MEASURES FOR MACROSCOPIC QUANTUM STATES FOR SPINS AND PHOTONS

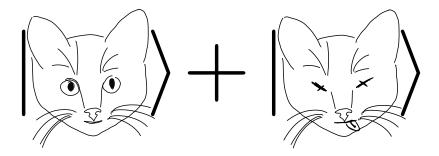
Florian Fröwis

Group of Applied Physics, Geneva, Switzerland

Seefeld, 2 July 2014

"Exploring the limits ..."

SCHRÖDINGER'S CAT



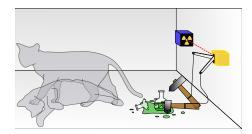
Quote from his 1935 paper

"There is a difference between a shaky or out-of-focus photograph and a snapshot of clouds and fog-banks" MACROSCOPIC VS. ACCUMULATED MICROSCOPIC QUANTUM EFFECT

Leggett (1980) noticed that there is a difference between a accumulated microscopic quantum effect

and a "true"

macroscopic quantum effect.



DEFINITION What is a macroscopic quantum state?

MEASURING How to verify macroscopic quantum states?

STABILITY Are macroscopic quantum states stable?

IDENTIFYING MACROSCOPIC QUANTUM STATES

FF AND W. DÜR, NEW JOURNAL OF PHYSICS **14**, 093039 (2012). FF, N. SANGOUARD, AND N. GISIN, ARXIV:1405.0051 (2014).

What is a measure for macroscopic quantum states?

- Properties of measures
- Comparison of different measures
- "Canonical form"

GENERAL FRAMEWORK

Necessary condition: ρ is quantum state of large system: Many spins, many photons, large masses, ... Necessary condition: *ρ* is quantum state of large system:
 Many spins, many photons, large masses, ...

Mathematical structure and terminology

 $egin{aligned} f &: \mathcal{D}(\mathcal{H}) o \mathbb{R}_+ \ &
ho \mapsto f(
ho) \end{aligned}$

If $f(\rho)$ is large, the state ρ is *macroscopically quantum*.

 $f \dots$ measure for macroscopicity $f(\rho) \dots$ effective size of ρ .

Necessary condition: *ρ* is quantum state of large system:
 Many spins, many photons, large masses, ...

Mathematical structure and terminology

 $egin{aligned} f : \mathcal{D}(\mathcal{H}) &
ightarrow \mathbb{R}_+ \ &
ho &\mapsto f(
ho) \end{aligned}$

If $f(\rho)$ is large, the state ρ is *macroscopically quantum*.

 $f \dots$ measure for macroscopicity $f(\rho) \dots$ effective size of ρ .

■ Typical normalization: Fix resources, e.g., number of qubits *M*, mean photon number *N*, etc.

$$\max_{
ho} f(
ho) =$$
 system size

FORM OF THE STATE Two possibilities

 |ψ⟩ ∝ |ψ₁⟩ + |ψ₂⟩ Schrödinger cat state (characterizing Leggett's "macroscopically distinct")
 ρ general macroscopic quantum state

FORM OF THE STATE Two possibilities

 |ψ⟩ ∝ |ψ₁⟩ + |ψ₂⟩ Schrödinger cat state (characterizing Leggett's "macroscopically distinct")
 ρgeneral macroscopic quantum state

SCALING VS. ABSOLUTE NUMBER Experimental vs. theoretical needs. Scaling: Two measures are compatible if the identify the same class of macro-states. FORM OF THE STATE Two possibilities

- $|\psi\rangle \propto |\psi_1\rangle + |\psi_2\rangle$... Schrödinger cat state (characterizing Leggett's "macroscopically distinct")
- ρ ... general macroscopic quantum state

SCALING VS. ABSOLUTE NUMBER Experimental vs. theoretical needs. Scaling: Two measures are compatible if the identify the same class of macro-states.

PRELIMINARY STRUCTURE All measures argue with some kind of imposed structure: "Realistic" or "feasible" Hamiltonians, measurements, etc.

- Spins: Interaction with fields; two-body interaction; collective measurements. Local operator $H = \sum_{i} h^{(i)}$
- Photons: $\hat{x}, \hat{p}, \hat{n}$

THE RECENT LITERATURE...

