Coherent superposition of current flows in an Atomtronic Quantum Interference Device

New J. Phys. 17 (2015) 045023

Davide Rossini

"Atomtronics", Benasque (Spain) – May 7th 2015

In collaboration with:

Davit Aghamalyan

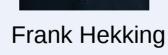
Leong C. Kwek

@ Centre for Quantum Technologies, Singapore

Luigi Amico @ Catania, Italy

Marco Cominotti

Anna Minguzzi



@ CNRS Grenoble, France

Matteo Rizzi @ Mainz, Germany

Outlook

- optical circuits with lithographic accuracy
- neutrality of atoms
- bosons / fermions
- flexibility on interactions

Quantum information ?

What could be a **qubit** ?

 Particle current flowing in a ring-shaped potential a barrier creates an interference state (SQUID)

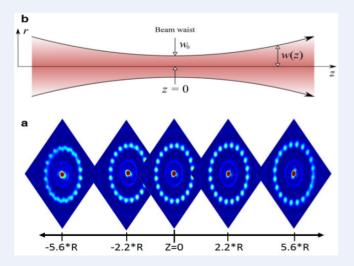
the cold-atom analog of a flux qubit

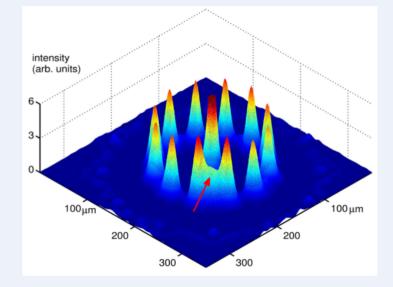
D. Solenov, D. Mozyrsky (2011)

L. Amico, D. Aghamalyan, F. Auksztol, H. Crepaz, R. Dumke, L.C. Kwek (2014)

Our model

- Interacting bosons on a 1D lattice
- Localized potential on one lattice site
- Magnetic flux piercing the ring
 - \checkmark No vortex formation
 - ✓ Easier to localize a barrier
 - ✓ Ring-ring interactions



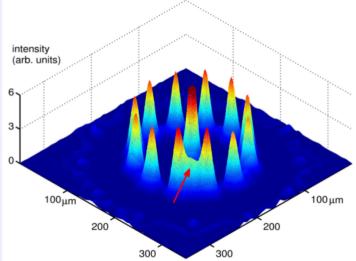


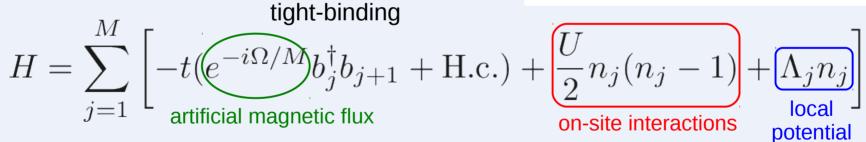
- L. Amico et al. (2014)
- → <u>Rainer's talk</u>
- → Davit's talk

Previous studies in limiting cases: Hallwood, Ernst, Brand (2010) Nunnenkamp, Rey, Burnett (2011)

Our model

- Interacting bosons on a 1D lattice
- Localized potential on one lattice site
- Magnetic flux piercing the ring

