature dependence
of ρs ch/ρs b0 and #Q−1 under 0.13 MPa, respectively. The
solid (open) symbols represent the data for the fh (fl) mode.
#Q−1 for the fl mode in the figure is multiplied by 4.07,
which is the ratio of fh to fl . For the fh mode, the superfluid
fraction starts to increase at around 1.8 K and increases gently
with decreasing temperature. Then, it shows a rapid growth
at the superfluid onset Toh of 0.90 K. Here, we define Toh as
the intersection of the extrapolation from high temperatures
and the steepest increase. The rapid growth of the superfluid
is associated with a large and broad dissipation peak with
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FIG. 2. (Color online) (a) Temperature dependence of the super-
fluid fraction in the channel divided by the magnitude of background
at absolute zero. The dashed line is the extrapolation from the high
temperature. (b) Temperature dependence of #Q−1. The data for the
fl mode are multiplied by 4.07, the ratio of fh to fl .

the maximum at Tph of 0.80 K. With a further decrease in
temperature, the increasing rate of the superfluid fraction
comes closer to that between 0.9 and 1.8 K. For the fl

mode, the rapid growth of the superfluid fraction shifts to the
low-temperature side by 40 mK, whereas, the slow increase
below and above this temperature region shows the same
behavior as the fh mode. The dissipation peak temperature
for the fl mode Tpl also shifts to the low-temperature side by
40 mK. We found that the superfluid response shifts greatly to
the low temperature as the frequency is lowered in the range
of torsional oscillator experiments.

The superfluid response is remarkably different from the
superfluidity for the three-dimensional (3D) (i.e. bulk) case; it
is a typical second-order phase transition where the coherence
emerges thermodynamically and shows no frequency depen-
dence. The observed frequency dependence demonstrates that
the superfluid phase coherence has a finite relaxation time
comparable to the oscillation period, i.e., it is concluded that
the rapid growth is a dynamical phenomenon, which is a
characteristic feature of the 1D system.

Here, we make a short comment on the two-dimensional
(2D) (i.e. film) case. According to the dynamical Kosterlitz-
Thouless (KT) theory, the superfluid onset for the film shifts
slightly to the high-temperature side with an increase in mea-
suring frequency.22,23 However, the frequency dependence,
estimated from the dynamical KT theory, is 1 order of
magnitude smaller than that of the present experiments. This
supports the fact that the observed frequency dependence
cannot be explained by the dynamical KT theory.

To examine how the dynamical superfluid response varies
by the application of pressure, we made measurements under
several pressures between 0.13 and 2.4 MPa. The inset of
Fig. 3 shows the superfluid response for the fh mode. As the
pressure is increased, the superfluid onset Toh moves to a lower
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FIG. 3. (Color online) Temperature dependence of !Q−1 for
several pressures. Here, pressures are shown in megapascals. For
clarity, the data are shifted vertically. Down and up arrows point
to Tph and Tpl , respectively. Inset: temperature dependence of the
superfluid density for the fh mode at the corresponding pressures.

temperature, and the superfluid density decreases, which is
the same manner as reported in the previous experiments.24

Compared with the fl mode, it was found that the rapid
growth for the fh mode is located at the high-temperature
side regardless of pressure. Figure 3 shows the temperature
dependence of !Q−1 for both modes. The dissipation peak
temperatures Tph and Tpl are suppressed by the application of
pressure as the superfluid onset Toh decreases. The difference
Tph − Tpl increases from 40 mK at 0.13 MPa to 70 mK
at 1.50 MPa. Tpl was not observed down to the lowest
temperature under 1.82 MPa. We found that the frequency
dependence of the superfluid response is enhanced by the
application of pressure.

The dissipation peak temperature of Tph and Tpl and the
superfluid onset Toh are plotted in the pressure-temperature
phase diagram in Fig. 4, associated with the temperature of a
bump in heat capacity TB at which 4He falls into a low-entropy
state. It was found that Tph, Tpl , and Toh are located at much
lower temperatures than TB . This means that the dynamical
superfluid response occurs in the temperature region where
the 4He atoms are in a full low-energy state.

It is natural to consider that the superfluid response of this
system is caused by a different mechanism from the 3D and 2D
cases because it shows a dynamical behavior in the frequency
range of torsional oscillator experiments. We compared the
superfluid response of the TL liquid model proposed by Eggel
et al.19 with the physical properties of 4He confined in the
2.8-nm channel. In their theory, the superfluid response shows
a dynamical behavior and is primarily determined by the
Luttinger parameter K . The dissipation peak temperature Tp

depends on measuring frequency f as Tp = Af 1/(2K−3), where
A is a constant.25 According to this relation, we can obtain
K from the ratio of Tph to Tpl in the present experiments
as Tph/Tpl = (2054 Hz/505 Hz)1/(2K−3). As shown in Fig. 4,
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FIG. 4. (Color online) Pressure-temperature phase diagram.
Tph (•) and Tpl (!) represent the dissipation peak temperatures for
the fh and fl modes, respectively. To for the fh mode is shown as
(◦). For comparison, To from the previous single torsional oscillator
measurements14 is shown as (×). TB (the temperature where heat
capacity has a bend) and TFO (freezing onset temperature) are also
shown as (") and (△), respectively.

K decreases with increasing pressure, and the decrease
is enhanced at high pressures. This behavior qualitatively
explains the observed pressure dependence of Tph (Tpl) since
Tph (Tpl) is suppressed with decreasing K in the theory.

We also evaluate K from the physical properties of 4He
in the 2.8-nm channel. K is expressed by these properties as
K = h̄κπvρ2

0 , where κ is the 1D compressibility, v is the sound
velocity, and ρ0 is the linear number density, respectively. Here,
v =

√
1/(mρ0κ), and m is the mass of the 4He atom. We can

obtain v from the heat capacity at low temperatures26 and
ρ0 from the decrease in resonance frequency due to mass
loading in the present experiments, e.g., v = 147 m/s and
ρ0 = 2.0 × 1010 atoms/m at 0.13 MPa, although ρ0 includes
an ambiguity of 20%. The evaluated value is plotted in Fig. 5.
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FIG. 5. (Color online) Pressure dependence of the Luttinger
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and v.26 ⋄: from the work of Eggel et al.19
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FIG. 1. (Color online) Schematic of a twofold torsional oscillator.

Most data of the superfluid response were taken under the
oscillation amplitude of 0.92 (4.9) µm for the fh (fl) mode,
corresponding to the rim velocity of 14 (19) mm/s. We also
measured the superfluid response for the fh mode under the
rim velocity from 1.4 to 140 mm/s and confirmed that there
was no rim velocity dependence.

In order to extract the superfluid response of 4He in the
channel, we carried out measurements under the condition
when the channel was filled with solid N2 (the N2-filled
condition) in the same manner as the previous experiments.14

Under this condition, the increase in resonance frequency
came from the superfluid in the open space, whereas, when
the channel was filled with 4He (the 4He-filled condition), it
came from both the channel and the open space. We separated
the net frequency increase due to the superfluid in the channel
by subtracting the increase in resonance frequency for the
N2-filled condition from that for the 4He-filled condition. In
this paper, the magnitude of the superfluid fraction in the
channel ρs ch is normalized by the increase for the N2-filled
condition at absolute zero ρs b0. The magnitude at the lowest
temperature is less than 10% of ρs b0, which is about five
times smaller than that calculated from the mass of the liquid
in the channel and the χ factor of the open space. It may be
relevant to the random orientation of the channel. Although
the magnitude becomes small because of the orientation,
its temperature dependence is not influenced. Regarding the
energy dissipation, which is connected to the change in the
inverse of the Q factor #Q−1, the contribution of the superfluid
in the channel corresponds to the difference between N2- and
4He-filled conditions.