- A. J. Leggett, Progress of Theoretical Physics Supplement 69, 80 (1980).
- W. Dür, C. Simon, and J. I. Cirac, Phys. Rev. Lett. 89, 210402 (2002).
- A. Shimizu and T. Miyadera, Phys. Rev. Lett. 89, 270403 (2002).
- G. Björk and P. G. L. Mana, J. Opt. B: Quantum Semiclass. Opt. 6, 429 (2004).
- A. Shimizu and T. Morimae, Phys. Rev. Lett. 95, 090401 (2005).
- J. I. Korsbakken, K. B. Whaley, J. Dubois, and J. I. Cirac, Phys. Rev. A 75, 042106 (2007).
- E. G. Cavalcanti and M. D. Reid, Phys. Rev. A 77, 062108 (2008).
- F. Marquardt, B. Abel, and J. von Delft, Phys. Rev. A 78, 012109 (2008).
- C.-W. Lee and H. Jeong, Phys. Rev. Lett. 106, 220401 (2011).
- F. Fröwis and W. Dür, New Journal of Physics 14, 093039 (2012).
- S. Nimmrichter and K. Hornberger, Phys. Rev. Lett. 110, 160403 (2013).
- P. Sekatski, N. Sangouard, and N. Gisin, Phys. Rev. A 89, 012116 (2014).
- A. Laghaout, J. S. Neergaard-Nielsen, and U. L. Andersen, arXiv:1405.5062 (2014).

THE RECENT LITERATURE...

- A. J. Leggett, Progress of Theoretical Physics Supplement 69, 80 (1980).
- W. Dür, C. Simon, and J. I. Cirac, Phys. Rev. Lett. 89, 210402 (2002).
- A. Shimizu and T. Miyadera, Phys. Rev. Lett. 89, 270403 (2002).
- G. Björk and P. G. L. Mana, J. Opt. B: Quantum Semiclass. Opt. 6, 429 (2004).
- A. Shimizu and T. Morimae, Phys. Rev. Lett. 95, 090401 (2005).
- J. I. Korsbakken, K. B. Whaley, J. Dubois, and J. I. Cirac, Phys. Rev. A 75, 042106 (2007).
- E. G. Cavalcanti and M. D. Reid, Phys. Rev. A 77, 062108 (2008).
- F. Marquardt, B. Abel, and J. von Delft, Phys. Rev. A 78, 012109 (2008).
- C.-W. Lee and H. Jeong, Phys. Rev. Lett. 106, 220401 (2011).
- F. Fröwis and W. Dür, New Journal of Physics 14, 093039 (2012).
- S. Nimmrichter and K. Hornberger, Phys. Rev. Lett. **110**, 160403 (2013).
- P. Sekatski, N. Sangouard, and N. Gisin, Phys. Rev. A 89, 012116 (2014).
- A. Laghaout, J. S. Neergaard-Nielsen, and U. L. Andersen, arXiv:1405.5062 (2014).

ightarrow Comparison of measures for spins and photons \dots

- Pure states only
- Some assumptions to "fix" some problems of the measures.
- Compare spins and photons:

Pure states only

Some assumptions to "fix" some problems of the measures.

Compare spins and photons:

Mapping of photonic state onto spin ensemble

PHYSICALLY A one-mode photonic state with $\langle \hat{n} \rangle = N$ is **fully** absorbed by the ground state of ensemble of *M* qubits.

MATHEMATICALLY

$$\ket{\psi_{ ext{phot}}} \otimes \ket{m{g}}^{\otimes m{M}} \mapsto m{e}^{-iHt} \ket{\psi_{ ext{phot}}} \otimes \ket{m{g}}^{\otimes m{M}} = \ket{m{0}} \otimes \ket{\phi_{ ext{spin}}}$$

with

$$H \propto a \otimes J_+ + a^{\dagger} \otimes J_-$$

(a spin excitation is created via the annihilation of a photon).

Pure states only

Some assumptions to "fix" some problems of the measures.