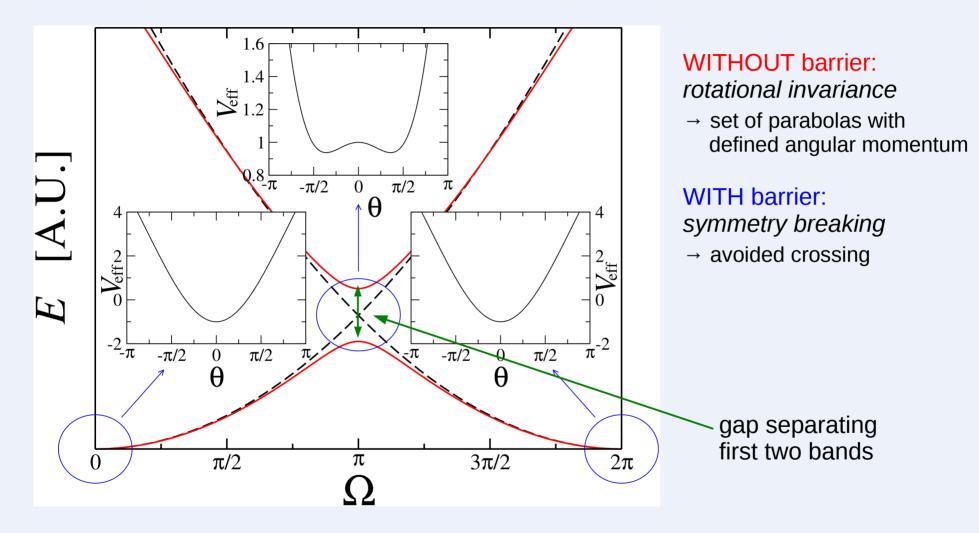




An effective Bose-Hubbard model

→ hopping renormalized by the magnetic flux $t/U \rightarrow (t/U) \cos(\Omega/M)$ Niemeyer, Freericks, Monien (1999)

Effective two-level system



@ large fillings: quantum phase model
@ normal fillings, n ≈ 1: Bose-Hubbard

→ Davit's talk

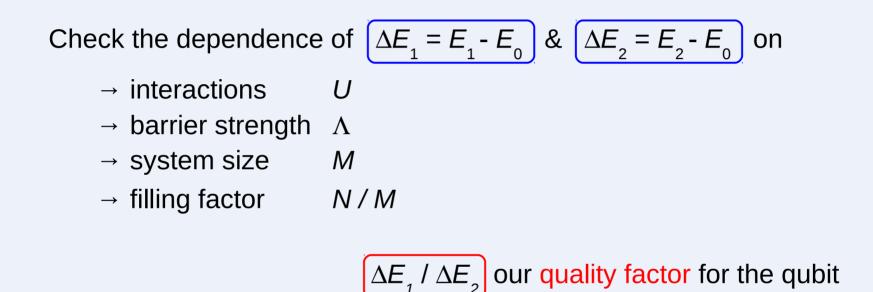
 \rightarrow this talk

Effective two-level system

An effective "qubit" (two-level system) may be identified

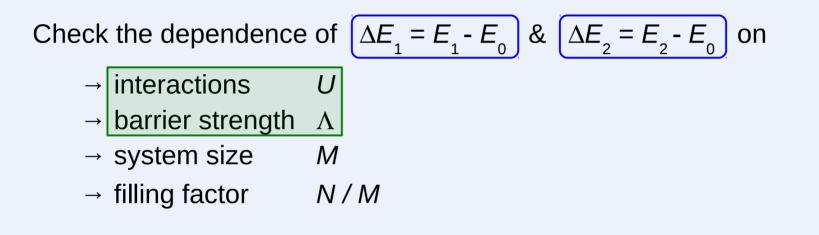
- → energy splitting of the two levels should be <u>sufficiently large</u>
- higher excitations should be energetically <u>far enough</u> from the two competing ground states