III. RESULTS AND DISCUSSION

Figures 2(a) and 2(b) show the temperature dependence
of ρs ch/ρs b0 and #Q−1 under 0.13 MPa, respectively. The
solid (open) symbols represent the data for the fh (fl) mode.
#Q−1 for the fl mode in the figure is multiplied by 4.07,
which is the ratio of fh to fl . For the fh mode, the superfluid
fraction starts to increase at around 1.8 K and increases gently
with decreasing temperature. Then, it shows a rapid growth
at the superfluid onset Toh of 0.90 K. Here, we define Toh as
the intersection of the extrapolation from high temperatures
and the steepest increase. The rapid growth of the superfluid
is associated with a large and broad dissipation peak with
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FIG. 2. (Color online) (a) Temperature dependence of the super-
fluid fraction in the channel divided by the magnitude of background
at absolute zero. The dashed line is the extrapolation from the high
temperature. (b) Temperature dependence of #Q−1. The data for the
fl mode are multiplied by 4.07, the ratio of fh to fl .

the maximum at Tph of 0.80 K. With a further decrease in
temperature, the increasing rate of the superfluid fraction
comes closer to that between 0.9 and 1.8 K. For the fl

mode, the rapid growth of the superfluid fraction shifts to the
low-temperature side by 40 mK, whereas, the slow increase
below and above this temperature region shows the same
behavior as the fh mode. The dissipation peak temperature
for the fl mode Tpl also shifts to the low-temperature side by
40 mK. We found that the superfluid response shifts greatly to
the low temperature as the frequency is lowered in the range
of torsional oscillator experiments.

The superfluid response is remarkably different from the
superfluidity for the three-dimensional (3D) (i.e. bulk) case; it
is a typical second-order phase transition where the coherence
emerges thermodynamically and shows no frequency depen-
dence. The observed frequency dependence demonstrates that
the superfluid phase coherence has a finite relaxation time
comparable to the oscillation period, i.e., it is concluded that
the rapid growth is a dynamical phenomenon, which is a
characteristic feature of the 1D system.

Here, we make a short comment on the two-dimensional
(2D) (i.e. film) case. According to the dynamical Kosterlitz-
Thouless (KT) theory, the superfluid onset for the film shifts
slightly to the high-temperature side with an increase in mea-
suring frequency.22,23 However, the frequency dependence,
estimated from the dynamical KT theory, is 1 order of
magnitude smaller than that of the present experiments. This
supports the fact that the observed frequency dependence
cannot be explained by the dynamical KT theory.

To examine how the dynamical superfluid response varies
by the application of pressure, we made measurements under
several pressures between 0.13 and 2.4 MPa. The inset of
Fig. 3 shows the superfluid response for the fh mode. As the
pressure is increased, the superfluid onset Toh moves to a lower
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Conclusions (part I)

• The helicity modulus in 1D vanishes
• Superfluidity is a dynamical effect in 1D
• Importance of Phase slips
• Importance of coupling between particle and 

energy currents
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What  Quadratic Hamiltonians
can teach us about non-equilibrium



Why to bother with “boring” quadratic 
Hamiltonians?

RG Fixed-point Hamiltonians 
at Equilibrium



The Luttinger Model 

RL

Luttinger

“Infinite story hotel”

�kin(p) = vF p

朝永Mattis &  Lieb

[J. Math. Phys. (1965)]

‘Anomalous’ commutation relations

[⇢R(q), ⇢R(�q0)] =
qL

2⇡
�q,q0

HLM =
X

q 6=0

~v|q|b†(q)b(q)
Quasi-particle: Tomonaga bosons



One Dimension: The Tomonaga-Luttinger Liquid
Luttinger 朝永Mattis

Power-law Momentum distribution

n(p) ⇠ sgn(p� pF )|p� pF |�
2
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Lieb Luther Emery Haldane

Collective modes exhaust 
the low-energy spectrum
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Peschel

(There are more, but I simply couldn’t fit in every one…)



Fermi Liquid Theory 

Non
interacting Interacting

Adiabatic Continuity

6 Green’s Functions

Ultimately, we are interested in more than just free systems. We should like to understand what happens to
our system as we dial up the interaction strength from zero, to its full value. We also want to know response
of our complex system to external perturbations, such as an electromagnetic field. We have to recognize that
we can not, in general expect to diagonalize the problem of interest. We do not even need interactions to
make the problem complex: a case in interest is a disordered metal, where we our interest in averaging over
typically disordered configurations introduces effects reminiscent of interactions, and can even lead to new
kinds of physics, such as electron localization. We need some general way of examinining the change of the
system in response to these effects even though we can’t diagonalize the Hamiltonian.
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!Fig. 6.1 “Dialing up the interaction”. Motivating the need to be able to treat perturbations to a
non-interacting Hamiltonian by dialing up the strength of the perturbation.

In general then, we will be considering problems where we introduce new terms to a non-interaction
Hamiltonian, represented by V . The additional term might be due to

• External electromagnetic fields, which modify the Kinetic energy in the Hamiltonian as follows
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Quasi-particle occupation 

is a good quantum number

Quasi-particle scattering rate:

�QP ⇠ ✏2 + ⇡2T 2 n�(p)

Helium 3 Phase diagram Fermi Surface (FS)

Landau quasi-particles:
form a dilute gas

Z

Momentum  distrib.



Landau Fermi Liquid
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Figure 5: The three marginally relevant scattering channels in D = 2 which are confined to
the narrow shell of width λ about the Fermi surface and which conserve momentum.
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Figure 6: Feynman diagrams corresponding to the three marginally relevant scattering
channels. The interactions between fermions (solid lines) are mediated by gauge fields (dotted
line). (a) Forward scattering with amplitude fc(S,T)− 1

4 fs(S,T). (b) Exchange scattering
with amplitude 1

2 fs(S,T). (c) BCS Cooper pair scattering with amplitude VBCS(S− T).
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Does the system reach a steady state?

Some Important Questions

 If so, what are its properties? Does it thermalize?

Ō = Tr �steadyÔ,
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Momentum distribution at time t : 

Quantum Quench in the LM

MAC Phys Rev Lett (2006)
A Iucci & MAC Phys Rev A (2009)



2

The decay of Z(t) is governed by a universal exponent
γst(K) that depends on the equilibrium LL parameter K
only; ekin(t) features an asymptotic power law with an
interaction-independent exponent but universal prefactor
ϵ(K, v) determined by K as well as by the renormalized
velocity v. In equilibrium, this is the characteristic K-
and v-dependence of correlation functions or of thermo-
dynamic quantities, which a posteriori motivates to con-
sider Z(t) and ekin(t) as representative examples. The
notion of LL universality can now be defined in anal-
ogy to equilibrium: The quench dynamics is universal if
Eqs. (1) describe the long-time relaxation for any model
falling into the equilibrium LL universality class if the
corresponding values for K and v are plugged in. To in-
vestigate this we compute Z(t) for a 1d lattice of spinless
fermions with nearest-neighbor hopping and interaction
∆ [24] as well as an extension of the latter including
a next-to-nearest-neighbor interaction ∆2. We use the
numerical time-dependent density-matrix RG (DMRG)
[25–27]. The model with ∆2 = 0 has many conserved
quantities, is Bethe ansatz integrable, and thus K as
well as v are known analytically [5, 28]. The ∆-∆2–
model, however, is believed to be not exactly solvable.
For ∆2 > 0 we extract K and v from equilibrium quanti-
ties (e.g. the small momentum density response function)
using DMRG [6, 29, 30]. Our data for the Z-factor agrees
with Eq. (1a) for any interaction strength, filling factor,
and irrespective of the integrability of the model. The
results for ekin(t) are consistent with Eq. (1b), but on
the time scales accessible by DMRG the asymptotic be-
havior is still masked by oscillatory terms of higher order
in t−1. To unambiguously determine the prefactor of the
t−3-decay of the energy we resort to a numerical trick. In-
stead of performing the time evolution with exp (−iHft)
we apply the imaginary time analogue exp (−Hfτ). In
this case the total energy per length e(τ) – which is no
longer conserved – is the natural observable. For the TL
model we show that the asymptotics is completely anal-
ogous to Eq. (1b) with t → τ and ϵ(K, v) replaced by
a different function ϵit(K, v). For the lattice model, the
τ−3-decay manifests over several orders of magnitude,
and the prefactor agrees with the TL prediction.

This altogether provides strong evidence that questions
(A) and (B) can be answered by ‘yes’. We conjecture
that the universality of the quench dynamics also holds
for other models falling into the equilibrium LL class.