Compare spins and photons:

Mapping of photonic state onto spin ensemble

PHYSICALLY A one-mode photonic state with $\langle \hat{n} \rangle = N$ is **fully** absorbed by the ground state of ensemble of *M* qubits.

MATHEMATICALLY

$$\ket{\psi_{ ext{phot}}} \otimes \ket{m{g}}^{\otimes m{M}} \mapsto m{e}^{-im{H}t} \ket{\psi_{ ext{phot}}} \otimes \ket{m{g}}^{\otimes m{M}} = \ket{m{0}} \otimes \ket{\phi_{ ext{spin}}}$$

with

$$H \propto a \otimes J_+ + a^{\dagger} \otimes J_-$$

(a spin excitation is created via the annihilation of a photon). ASSUMPTION "Macroscopicity" and other properties are conserved via

$$M \gg N$$

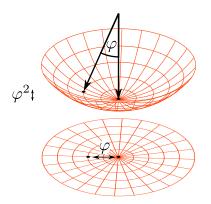
FLORIAN FRÖWIS (U. GENEVA)

Approximation for simpler treatment: $M \gg N$

... state $|\phi_{\text{spin}}\rangle$ lies in the low-energy sector of the Hilbert space. ALGEBRAICALLY $\langle J_z \rangle_{\phi} = -M/2 \left[1 - O\left(\frac{N}{M}\right)\right] \Rightarrow \frac{1}{2M} \left[J_-, J_+\right] \approx id$

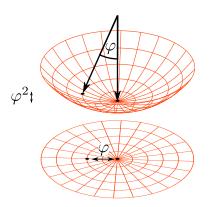
Approximation for simpler treatment: $M \gg N$

... state $|\phi_{\text{spin}}\rangle$ lies in the low-energy sector of the Hilbert space. ALGEBRAICALLY $\langle J_z \rangle_{\phi} = -M/2 \left[1 - O\left(\frac{N}{M}\right)\right] \Rightarrow \frac{1}{2M} \left[J_-, J_+\right] \approx id$ GEOMETRICALLY Approximate sphere by a plane



Approximation for simpler treatment: $M \gg N$

... state $|\phi_{\text{spin}}\rangle$ lies in the low-energy sector of the Hilbert space. ALGEBRAICALLY $\langle J_z \rangle_{\phi} = -M/2 \left[1 - O\left(\frac{N}{M}\right)\right] \Rightarrow \frac{1}{2M} \left[J_-, J_+\right] \approx id$ GEOMETRICALLY Approximate sphere by a plane PHYSICALLY Every spin is "hit" by at most one photon



By this approximation

A Fock state $|k\rangle$ is mapped to a Dicke state $|M, k\rangle$

 $|k
angle\otimes|M,0
angle\mapsto|0
angle\otimes|M,k
angle$

where $|\textbf{\textit{M}},\textbf{\textit{k}}
angle \propto \sum_{\text{permutations}} |\textbf{\textit{e}}
angle^{\otimes \textbf{\textit{k}}} \otimes |\textbf{\textit{g}}
angle^{\otimes \textbf{\textit{M}}-\textbf{\textit{k}}}.$

By this approximation

A Fock state $|k\rangle$ is mapped to a Dicke state $|M, k\rangle$

```
|k
angle\otimes|M,0
angle\mapsto|0
angle\otimes|M,k
angle
```

where $|M, k\rangle \propto \sum_{\text{permutations}} |e\rangle^{\otimes k} \otimes |g\rangle^{\otimes M-k}$.

Examples:

- Coherent state → Spin coherent state (product state)
- Squeezed state → Spin squeezed state

By this approximation

A Fock state $|k\rangle$ is mapped to a Dicke state $|M, k\rangle$

 $|k
angle\otimes|M,0
angle\mapsto|0
angle\otimes|M,k
angle$

where $|M, k\rangle \propto \sum_{\text{permutations}} |e\rangle^{\otimes k} \otimes |g\rangle^{\otimes M-k}$.