Bose-Hubbard model: the low-lying spectrum



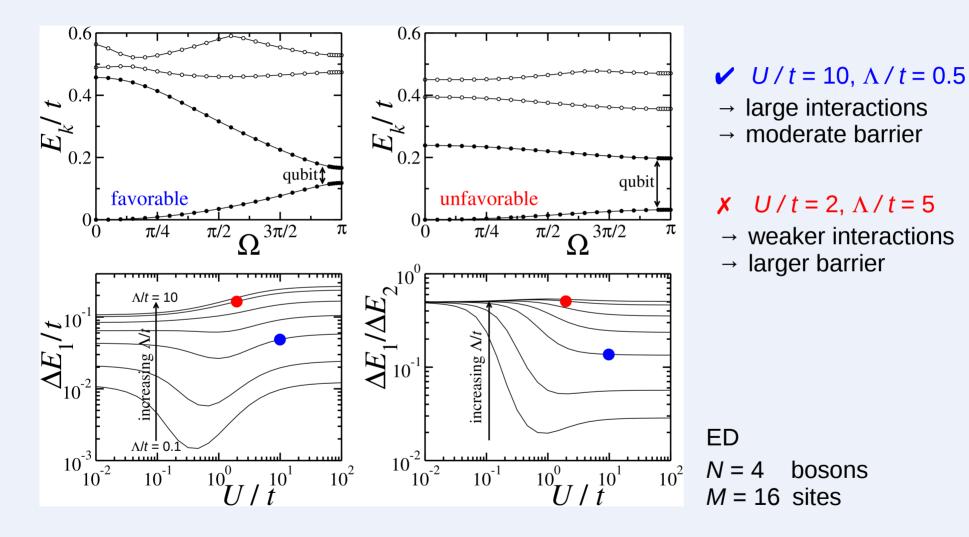
Mostly *numerical* study: exact diagonalization (ED) density-matrix renortmalization group (DMRG) Tonks-Girardeau (TG) mapping Gross-Pitaevskii (GP) approximation

Bose-Hubbard model: the low-lying spectrum



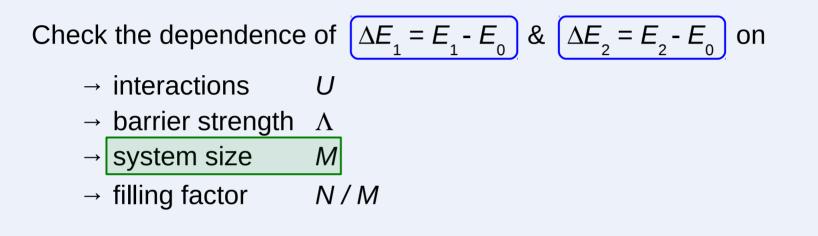
 $\Delta E_1 / \Delta E_2$ our quality factor for the qubit

Dependence on interactions & barrier strength



Too weak interactions cannot suffice to isolate the qubit !

Bose-Hubbard model: the low-lying spectrum



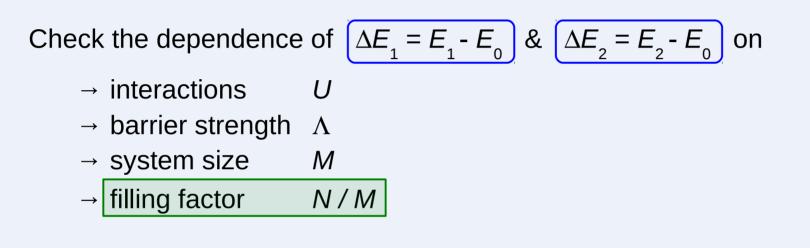
 $\Delta E_1 / \Delta E_2$ our quality factor for the qubit

Dependence on the system size

DMRG, filling: N / M = 1/4 $E_1/\Delta E_2$ Ø ····· Ø ···· Ø ··· Ø $\Lambda / t = 0.1$ 10⁻² $\Lambda / t = 10$ $\Delta E_1/t$, • U / t = 1U/t = 10 $\Lambda / t = 1$ 10^{-4} $\bullet U / t = +\infty$ $\overline{10}^2 \ \overline{10}^1$ $(0^1$ $10^2 10^1$ 10^{2} MMsmall barrier intermediate barrier large barrier small barrier best regime: Similar to the scaling of *persistent currents*: *mesoscopic* size