The TL model — After bosonizing [1, 2] the density of
left and right moving fermions with a linear dispersion
the Hamiltonian of the TL model is quadratic in opera-

tors b(†)n which obey bosonic commutation relations:

H =
∑

n>0

[

kn

(

vF +
g4(kn)

2π

)

(

b†nbn + b†−nb−n

)

+kn
g2(kn)

2π

(

b†nb
†
−n + b−nbn

)

]

, (2)
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FIG. 1: (Color online) Time evolution of the Z-factor out of
the noninteracting ground state of a 1d metallic Fermi system
after switching on two-particle terms at time t = 0. Dashed
lines show the universal asymptotic power law t−γst(K) with
an exponent determined by the equilibrium LL parameter K.
(a) TL model. The plots displays box-like two-particle inter-
actions g(k) of strength g = g(0); the asymptotics are univer-
sal for any g(k). Time is given in units of (vFkc)

−1. (b, c,
Inset) Spinless lattice fermions of Eq. (6) at filling ν featuring
nearest (∆) and next-nearest (∆2) neighbor interactions.

where kn = 2πn/L, n ∈ Z, L denotes the chain length,
and vF is the Fermi velocity. The two coupling functions
(potentials) g2/4 determine the strength of the scatter-
ing of fermions on different branches (g2) and the same
branch (g4). Usually the k-dependence of g2/4 is ne-
glected and integrals are regularized in the ultraviolet
through an ad hoc procedure [1, 2]. As the momentum
dependence is RG irrelevant this is justified in equilib-
rium if all energy scales are sent to zero [3]. For the
quench dynamics – even at asymptotic times – it is, how-
ever, not clear if the same reasoning holds and we thus
keep the full k-dependence and consider coupling func-
tions. In fact, it was recently shown that the momen-
tum dependence indeed affects the long-time dynamics
of certain observables [22]. For the system to be a LL
in equilibrium we require that 0 < g2/4(0) < ∞ (re-
pulsive interactions) and that g2/4(k) decay on a scale
kc. The Hamiltonian of Eq. (2) can be diagonalized to
H =

∑

n̸=0 ω(kn)α
†
nαn +Egs by introducing new modes

αn = c(kn)bn + s(kn)b
†
−n with

s2(k) =
1

2

[

1 + ĝ4(k)

W (k)
− 1

]

= c2(k)− 1 , (3)

ω(k) = vF|k|W (k) = vF|k|
√

(1 + ĝ4(k))2 − ĝ22(k) ,

where ĝ2/4 = g2/4/(2πvF), and Egs denoting the ground
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FIG. 2: (Color online) Time evolution of the kinetic energy per length dekin/dt. (a) TL model for different (Gaussian and
quartic) two-particle potentials g(k). For any continous g(k), dekin/dt asymptotically falls off as ϵ(K, v)/t3 with a universal
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2
c and (vFkc)

−1, respectively. (b) Spinless lattice fermions. Solid lines show DMRG
data; dashed lines display t−3 power laws where the ratio of prefactors is chosen according to the TL prediction. Inset: DMRG
data before taking the t-derivative.

state energy. The LL parameter and the renormalized
velocity read

K =

√

1 + ĝ4(0)− ĝ2(0)

1 + ĝ4(0) + ĝ2(0)
, v = vFW (0) . (4)

As our initial state we take the noninteracting ground
state

∣

∣E0
gs

〉

which is given by the vacuum |vac(b)⟩ with
respect to the bn. Expectation values of the time-
evolved state |Ψ(t)⟩ = exp(−iHt)

∣

∣E0
gs

〉

can be computed
straightforwardly using the simple time dependence of

the eigenmode operators α(†)
n and their linear dependence

on the b(†)n [22].
After bosonizing the fermionic field operator [1, 2] the

Z-factor Z(t) = limk↗kF
n(k, t)−limk↘kF

n(k, t) is easily
obtained (taking L → ∞) [19, 22, 31]:

Z(t) = exp

{

−

∫ ∞

0
dk

4s2(k)c2(k)

k
(1− cos [2ω(k)t])

}

.

Independent of the form of g2/4(k) (even for potentials
with a discontinous jump to zero at kc) the large-time be-
havior is given by Eq. (1a) with γst = (K2+K−2− 2)/4;
it manifests on the (nonuniversal) scale (vFkc)−1. Fig-
ure 1(a) shows Z(t) obtained by numerically performing
the integral for a simple box shaped potential ĝ2(k) =
ĝ4(k) = gΘ(kc − |k|)/2 of varying amplitude g. The
asymptotic power-law is modulated by oscillations which
decay faster than t−γst .
The kinetic energy per length ekin(t) reads (L → ∞)

ekin(t) =
vF
2π

∫ ∞

0
dkk4s2(k)c2(k) {1− cos [2ω(k)t]} . (5)

The steady-state value is obtained by dropping the os-
cillatory term which averages out for t → ∞. For con-
tinuous coupling functions g2/4(k) of range kc asymp-
totic analysis yields Eq. (1b) as the leading term in the

long-time limit;[33] the coefficient is given by ϵ(K, v) =
γst(K)vF/(4πv2). Figure 2(a) shows the derivative of
ekin for ĝ2(k) = ĝ4(k) = g(k), a Gaussian potential
g(k) = g exp(−[k/kc]2/2)/2 as well as a quartic poten-
tial g(k) = g/(1 + [k/kc]4)/2 and varying interaction
strengths. As either g(0) or the lowest nonvanishing Tay-
lor expansion order of g(k)−g(0) increases, the amplitude
of an oscillatory term which decays faster than the lead-
ing one becomes stronger. The (nonuniversal) scale on
which the asymptotic t−3-behavior dominates thus heav-
ily depends on the strength and type of potential at hand
[compare the inset and the main part of Figure 2(a)].
Microscopic lattice model — As a next step we provide

strong evidence that Eqs. (1) describe the long-time re-
laxation dynamics of any model which in equilibrium falls
into the LL universality class. To this end, we consider
spinless lattice fermions,

H=
∑

j

[

1

2
c†jcj+1 +H.c. +∆njnj+1 +∆2njnj+2

]

, (6)

with nj = c†jcj − 1/2. We study the quench dynamics
using an infinite-system DMRG algorithm [25, 32]. We
determine |E0

gs⟩ by applying an imaginary time evolution
exp(−τH |∆=∆2=0) to a random initial matrix product
state with a fixed matrix dimension χ until the energy
has converged to typically 8 − 10 relative digits. Oper-
ators exp(∼ H) are factorized by a second or fourth or-
der Trotter decomposition. Thereafter, we compute the
real time evolution |Ψ(t)⟩ = exp(−itH)|E0

gs⟩ in presence
of the two-particle terms ∆ and ∆2. χ is dynamically
increased in order to maintain a fixed discarded weight.
We carefully ensure that the latter is chosen small enough
(and that the initial χ is large enough) to obtain numer-
ically exact results.
The time evolution of the momentum distribution

Does this work lattice models?
Model: XXZ + NN int



Non-equilibrium exponent : � > �eq

Where does the system go?

n(p) ⇥ |p� pF |�
2

The system does not thermalize! Why?
Infinite number of conserved quantities!!

[H, I(q)] = 0 I(q) = b†(q)b(q)



The GGE Conjecture
M Rigol, B Dunjko, V Yurovsky, and M Olshanii PRL (2007)

Apply the  Maximum Entropy Principle 
[E.T. Jaynes, PR (1957)]

   Why?
MAC, A Iucci, MC 
Chung PRE (2012)

But only O(N) integrals are needed!

[H, I(k)] = 0Need Integrals of Motion

Ō = lim
t!+1

h (t)|Ô| (t)i = Tr⇢GGE Ô,

⇢GGE =
e
P

k �kI(k)

ZGGE
, hI(k)iGGE = h (t = 0)|I(k)| (t = 0)i

Luttinger Model Integrals of Motion I(k) = b†(k)b(k)



Experimental Observation of GGE

T Langren et al arxiv:1411.7185 (2014)

Sudden Splitting of a 1D Bose gas  

2

Even if quantities are only approximately conserved,
the GGE description was formally shown to be valid
for significant time scales [16]. The GGE has also
been suggested as a description for many-body localized
states [17]. However, while numerical evidence for the
emergence of a GGE has been provided for many sys-
tems, a direct experimental observation has so far been
lacking.