Examples:

- Coherent state → Spin coherent state (product state)
- Squeezed state → Spin squeezed state

Mapping of operators

$$a \otimes \mathit{id} \mapsto \mathit{Ua} \otimes \mathit{id} \mathit{U}^{\dagger} pprox \mathit{id} \otimes rac{1}{\sqrt{M}} J_{-}$$

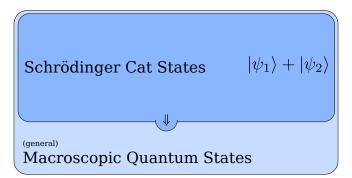
FLORIAN FRÖWIS (U. GENEVA)

f, g are measures for macroscopic quantum states. Then

- *f* and *g* are compatible: $\forall \psi : f(\psi) = O(N) \Leftrightarrow g(\psi) = O(N)$
- g includes f: $\forall \psi : f(\psi) = O(N) \Rightarrow g(\psi) = O(N)$

f, g are measures for macroscopic quantum states. Then

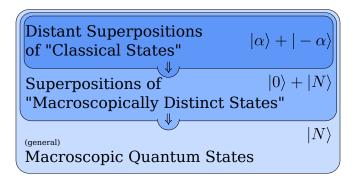
- *f* and *g* are compatible: $\forall \psi : f(\psi) = O(N) \Leftrightarrow g(\psi) = O(N)$
- g includes f: $\forall \psi : f(\psi) = O(N) \Rightarrow g(\psi) = O(N)$



FLORIAN FRÖWIS (U. GENEVA)

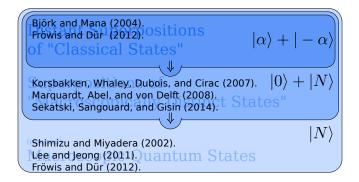
f, g are measures for macroscopic quantum states. Then

- *f* and *g* are compatible: $\forall \psi : f(\psi) = O(N) \Leftrightarrow g(\psi) = O(N)$
- g includes f: $\forall \psi : f(\psi) = O(N) \Rightarrow g(\psi) = O(N)$



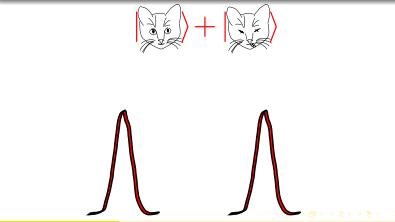
f, g are measures for macroscopic quantum states. Then

- *f* and *g* are compatible: $\forall \psi : f(\psi) = O(N) \Leftrightarrow g(\psi) = O(N)$
- g includes f: $\forall \psi : f(\psi) = O(N) \Rightarrow g(\psi) = O(N)$



Common feature of all these measures

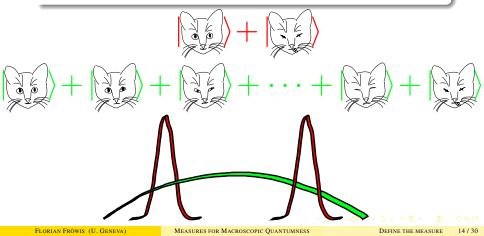
All **pure macroscopic quantum states** exhibit **large variance** with respect to "realistic" Hamiltonians or measurements.



Common feature of all these measures

All **pure macroscopic quantum states** exhibit **large variance** with respect to "realistic" Hamiltonians or measurements.

But why should we insist on two peaks???



PROPOSAL

Pure states

Look for the maximal variance with respect to "realistic" operators (e.g., local with respect to qubits, modes, etc.). Define

$$f(\psi) = \frac{1}{M} \max_{X} V_{\psi}(X)$$

SPINS X ... local operator, M... number of qubits PHOTONS X ... sum of quadratures, M... number of modes

Pure states

Look for the maximal variance with respect to "realistic" operators (e.g., local with respect to qubits, modes, etc.). Define

$$f(\psi) = rac{1}{M} \max_{X} V_{\psi}(X)$$

SPINS X ... local operator, M... number of qubits PHOTONS X ... sum of quadratures, M... number of modes

Mixed states

- *f* reduces to variance if $\rho = |\psi\rangle\langle\psi|$
- *f* is convex in ρ .