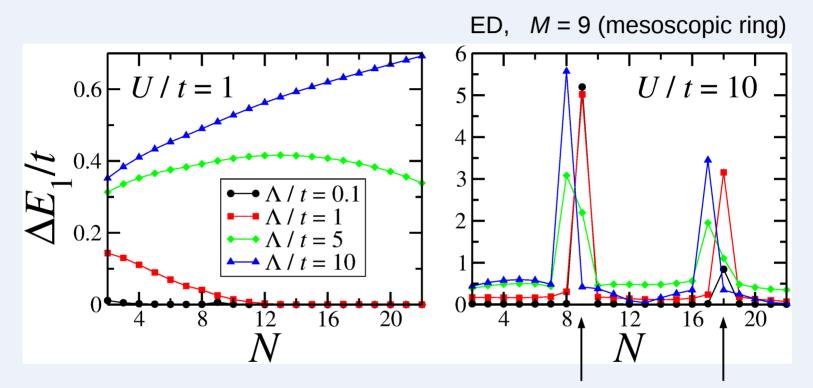
Cominotti, DR, Rizzi, Hekking, Minguzzi (2014)

Bose-Hubbard model: the low-lying spectrum



 $\Delta E_1 / \Delta E_2$ our quality factor for the qubit

Dependence on the filling

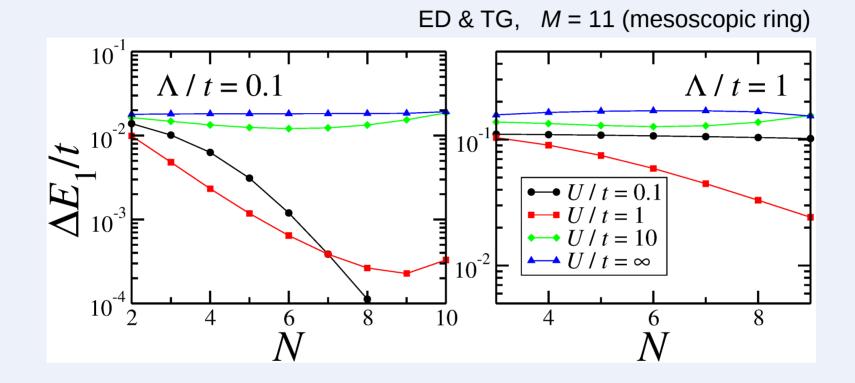


Superfluid regime: smooth dependence on *N*

small barrier \rightarrow screening limit large barrier \rightarrow tunnel limit *Mott regime:* reminiscent of gapped phases

(finite-size effects @ large Λ)

Dependence on the filling



Non-monotonic dependence on U

small interactions \rightarrow level mixing of single-particle energies increases with *N* large interactions \rightarrow TG limit: single-particle gaps are identical for all level crossings

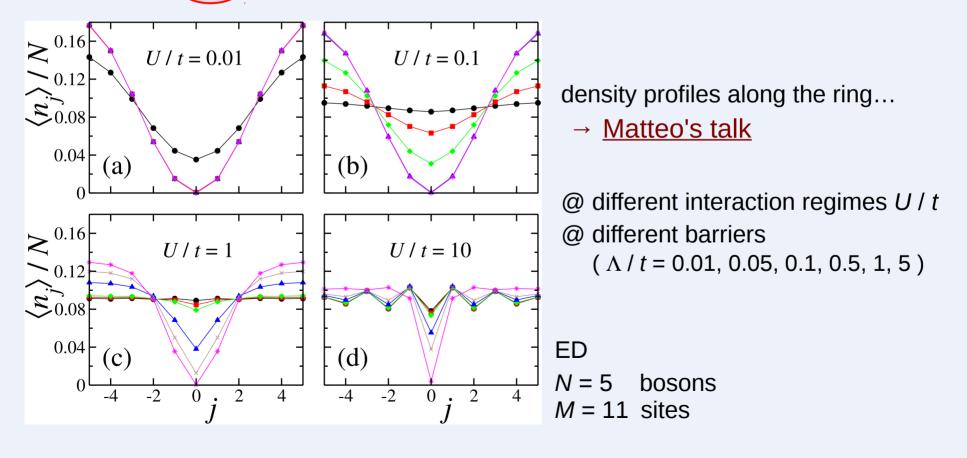
What are the most advantageous "working points" ?