Here, we experimentally study the relaxation of a
trapped one-dimensional (1D) Bose gas. Our system is
a close realization of the Lieb-Liniger model describing
a homogeneous gas of 1D bosons with contact interac-
tions, which is one of the prototypical examples of an
integrable system [18, 19]. In the thermodynamic limit,
its exact Bethe Ansatz solutions imply an infinite num-
ber of conserved quantities, which make it impossible for
the gas to forget an initial non-equilibrium state, forcing
it to relax to a GGE. Recent results have shown that also
the trapped 1D Bose gases that are realized in our and
other experiments behave approximately integrable over
very long time scales, enabling the detailed investigation
of integrable dynamics [6, 7, 10, 20, 21]. To demonstrate
the emergence of a GGE, we prepare such a 1D Bose gas
in di↵erent initial non-equilibrium states and observe how
they each relax to steady states that maximize entropy
according to the initial values of the conserved quantities.

The experiments start with a phase-fluctuating 1D
Bose gas [22] of 87Rb atoms which is prepared and
trapped using an atom chip [23]. We initialize the non-
equilibrium dynamics by transversally splitting this sin-
gle 1D gas coherently into two nominally identical 1D
systems, each containing half of the atoms, on average.
Information about the total system is extracted using
matter-wave interferometry between the two halves [6,
20, 21, 24]. This enables the time-resolved measurement
of individual two-point and higher-order N -point phase
correlation functions

C(z
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, z
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1
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) †
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(zN )i
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) + · · ·� i'(zN )]i, (2)

where z
1

, z
2

, . . . , zN are N coordinates along the length
of the system, and '(z) the relative phase between the
two halves (see Supplementary Materials). As we show in
the following, these correlation functions reveal detailed
information about the dynamics and the steady states of
the system.

We start with the two-point correlation function
C(z

1

, z
2

) ⇠ hexp[i'(z
1

) � i'(z
2

)]i. Previously, this cor-
relation function was studied in regions where the sys-
tem is approximately translationally invariant [21, 25],
i.e. C(z

1

, z
2

) ⌘ C(z
1

� z
2

). Here, more comprehensive
information about generic many-body states is obtained
by mapping the full correlation function C(z

1

, z
2

) for any
combination of the coordinates z

1

and z
2

(see Fig. 1).
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) for
increasing evolution time. Using two di↵erent splitting pro-
tocols, we prepare di↵erent initial states (A,B). Both states
show a characteristic maximum on the diagonal and a decay of
correlations away from the diagonal. We quantify the agree-
ment of our theoretical model and of the experiments using a
�2 analysis. The steady state and the dynamics in (A) can
be well described by a single temperature T

e↵

. As shown in
(C), this single-temperature model fails for the steady state
and the dynamics in (B), which require more temperatures
to explain additional correlations on the anti-diagonal (see
main text). The observation of di↵erent temperatures in the
same steady state constitutes our observation of a GGE. The
center of the system is located at z

1

= z
2

= 0, color marks
the amount of correlations between 0 and 1, and the local �2

contribution between 0 and 150. The uncertainty of the cor-
relation functions is estimated via bootstrapping over approx-
imately 150 experimental realizations (see Supplementary In-
formation).

Our observations following a typical splitting, which is
fast compared to the dynamics of the system and there-
fore realizes a quench (see Supplementary Materials), are
summarized in Fig. 2A. As every point in the system is
perfectly correlated with itself, the correlation functions
exhibit a maximum on the diagonal z

1

= z
2

for all times.
Away from the diagonal, the system shows a light-cone-
like decay of correlations [21] leading to a steady state.
From a theoretical point of view, the emergence of this

Dynamics of the relative phase C(x, x0) = hei'(x)
e

�i'(x0)i

'



Pre-thermalization
in d > 1?

J Berges et al Phys Rev Lett 2004

Prethermalization  […]  describes  the  very  rapid  establishment  of  [..]  a 
kinetic temperature based on average kinetic energy […] the occupation 
numbers  of  individual  momentum  modes  still  show  strong  deviations 
from the late-time Bose-Einstein or Fermi-Dirac distribution.



Prethermalization in the Hubbard Model
H =

�

k,�

�(k)c†kck +
U

V
⇥(t)

�

kpq

c†k+q⇥c
†
p�q⇤cp⇤ck⇥

M Moeckel & S Kehrein PRL (2006)

damped to a nonthermal quasistationary value on the time
scale 1=V, while full thermalization can only happen on
much longer time scales.

We now show that this prethermalization regime is a
general feature of fermionic Hubbard-type models at
strong coupling and calculate the double occupation in
the quasistationary state. We use the standard unitary
transformation !A ¼ e"SAeS [30] for which the double
occupation !D ¼ P

i !ni" !ni# of the dressed fermions !ci! is
conserved, ½H; !D$ ¼ 0. After decomposing the hopping
term [31], K ¼ P

ij!ðVij!=VÞcþi!cj!, into parts Kp that

change the double occupation by p, i.e., Kþ ¼P
ij!ðVij!=VÞcþi!cj!ð1" nj !!Þni !! ¼ ðK"Þþ and K0 ¼ K "

Kþ " K", the leading order transformation is S ¼
ðV=UÞ !Kþ þ ðV=UÞ2½ !Kþ; !K0$ " H:c:þOðV3=U3Þ. For
the double occupation, dðtÞ ¼ heiHtDe"iHti0=L, we obtain

dðtÞ ¼ dstat "
2V

U
Re½eitURðtVÞ$ þO

!
V2

U2 ;
tV3

U2

"
; (4)

where RðtVÞ ¼ heitVK0Kþe
"itVK0i0=L and dstat ¼

dð0Þ þ ð2V=UÞRehKþ=Li0. The error OðtV3=U2Þ, which
is due to omitted terms in the exponentials e(iHt, is ir-
relevant in comparison to the leading terms if t ) U=V2.
Here we do not consider the dynamics for t * U=V2. In
fact, dðtÞ remains close to h !Di, which is constant on ex-

ponentially long time scales [18]. It remains to show that
(i) the envelope function RðtVÞ of the oscillating term
decays to zero for t * 1=V, and (ii) the quasistationary
value dstat differs from the thermal value dth. (i) Insert-
ing an eigenbasis K0jmi ¼ kmjmi yields RðtVÞ ¼P

m;nhjnihmji0eitVðkm"knÞhnjKþjmi. In this expression all
oscillating terms dephase in the long-time average
[13,15], so that only energy-diagonal terms contribute to
the sum. But from ½K0; D$ ¼ 0 it follows that D is a good
quantum number of jni so that hnjKþjni ¼ 0, and thus
RðtVÞ vanishes in the long time limit (if it exists and if
accidental degeneracies between sectors of different D are
irrelevant). From Eq. (4) we therefore conclude that dðtÞ
equals dstat for times 1=V ) t ) U=V2, up to corrections
of order OðV2=U2Þ. (ii) For the quasistationary value we
obtain dstat ¼ dð0Þ ""d,

"d ¼ "
X

ij!

Vij!

UL
hcþi!cj!ðni !! " nj !!Þ2i0; (5)

which applies to arbitrary initial states. For noninteracting
initial states the expectation value in this expression fac-
torizes; in DMFT Eq. (5) then evaluates to "d ¼ nð1"
n=2ÞðV=UÞhK=Li0; i.e., it is proportional to the kinetic
energy in the initial state. For the thermal value dth we
expand the free energy in V=T+, because the effective
temperature T+ is much larger than V after a quench to
U * V. At half-filling we obtain dth ¼ dð0Þ þ ðV=UÞ,
hK=Li0; for noninteracting initial states in DMFT we thus
find that "d ¼ dð0Þ " dstat ¼ ½dð0Þ " dth$=2, i.e., at times
1=V ) t ) U=V2 the double occupation has relaxed only
halfway towards dth.
The strong-coupling predictions for the prethermaliza-

tion regime agree with our numerical results, for which the
center of the first oscillation in dðtÞ approaches dstat for
large U [inset in Fig. 2(b)]. The scenario also applies to
interaction quenches in the half-filled Falicov-Kimball
model in DMFT [12] and the 1=r Hubbard chain [15],
although thermalization is inhibited in these models: in
both models the long-time limit of dðt ! 1Þ can be ob-
tained exactly and indeed agrees with dstat for U * V. For
quenches to large U in the free 1=r chain (with bandwidth
2"V) Eq. (5) yields "d ¼ ðV=UÞð1" 2n=3Þ". For the
Falicov-Kimball model in DMFT "d is half as big as for
the Hubbard model because only one spin species contrib-
utes to the kinetic energy in the initial state.
Fast thermalization, U - Udyn

c ¼ 3:2V.—The charac-
teristic collapse-and-revival oscillations of the strong-
coupling regime disappear for quenches to U between
3:3V and 3V, as is apparent from the Fermi surface dis-
continuity"n1 at its first revival maximum [Fig. 3(a)]. This
change in the short-time dynamics reflects a change in the
nature of single-particle excitations [Eq. (3)]. It occurs also
in equilibrium even at very high temperatures, because
jGret

#!ðt" t0Þj2 becomes oscillatory as a result of the transfer
of spectral weight to the Hubbard subbands at (U.
Additionally the prethermalization plateau at "nstat disap-
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FIG. 2 (color online). Fermi surface discontinuity "n and
double occupation dðtÞ after quenches to U . 3 (left panels)
and U / 3:3 (right panels). Horizontal dashed lines in the lower
left panel are at the quasistationary value "nstat ¼ 2Z" 1 pre-
dicted in Ref. [14], with the T ¼ 0 quasiparticle weight Z taken
from equilibrium DMFT data [33]. Horizontal arrows indicate
corresponding thermal values dth of the double occupation,
obtained from equilibrium DMFT. Inset: thermal value dth and
dmed, the average of the first maximum and the second minimum
of dðtÞ, which provides an estimate of the stationary value dstat;
black dashed lines are the respective results from the strong-
coupling expansion (see text).
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Prethermalization in the Hubbard Model
(in infinite dimensions)

damped to a nonthermal quasistationary value on the time
scale 1=V, while full thermalization can only happen on
much longer time scales.

We now show that this prethermalization regime is a
general feature of fermionic Hubbard-type models at
strong coupling and calculate the double occupation in
the quasistationary state. We use the standard unitary
transformation !A ¼ e"SAeS [30] for which the double
occupation !D ¼ P

i !ni" !ni# of the dressed fermions !ci! is
conserved, ½H; !D$ ¼ 0. After decomposing the hopping
term [31], K ¼ P

ij!ðVij!=VÞcþi!cj!, into parts Kp that

change the double occupation by p, i.e., Kþ ¼P
ij!ðVij!=VÞcþi!cj!ð1" nj !!Þni !! ¼ ðK"Þþ and K0 ¼ K "

Kþ " K", the leading order transformation is S ¼
ðV=UÞ !Kþ þ ðV=UÞ2½ !Kþ; !K0$ " H:c:þOðV3=U3Þ. For
the double occupation, dðtÞ ¼ heiHtDe"iHti0=L, we obtain

dðtÞ ¼ dstat "
2V

U
Re½eitURðtVÞ$ þO

!
V2

U2 ;
tV3

U2

"
; (4)

where RðtVÞ ¼ heitVK0Kþe
"itVK0i0=L and dstat ¼

dð0Þ þ ð2V=UÞRehKþ=Li0. The error OðtV3=U2Þ, which
is due to omitted terms in the exponentials e(iHt, is ir-
relevant in comparison to the leading terms if t ) U=V2.
Here we do not consider the dynamics for t * U=V2. In
fact, dðtÞ remains close to h !Di, which is constant on ex-

ponentially long time scales [18]. It remains to show that
(i) the envelope function RðtVÞ of the oscillating term
decays to zero for t * 1=V, and (ii) the quasistationary
value dstat differs from the thermal value dth. (i) Insert-
ing an eigenbasis K0jmi ¼ kmjmi yields RðtVÞ ¼P

m;nhjnihmji0eitVðkm"knÞhnjKþjmi. In this expression all
oscillating terms dephase in the long-time average
[13,15], so that only energy-diagonal terms contribute to
the sum. But from ½K0; D$ ¼ 0 it follows that D is a good
quantum number of jni so that hnjKþjni ¼ 0, and thus
RðtVÞ vanishes in the long time limit (if it exists and if
accidental degeneracies between sectors of different D are
irrelevant). From Eq. (4) we therefore conclude that dðtÞ
equals dstat for times 1=V ) t ) U=V2, up to corrections
of order OðV2=U2Þ. (ii) For the quasistationary value we
obtain dstat ¼ dð0Þ ""d,

"d ¼ "
X

ij!

Vij!

UL
hcþi!cj!ðni !! " nj !!Þ2i0; (5)

which applies to arbitrary initial states. For noninteracting
initial states the expectation value in this expression fac-
torizes; in DMFT Eq. (5) then evaluates to "d ¼ nð1"
n=2ÞðV=UÞhK=Li0; i.e., it is proportional to the kinetic
energy in the initial state. For the thermal value dth we
expand the free energy in V=T+, because the effective
temperature T+ is much larger than V after a quench to
U * V. At half-filling we obtain dth ¼ dð0Þ þ ðV=UÞ,
hK=Li0; for noninteracting initial states in DMFT we thus
find that "d ¼ dð0Þ " dstat ¼ ½dð0Þ " dth$=2, i.e., at times
1=V ) t ) U=V2 the double occupation has relaxed only
halfway towards dth.
The strong-coupling predictions for the prethermaliza-

tion regime agree with our numerical results, for which the
center of the first oscillation in dðtÞ approaches dstat for
large U [inset in Fig. 2(b)]. The scenario also applies to
interaction quenches in the half-filled Falicov-Kimball
model in DMFT [12] and the 1=r Hubbard chain [15],
although thermalization is inhibited in these models: in
both models the long-time limit of dðt ! 1Þ can be ob-
tained exactly and indeed agrees with dstat for U * V. For
quenches to large U in the free 1=r chain (with bandwidth
2"V) Eq. (5) yields "d ¼ ðV=UÞð1" 2n=3Þ". For the
Falicov-Kimball model in DMFT "d is half as big as for
the Hubbard model because only one spin species contrib-
utes to the kinetic energy in the initial state.
Fast thermalization, U - Udyn

c ¼ 3:2V.—The charac-
teristic collapse-and-revival oscillations of the strong-
coupling regime disappear for quenches to U between
3:3V and 3V, as is apparent from the Fermi surface dis-
continuity"n1 at its first revival maximum [Fig. 3(a)]. This
change in the short-time dynamics reflects a change in the
nature of single-particle excitations [Eq. (3)]. It occurs also
in equilibrium even at very high temperatures, because
jGret

#!ðt" t0Þj2 becomes oscillatory as a result of the transfer
of spectral weight to the Hubbard subbands at (U.
Additionally the prethermalization plateau at "nstat disap-
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FIG. 2 (color online). Fermi surface discontinuity "n and
double occupation dðtÞ after quenches to U . 3 (left panels)
and U / 3:3 (right panels). Horizontal dashed lines in the lower
left panel are at the quasistationary value "nstat ¼ 2Z" 1 pre-
dicted in Ref. [14], with the T ¼ 0 quasiparticle weight Z taken
from equilibrium DMFT data [33]. Horizontal arrows indicate
corresponding thermal values dth of the double occupation,
obtained from equilibrium DMFT. Inset: thermal value dth and
dmed, the average of the first maximum and the second minimum
of dðtÞ, which provides an estimate of the stationary value dstat;
black dashed lines are the respective results from the strong-
coupling expansion (see text).
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We now show that this prethermalization regime is a
general feature of fermionic Hubbard-type models at
strong coupling and calculate the double occupation in
the quasistationary state. We use the standard unitary
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occupation !D ¼ P
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is due to omitted terms in the exponentials e(iHt, is ir-
relevant in comparison to the leading terms if t ) U=V2.
Here we do not consider the dynamics for t * U=V2. In
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(i) the envelope function RðtVÞ of the oscillating term
decays to zero for t * 1=V, and (ii) the quasistationary
value dstat differs from the thermal value dth. (i) Insert-
ing an eigenbasis K0jmi ¼ kmjmi yields RðtVÞ ¼P

m;nhjnihmji0eitVðkm"knÞhnjKþjmi. In this expression all
oscillating terms dephase in the long-time average
[13,15], so that only energy-diagonal terms contribute to
the sum. But from ½K0; D$ ¼ 0 it follows that D is a good
quantum number of jni so that hnjKþjni ¼ 0, and thus
RðtVÞ vanishes in the long time limit (if it exists and if
accidental degeneracies between sectors of different D are
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initial states the expectation value in this expression fac-
torizes; in DMFT Eq. (5) then evaluates to "d ¼ nð1"
n=2ÞðV=UÞhK=Li0; i.e., it is proportional to the kinetic
energy in the initial state. For the thermal value dth we
expand the free energy in V=T+, because the effective
temperature T+ is much larger than V after a quench to
U * V. At half-filling we obtain dth ¼ dð0Þ þ ðV=UÞ,
hK=Li0; for noninteracting initial states in DMFT we thus
find that "d ¼ dð0Þ " dstat ¼ ½dð0Þ " dth$=2, i.e., at times
1=V ) t ) U=V2 the double occupation has relaxed only
halfway towards dth.
The strong-coupling predictions for the prethermaliza-