✓ Moderate-to-strong interactions

✓ Small-barrier limit

What are the most advantageous "working points" ? Moderate-to-strong interactions Small-barrier limit

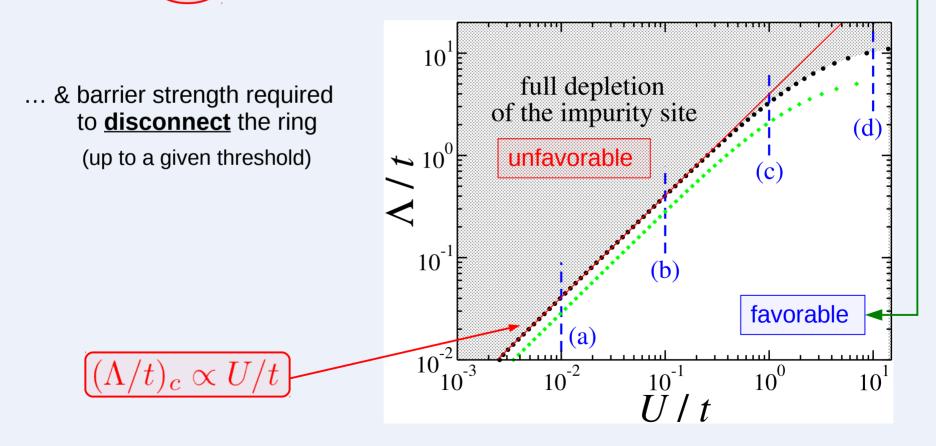
The ratio (Λ / U) as a useful benchmark parameter to define the qubit quality



What are the most advantageous "working points"?

✓ Small-barrier limit

The ratio (Λ / U) as a useful benchmark parameter to define the qubit quality



Momentum distribution

Focus on the ground state:

detectability of macroscopic superposition of circulating states

$$n(\mathbf{k}) = \int d\mathbf{x} \int d\mathbf{x}' \langle \psi^{\dagger}(\mathbf{x})\psi(\mathbf{x}')\rangle e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{x}')}$$

on a lattice... $\psi(\mathbf{x}) = \sum_{j=1}^{M} w(\mathbf{x}-\mathbf{x}_j)b_j$
$$n(\mathbf{k}) = |\tilde{w}(\mathbf{k})|^2 \sum_{l,j=1}^{M} \langle b_l^{\dagger}b_j\rangle e^{i\mathbf{k}\cdot(\mathbf{x}_l-\mathbf{x}_j)}$$

time-of-flight expansion

Momentum distribution

Focus on the ground state:

detectability of macroscopic superposition of circulating states

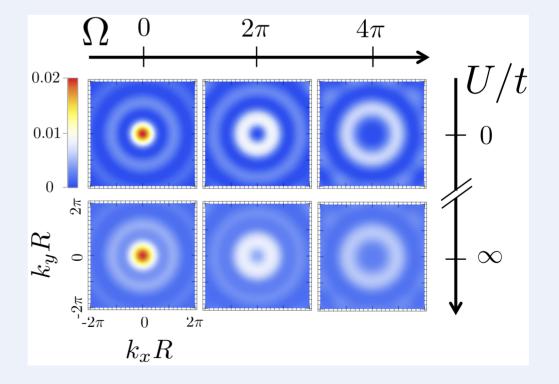
$$n(\mathbf{k}) = |\tilde{w}(\mathbf{k})|^2 \sum_{l,j=1}^{M} \langle b_l^{\dagger} b_j \rangle e^{i\mathbf{k} \cdot (\mathbf{x}_l - \mathbf{x}_j)}$$

time-of-flight expansion

In absence of barrier ($\Lambda = 0$)

- rotational invariant system
- currents unaffected by interactions
- smeared signal at large U

 $\begin{array}{ll} 0 < \Omega < \pi & \text{no circulation} \\ \pi < \Omega < 2\pi & \text{one quantum of circulation} \\ \Omega = \pi & \textit{interference of them} \end{array}$



<u>Without interactions</u> (a single-particle problem)

Absence of barrier ($\Lambda = 0$)

 $\psi(\theta) = \frac{1}{\sqrt{2\pi}} e^{in\theta} \quad n \in \mathbb{Z}$

 2π

N/M = 5/11

 $k_x R$

Presence of barrier ($\Lambda \neq 0$)

$$\psi(\theta) \approx \frac{1}{\sqrt{2\pi}} \left[\sin\left(\frac{\varphi}{2}\right) e^{in\theta} + \cos\left(\frac{\varphi}{2}\right) e^{i(n+1)\theta} \right]$$

0 -

profiles at $\Omega = \pi + \varepsilon$

mix states with different angular momentum

$$n(\mathbf{k}) = |J_n(|\mathbf{k}|R)|^2$$

$$n = 0 \text{ peaked at } \mathbf{k} = 0$$

$$n > 0 \text{ ring shaped, radius growing with } n$$

$$n(\mathbf{k}) \approx \sin^2\left(\frac{\varphi}{2}\right) J_n^2(|\mathbf{k}|R)$$

$$+ \cos^2\left(\frac{\varphi}{2}\right) J_{n+1}^2(|\mathbf{k}|R)$$

$$+ \sin(\varphi)\cos(\gamma_{\mathbf{k}})J_n(|\mathbf{k}|R)J_{n+1}(|\mathbf{k}|R))$$
interference term
$$n = 0 \text{ for } n > 0 \text{ ring shaped, radius growing with } n$$

$$n(\mathbf{k}) \approx \sin^2\left(\frac{\varphi}{2}\right) J_n^2(|\mathbf{k}|R)$$

$$+ \sin(\varphi)\cos(\gamma_{\mathbf{k}})J_n(|\mathbf{k}|R)J_{n+1}(|\mathbf{k}|R)$$
interference term
$$n = 0 \text{ for } n > 0 \text{ ring shaped, radius growing with } n$$

$$n(\mathbf{k}) \approx \sin^2\left(\frac{\varphi}{2}\right) J_n^2(|\mathbf{k}|R)$$

$$+ \sin(\varphi)\cos(\gamma_{\mathbf{k}})J_n(|\mathbf{k}|R)J_{n+1}(|\mathbf{k}|R)$$
interference term
$$n = 0 \text{ for } n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

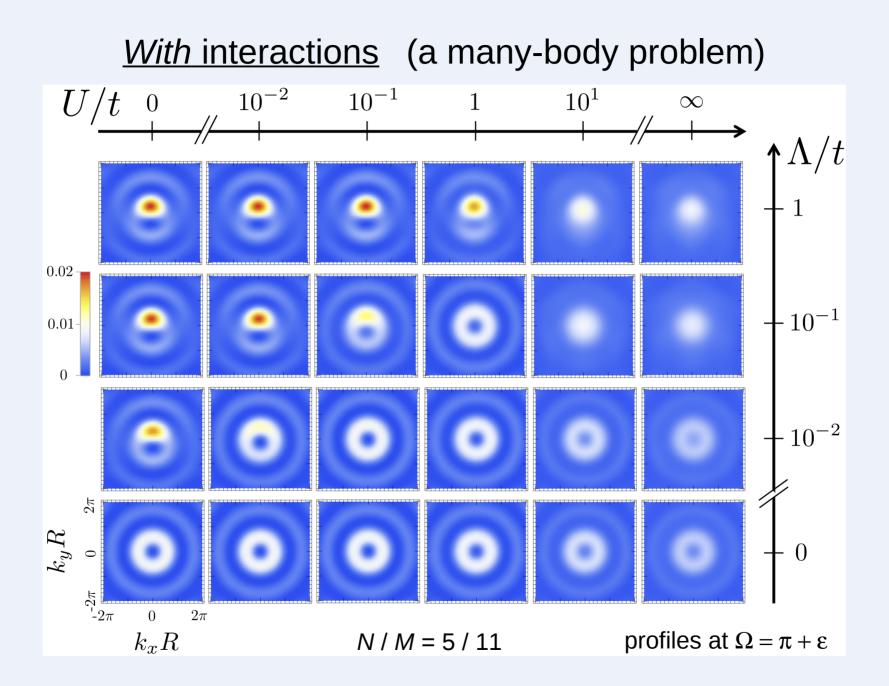
$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