tion regime agree with our numerical results, for which the
center of the first oscillation in dðtÞ approaches dstat for
large U [inset in Fig. 2(b)]. The scenario also applies to
interaction quenches in the half-filled Falicov-Kimball
model in DMFT [12] and the 1=r Hubbard chain [15],
although thermalization is inhibited in these models: in
both models the long-time limit of dðt ! 1Þ can be ob-
tained exactly and indeed agrees with dstat for U * V. For
quenches to large U in the free 1=r chain (with bandwidth
2"V) Eq. (5) yields "d ¼ ðV=UÞð1" 2n=3Þ". For the
Falicov-Kimball model in DMFT "d is half as big as for
the Hubbard model because only one spin species contrib-
utes to the kinetic energy in the initial state.
Fast thermalization, U - Udyn

c ¼ 3:2V.—The charac-
teristic collapse-and-revival oscillations of the strong-
coupling regime disappear for quenches to U between
3:3V and 3V, as is apparent from the Fermi surface dis-
continuity"n1 at its first revival maximum [Fig. 3(a)]. This
change in the short-time dynamics reflects a change in the
nature of single-particle excitations [Eq. (3)]. It occurs also
in equilibrium even at very high temperatures, because
jGret

#!ðt" t0Þj2 becomes oscillatory as a result of the transfer
of spectral weight to the Hubbard subbands at (U.
Additionally the prethermalization plateau at "nstat disap-

 0.13

 0.17

 0.21

 0.25

d(
t)

U=0.5

U=1

U=1.5

U=2

U=2.5

U=3 U=3.3
U=4

U=5

U=6

U=8

 0.1

 0.2

 4  6  8

d

U

dth

dmed

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4

∆n
(t

)

t

U=0.5

U=1
U=1.5

U=2

U=2.5

U=3

 0  1  2  3
t

U=3.3

U=8

U=6
U=5

U=4

a

d

c

b

FIG. 2 (color online). Fermi surface discontinuity "n and
double occupation dðtÞ after quenches to U . 3 (left panels)
and U / 3:3 (right panels). Horizontal dashed lines in the lower
left panel are at the quasistationary value "nstat ¼ 2Z" 1 pre-
dicted in Ref. [14], with the T ¼ 0 quasiparticle weight Z taken
from equilibrium DMFT data [33]. Horizontal arrows indicate
corresponding thermal values dth of the double occupation,
obtained from equilibrium DMFT. Inset: thermal value dth and
dmed, the average of the first maximum and the second minimum
of dðtÞ, which provides an estimate of the stationary value dstat;
black dashed lines are the respective results from the strong-
coupling expansion (see text).

PRL 103, 056403 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
31 JULY 2009

056403-3

Z

Discontinuity at kF

d(t) = Uni"(t)ni#(t)

E = hK(t)i+ UNd(t) = const.

Kinetic energy rapidly equilibrates



Pre-thermalization in a 2D Fermi gas
with long range interactions
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FIG. 1: (color online) Time-of-fight absorption image of a degener-
ate Fermi gas of Er atoms at T/TF = 0.21(1) after tTOF = 12ms of
expansion (a) and its density distribution integrated along the z di-
rection (upper panel) and x direction (lower panel) (b). The observed
profiles (circles) are well described by fitting a poly-logarithmic
function to the data (solid lines), while they substantially deviate
from a fit using a Gaussian distribution to the outer wings of the
cloud, i. e. w (dashed lines). The absorption image is averaged over
six individual measurements.

sublevel |F = 19/2,mF = �19/2i, where F is the total spin
quantum number and mF is its projection along the quantiza-
tion axis.

Our laser cooling scheme relies on a Zeeman slower oper-
ating at 401nm and on a magneto-optical trap (MOT) based
on a narrow line at 583nm [36]. Both light fields act on
transitions with quantum numbers F = 19/2 ! F 0 = 21/2 ,
which are sufficiently closed for laser cooling. In our scheme,
fermions in the MOT are naturally spin-polarized into the low-
est magnetic sublevel |19/2,�19/2i because of a combined
effect of gravity and the MOT light [36]. We typically capture
1⇥107 atoms at T = 7 µK in the MOT. All measurements in
the present work are performed by absorption imaging on the
401-nm transition.

For evaporative cooling, we first transfer the atoms from
the MOT into a single-beam large-volume ODT at 1064nm
and then into a tightly focused ODT at 1570nm. The first trap
is used as an intermediate step to increase the transfer effi-
ciency from the MOT. It consists of a single horizontal beam
with a power of 20W and elliptical focus. The beam waists
are approximately 20 µm and 200 µm in the vertical and hor-
izontal direction, respectively. The corresponding trap depth
is roughly 100 µK. From the large-volume trap, the atoms are
loaded into a tightly focused ODT at 1570nm. This second
trap is made of a single horizontal beam, which is collinear to
the large-volume trapping beam and has a waist of 15 µm. The
initial power of the 1570nm beam is 1.8W, corresponding
to trap frequencies of (nx,ny,nz) = (2147,51,2316)Hz and a
trap depth of about kB ⇥ 190 µK. Here, z is the direction of
gravity. At this stage, we have 1.5⇥106 atoms at T/TF = 4.4
with T = 28 µK and a peak density of about 1.2⇥1014 cm�3.
The Fermi temperature is defined as TF = hn̄(6N)1/3/kB,
where n̄ is the geometric mean of the trap frequencies and h
is the Planck constant. We force evaporation by reducing the
power of the horizontal beam in a near-exponential manner.

FIG. 2: (color online) Evaporation trajectory to Fermi degeneracy.
(a) Temperature evolution during the evaporation ramp and (b) corre-
sponding T/TF versus N. The ratio T/TF is obtained from the width
s of the distribution (triangles) and from the fugacity (circles); see
text. The error bars originate from statistical uncertainties in temper-
ature, number of atoms, and trap frequencies for the width measure-
ments and the standard deviations obtained from several independent
measurements for the fugacity. The solid line is a linear fit to the data
for 0.2 < T/TF < 4.

When TF is reached, we introduce a vertical beam at 1570nm
to confine the fermions into the crossed region created by the
two beams and to preserve the atomic density. Its power is
gradually increased and reaches 1.2W at the end of the evap-
oration. The vertical beam has a beam waist of 33 µm. Dur-
ing evaporation, we apply a homogeneous guiding magnetic
field to maintain the spin-polarization in the system. At high
temperature, the magnetic field value is about 1.7G, which is
large enough to avoid any thermal excitation into higher spin
states. For temperature below 3.2TF , we decrease the value
of the magnetic field to 0.59G, where we observe a slightly
better evaporation efficiency. After 10s of forced evaporation,
we obtain a deeply degenerate Fermi gas.

Figure 1(a) shows a typical time-of-flight (TOF) absorption
image of a degenerate dipolar Fermi gas of N = 6.4 ⇥ 104

and a peak density of n0 = 4⇥1014 cm�3 at T/TF = 0.21(1)
with TF = 1.33(2)µK. At this point, our trap frequen-
cies are (470,346,345)Hz. Fermi degeneracy reveals itself
in a smooth change of the momentum distribution from a
Maxwell-Boltzmann to a Fermi-Dirac distribution [37]. Cor-
respondingly, the atomic density profile is expected to change
its Gaussian shape into a poly-logarithmic one. A fit to TOF
images reveals that at temperatures above ⇡ 0.5TF the Gaus-
sian and poly-logarithmic function are hardly distinguishable
from each other and both describe the data well. By further
decreasing the temperature, we observe a gradually increasing
deviation from the Gaussian shape. This deviation is evident
in Fig. 1(b), which shows a density profile at T/TF = 0.21(1).
A Gaussian fit to the outer wings of the cloud, i. e. outside
the disk with radius w, with w being the 1/e diameter of the
Gaussian fit to the entire cloud, clearly overestimates the pop-
ulation at the center of the cloud. This is a fingerprint of Fermi
degeneracy, meaning that the population of low-energy levels
is limited by the Pauli exclusion principle.