$$n = 0 \text{ ring shaped, radius growing with } n$$

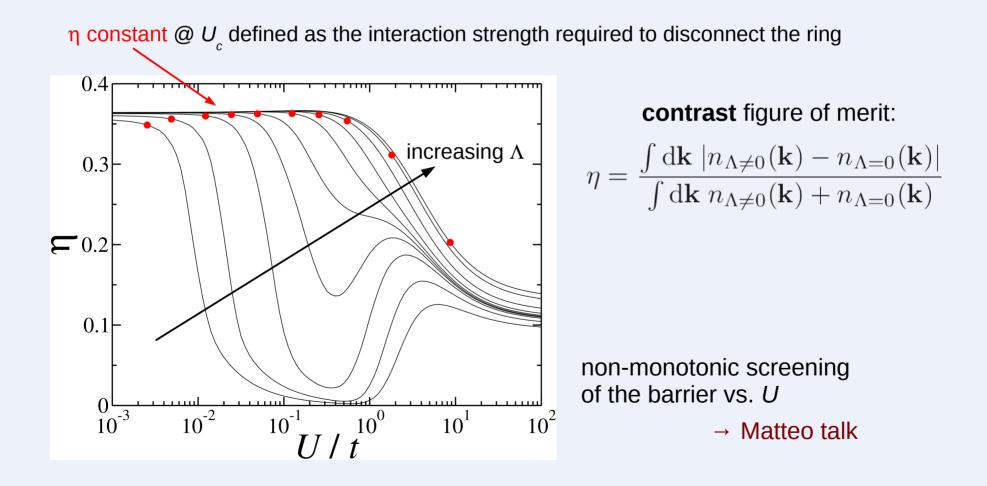
$$n = 0 \text{ ring shaped, radius growing wi$$

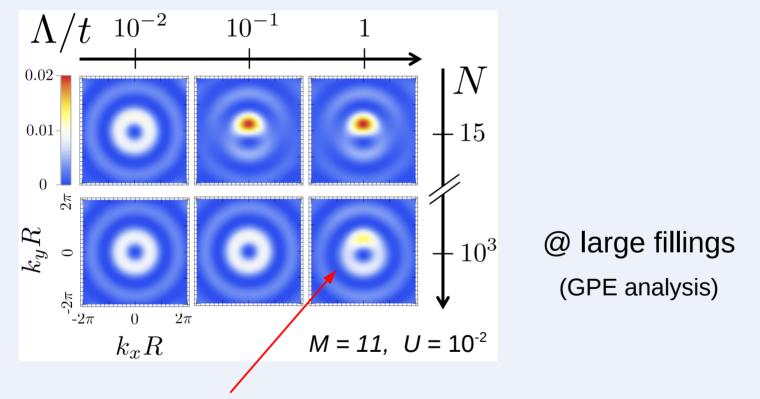
nontrivial dependence on Λ and U



With interactions (a many-body problem)

TOF images are independent of the barrier above a given critical value Λ_{c}





A larger barrier strength is required to observe superposition features Large *N* enhances the screening of the barrier!

Summary

Interacting bosons on a ring-shaped 1D lattice with a localized barrier:

an effective qubit [@ low-energies]

interference between forward/backward scattered bosons

✓ Scaling of the energy gap for the qubit

- → *appreciable* for small / <u>mesoscopic</u> systems
- \rightarrow *suppressed* in the thermodynamic limit

✓ Superposition of circulation states: momentum distribution

The ratio U/Λ locates the *optimal working point* for gap resolution & TOF detectability

New J. Phys. 17 (2015) 045023