In all our measurements, we extract T/TF from fits to the

Degenerate 167Er Fermi gas
K Aikawa et al Phys Rev Lett (2014)    
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FIG. 2. Images of the Dy degenerate Fermi gas. a,
Single shot time-of-flight absorption image at t = 6 ms. b,
Average of six images. Density integrations versus ⇢̂ (c) and
ẑ (d). The green curve is a gaussian fit to the data’s wings
(radius � = 20 µm), while the red curve is a fit to a Thomas-
Fermi distribution. Data are consistent with a Thomas-Fermi
distribution of T/T

F

= 0.21(5). The Fermi velocity and tem-
perature are 5.6(2) mm/s and 306(20) nK, respectively, and
the gas temperature is 64(16) nK. The degenerate Fermi gas
contains 6.0(6)⇥103 atoms at peak density 4(1)⇥ 1013 cm�3.

induce trap loss. Evaporating 161Dy in a mixed state
of two spins, as proved e�cient for 40K,26 would lead to
large dipolar relaxation-induced heating even in the pres-
ence of small, mG-level fields because the inelastic, sin-
gle spin-flip cross-section �1 = �⇣(k

f

/k

i

) scales strongly
with dipole moment27:

� =
8⇡

15
F1F

2
2

✓
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2
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◆2
k

f

k

i

,

where F1 is the spin of the atom whose spin flips (F1 = F2

for identical particles), g
i

are g-factors for atom i, m is
mass, and k

i

and k

f

are the initial and final momenta.
For 161Dy (162Dy), F = 21/2 (F = J = 8) and g

F

(g
J

)
= 0.95 (1.24). The function ⇣(k

f

/k

i

) = [1 + ✏h(k
f

/k

i

)],
where ✏ = ±1, 0 and h(x) is defined in Methods, accounts
for the contributions of even, odd, or all partial waves to
the scattering process.
We choose, therefore, to seek a degenerate dipolar

Fermi gas with Dy by sympathetically cooling 161Dy with
the boson 162Dy while both are spin-polarized in their
strong-magnetic-field seeking ground states: |F,m

F

i =
|21/2,�21/2i for 161Dy and |J,m

J

i = |8,�8i for 162Dy.
See Fig. 1a–c for energy level schemes. Preparation of
this ultracold Bose-Fermi mixture—the first such mix-
ture for strongly dipolar species—builds on our single-
species technique19 for Bose-condensing 164Dy and relies

on the laser cooling and trapping of two isotopes before
loading both into an optical dipole trap (ODT) for forced
evaporative cooling. We sketch here the experimental
procedure; further details are provided in the Methods.
Isotopes 161Dy and 162Dy are collected sequentially in

a repumperless MOT operating on the 421-nm transi-
tion25 (Fig. 1d), with final MOT populations of N =
2 ⇥ 107 and 4 ⇥ 107, respectively. Next, simultaneous
narrow-line, blue-detuned MOTs19,28 cool both isotopes
to 10 µK via the 741-nm transition (Fig. 1e) for 5 s to
allow any remaining metastable atoms to decay to the
ground state. The blue-detuned MOTs also serve to spin
polarize19,28 both isotopes to their maximally high-field-
seeking (metastable) states m

F

= +F (m
J

= +J) for
161Dy (162Dy).
The blue-detuned MOTs of the two isotopes can be

spatially separated due to the dependence of the MOTs’
positions on laser detuning19,28. This allows the isotopes
to be sequentially loaded into the 1064-nm ODT1 in
Fig. 1f, which is aligned above the 161Dy MOT but below
the 162Dy MOT. First 162Dy and then 161Dy is loaded
into ODT1 by shifting the quadrupole center with a verti-
cal bias field. All 741-nm light is extinguished before the
spin of both isotopes are rotated via radiofrequency (RF)
adiabatic rapid passage (ARP) into their absolute ground
states m

F

= �F (m
J

= �J) for 161Dy (162Dy). The
ODT1 populations of 161Dy and 162Dy are both initially
1⇥106 before plain evaporation cools the gases to 1–2 µK
within 1 s. A 0.9 G field is applied close to the trap axis
of symmetry ẑ throughout plain and forced evaporation.
This provides a �m = 1 Zeeman shift equivalent to 50
(70) µK for 161Dy (162Dy). Because this is much larger
than the temperatures of the gases, the field serves to
maintain spin polarization while stabilizing the strongly
dipolar 162Dy Bose gas against collapse as its phase-space
density increases19.
Magnetic Stern-Gerlach measurements and observa-

tions of fluorescence versus polarization are consistent
with an RF ARP sequence that achieves a high degree
of spin purity for each isotope. Remnant population in
metastable Zeeman substates quickly decays to the abso-
lute ground state via dipolar relaxation regardless of col-
lision partner at a rate of � / �1nv̄ = 1–10 s�1, where n

is the atomic density and v̄ is the relative velocity during
the plain evaporation stage. (Since g

F

F = g

J

J , colli-
sions between Bose-Bose, Bose-Fermi, and Fermi-Fermi
pairs result in �’s of similar magnitude as long as k

i

⇡ k

f

since h(x!1)!0. This condition is fulfilled during plain
evaporation due to a low ratio of Zeeman–to–kinetic en-
ergy. For example, inelastic dipolar 161Dy–161Dy colli-
sions (✏ = �1) proceed at rate � = 1–5 s�1 even in the
absence of 162Dy.) Thus, a (two-body) collisionally sta-
ble mixture of identical bosons and identical fermions is
prepared within the 1 s between spin rotation and forced
evaporation.
Subsequently crossing ODT1 with ODT2 forms

an oblate trap with frequencies [f
x

, f

y

, f

z

] =
[500, 580, 1800] Hz. Ramping down the optical power

Degenerate 161Dy Fermi gas
M Lu et al Phys Rev Lett (2012)



Quench in a 2D interacting Fermi Gas
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Pre-thermalization, perturbative? YES!

PT tells us there is a pre-thermalization plateau, but WHY? 
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Making an Interacting Gas Exactly Solvable

(= Neglect inelastic processes)

Forward Exchange BCS
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Figure 5: The three marginally relevant scattering channels in D = 2 which are confined to
the narrow shell of width λ about the Fermi surface and which conserve momentum.
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Figure 6: Feynman diagrams corresponding to the three marginally relevant scattering
channels. The interactions between fermions (solid lines) are mediated by gauge fields (dotted
line). (a) Forward scattering with amplitude fc(S,T)− 1

4 fs(S,T). (b) Exchange scattering
with amplitude 1

2 fs(S,T). (c) BCS Cooper pair scattering with amplitude VBCS(S− T).
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Fermi-liquid-like truncation of the bare Hamiltonian 
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A careful consideration of Eq. (4) reveals that there exist only two types of non-zero terms in the sum, S = S

0 and
T = T

0 (forward scattering) or S = T

0 and T = S

0 (exchange scattering). Introducing the coarse-grained densities

J
S

(q) =
X

k

⇥(S;k + q)⇥(S;k)J
k

(q), (5)

the forward scattering terms can be immediately written as

Hint =
X

S,T ,q

f(q)J
S

(q)J
T

(�q), (6)

where only vectors q that are small enough to fit into one patch are allowed. In general, the exchange terms cannot
be written in terms of the coarse-grained densities. However they can be absorbed into the forward scattering part if
we consider that the size ⇤ of the patch is much larger than the interaction cuto↵ qc. In such case, if the interaction is
not too strong, the exchange terms that transfer momentum from one patch to another will be accompanied by a tiny
matrix element f(q) and we can neglect them as well. The only exchange terms left are those with S = T = S

0 = T

0

which are indistinguishable of the diagonal terms of the forward scattering terms.
The main step of the bosonization procedure is to note that the in-patch densities obey the anomalous commutation

relations

[J
S

(q), J
T

(p)] = �
S,T �q+p

⌦ n̂

S

· q + Error. (7)

In general, the error term is small if ⇤ � � which determines a squat aspect ratio for the FS patches. If we neglect
the error term, it is possible to write the currents in terms of canonical bosonic operators {a

S

(q), a†
S

(q)}:

J
S

(q) =
p

⌦|n̂
S

· q|[a†
S

(q)✓(n̂
S

· q) + a
S

(�q)✓(�n̂

S

· q)], (8)

where ✓(x) is the Heaviside function. Then, the low-energy part of the interacting Hamiltonian Eq. (6) is already
bosonized. To bosonize the low-energy part of the kinetic Hamiltonian we have to made further approximations.
Starting from the kinetic energy

H0 =
X

S,q

✏(k
S

+ q)c†
k

S

+q

c
k

S

+q

+ H̃0, (9)

we again neglect H̃0. Moreover, we assume that the patch size ⇤ is small enough compared to the scale in which
the FS changes its shape. For the circular FS is enough to ask ⇤ ⌧ kF . In this approximation we can neglect the
variations of the vector normal to the FS inside each patch, making possible to linearize the dispersion relation inside
each patch [3]. Additionally, if we focus only on the low energy degrees of freedom, in virtue of the commutation
relations (7), we can write the low-energy kinetic part of the hamiltonian as [2]

vF
2⌦

X

S,q

J
S

(q)J
S

(�q), (10)

where vF = |r
k

✏(k)||k|=kF
is the Fermi velocity. The bosonized Hamiltonian can be finally written as

H =
1

2

X

S,T ,q

J
S

(q)

✓
vF
⌦

�
S,T +

f(q)

V

◆
J
T

(�q). (11)

One important thing to notice is that the interaction potential f(q) that appears in the bosonized interaction Hamilto-
nian above is the bare interaction between the fermions. In contrast, in the equilibrium case this interaction parameter
is the renormalized interaction between the quasiparticles that remain after the high-energy degrees of freedom had
been integrated out.

The collection of conditions over the cuto↵s is consistent and reads:

kF � ⇤ � � > qc. (12)
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Momentum distribution

Interaction quench in a 2D Fermi Gas

Pre-thermalized
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How do we describe the 
pre-thermalized state?

Generalized Gibbs Ensemble

4

Next, we relate the stationary state and the ground
state correlations. Thus, considering the correlation
function Geq(x) = h | †(x) (0)| i (| i is the ground
state of H), we define Zeq(x) = Geq(x)/G0(x). Fur-
thermore, due to dephasing, the oscillatory part of
G̃ret,eq

ST (q, t) drops out for t ! 1 [22]. We then find
that

lim
t!1

ln [Zneq(x, t)] = 2 ln [Zeq(x)] +O(f3

0

), (3)

where Zneq(x, t) = Gneq(x, t)/G0(x). Note that, owing to
rotation invariance, both Zeq and Zneq depend only on
x = |x|. Taking x ! 1, Eq. (3) leads to a relation be-
tween the discontinuity at kF in the momentum distribu-
tion of the stationary and ground states: Zneq ' (Zeq)2.

At this point, we make contact with previous work.
Exponentiating Eq. (3) and further developing in pow-
ers of the interaction strength, it is possible to ob-
tain a simple relation between the stationary state
(nst(k)) and ground state (neq(k)) momentum distri-
butions, 2 [neq(k)� neq

0

(k)] = nst(k) � neq

0

(k) + O(f3

0

),
where neq

0

(k) = ✓(kF � k). A similar result was ob-
tained in Ref. 9 for the Hubbard model under very dif-
ferent assumptions (a short range interaction between
spinful fermions). In particular, this relation implies
that, to the lowest order in the interaction strength,
all the energy injected into the system by the quench,
E

ex

= E
neq

� E
eq

, where E
neq

= h 
0

|H| 
0

i = 0 and
E

eq

= h |H| i, is transformed into kinetic energy in the
stationary (prethermalized) state [9]. As to the role of
higher order corrections to this picture, we find by di-
rect diagonalization of the bosonic Hamiltonian that the
quench also excites the collective mode of the fermionic
system and that the excitation energy is almost com-
pletely transferred for long times after the quench into
kinetic energy, i.e., K1 = K

GS

+ E
ex

� �U , where K1
(K

GS

= h |H
0

| i) is the kinetic energy in the steady
(ground) state and �U is a correction arising from the
collective mode that is of order f4

0

for weak interactions,
and therefore not seen in perturbative calculations at the
lowest orders.

Next, we discuss the statistical description of the sta-
tionary prethermalized state. To this end, we recall that
the truncated Hamiltonian is a (bosonic) bilinear and,
consequently, that dephasing implies that all correlations
in the steady state are described by a GGE [14]. If we
denote with {↵l(q),↵

†
l (q)} the bosonic basis that diago-

nalizes the Hamiltonian (1), the GGE density matrix can
be written as

⇢
GGE

=
1

Z
GGE

exp

2

4
X

l,q

�l(q)Il(q)

3

5 , (4)

where Il(q) = ↵†
l (q)↵l(q) are the conserved quantities,

Z
GGE

= Tr[⇢
GGE

] and the Lagrange multipliers �l(q)
are obtained from the initial conditions, hIl(q)it=0

=

h 
0

|Il(q)| 0

i = Tr [⇢
gG

Il(q)]. We also have explicitly
checked that the density matrix (4) reproduces all the
studied quantities in the prethermalized state. It is also
worth noting that the conserved quantities can be easily
refermionized, at least formally. Using the matrix trans-
formation that diagonalizes the Hamiltonian they can be
expressed as linear combination of products of two patch
densities.
We finally take up the dynamics at finite t. An

isotropic horizon e↵ect in the correlations [24] arises at
the lowest order in the expansion of ln[Zneq

S (x, t)] in
powers of the interaction strength. In fact, it can be
shown [22] that in the spatio-temporal region defined
by |x| � 2vF t we can approximately neglect the spa-
tial dependence of Zneq

S (x, t) and, with it, the patch in-
dex. Outside the light cone, |x| � 2vF t, the interac-
tion correction is therefore approximately the same for
all patches: Zneq

S (x, t) ⇡ Zneq(t) and the full correlation
function thus reads Gneq(x, t) ⇡ G0(x)Zneq(t), i.e., the
correlations retain the same spatial dependence as in the
initial state up to a time-dependent prefactor. This fac-
tor defines the time-dependent quasiparticle residue that
is analyzed below. In the opposite limit, |x| ⌧ 2vF t, we
can neglect the temporal dependence and the steady state
correlations dominate: Zneq(x, t) ⇡ limt!1 Zneq(x, t).
We next turn to the dynamics of the discuntinuity of

the momentum distribution at k = kF . For short times
vF t ⌧ q�1

c we find a Gaussian decay of Zneq(t) from its
initial value of one:

Zneq(t) = exp


�t2

4N(0)

(2⇡)3
C

Z 1

0

dq (f(q)q)2 +O(f3

0

)

�
,

(5)
where N(0) = kF

2⇡ is the density of states at the FS and
C is an O(1) constant that stems from the angular inte-
gration over the FS. The Gaussian decay at short times
is independent of the form of the interaction and it also
occurs in 1D [13]. For vF t � q�1

c , the form of the inter-
action is required, and upon choosing f(q) = f

0

qne�q/qc ,
we find:

Zneq(t) ⇡ Zst exp[f2

0

an(qct)
�(2n+1)], (6)

where Zst ' (Zeq)2 is the stationary-state quasiparti-
cle residue and an a positive constant. In Figure 2 we
illustrate the dynamics of the quasiparticle residue for
di↵erent interaction strengths and n = 0.
To conclude, we have studied the quench dynamics

of a Fermi gas with long-range interactions using FS
bosonization. We were able to obtain the full space-
time dependence of the non-equilibrium density-matrix
as well as the evolution of (the zero-temperature) dis-
continuity of the momentum distribution at k = kF af-
ter the quench. We have shown that prethermalization
can be understood as the result of dephasing between
the bosonic FS excitations. Furthermore, the statistical
description of the prethermalized state in terms of the
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    Conclusions (part II)  

• Generally speaking, systems that can be described in terms 
of quadratic Hamiltonians of  Bosonic or Fermionic 
elementary excitations thermalize to a Generalized Gibbs 
Ensemble (GGE).

• Close to the fixed point, interacting Fermions in 1D exhibit 
very slow relaxation dynamics following a quantum quench. 
At T = 0, the discontinuity at the Fermi energy vanishes as a 
power law.

• Even systems that eventually do thermalize can exhibit an 
intermediate regime known as pre-thermalization. The 
system dynamics may be describable for short times by a 
quadratic Hamiltonian, and therefore the pre-thermal state 
will be described by the GGE.