Pure states

Look for the maximal variance with respect to "realistic" operators (e.g., local with respect to qubits, modes, etc.). Define

$$f(\psi) = rac{1}{M} \max_{X} V_{\psi}(X)$$

SPINS *X* ... local operator, *M*... number of qubits **PHOTONS** *X* ... sum of quadratures, *M*... number of modes

Mixed states

- *f* reduces to variance if $\rho = |\psi\rangle\langle\psi|$
- *f* is convex in ρ .

Example: Quantum Fisher information \mathcal{F} (more later):

$$f(\rho) \equiv N_{\rm eff}(\rho) = \frac{1}{4M} \max_{X} \mathcal{F}_{\rho}(X)$$

2 WITNESSING MACROSCOPIC QUANTUMNESS

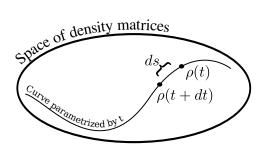
FF AND W. DÜR, NEW JOURNAL OF PHYSICS 14, 093039 (2012). Unpublished Results

What signatures do macroscopic quantum states show?

- Verifying fast time evolution
- Improved Heisenberg Uncertainty Relation
- Bound on Quantum Fisher information

QUANTUM FISHER INFORMATION

Consider a differentiable parametrization through the set of density operators



One has:

$$(ds)^2 = \frac{1}{2}\mathcal{F}(\rho,\rho')(dt)^2$$

 $\mathcal{F}(\rho, \rho')$... Quantum Fisher information. Unitary transformation $\rho' = -i[H, \rho] \Rightarrow \mathcal{F}(\rho, \rho') \equiv \mathcal{F}_{\rho}(H)$

 ${\mathcal F}_
ho({\mathcal H}) \leq 4 V_
ho({\mathcal H}); \qquad {\mathcal F}_\psi({\mathcal H}) = 4 V_\psi({\mathcal H}); \qquad { ext{convex}}$

FLORIAN FRÖWIS (U. GENEVA)

LARGE QUANTUM FISHER INFORMATION IMPLIES MACROSCOPIC QUANTUM EFFECT

Bottom Line

Large changes in $\rho(t)$ by altering *t* implies large Quantum Fisher information.

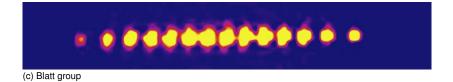
Bottom Line

Large changes in $\rho(t)$ by altering *t* implies large Quantum Fisher information.

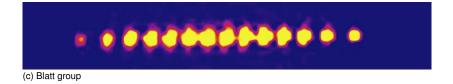
Examles: *M* qubits. If Fisher information large $[\mathcal{F} = O(M^2)]$:

Fast evolution possible that is not explainable by

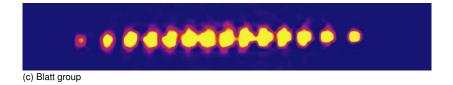
- separable states ("classical effect")
- short-range entangled states ("microscopic quantum effect")



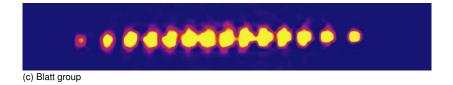
• Prepare a GHZ state $\rho = |GHZ\rangle\langle GHZ|$ with *M* ions.



- Prepare a GHZ state $\rho = |GHZ\rangle\langle GHZ|$ with *M* ions.
- Manipulate ρ locally: $\rho_{\phi} = U_{\phi}^{\otimes M} \rho U_{\phi}^{\dagger \otimes M}$ with $U_{\phi} = \exp[i\pi/4(\cos\phi\sigma_x + \sin\phi\sigma_y)].$

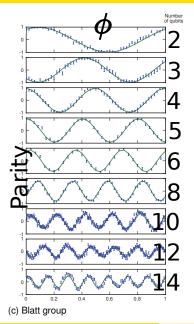


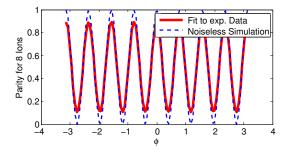
- Prepare a GHZ state $\rho = |GHZ\rangle\langle GHZ|$ with *M* ions.
- Manipulate ρ locally: $\rho_{\phi} = U_{\phi}^{\otimes M} \rho U_{\phi}^{\dagger \otimes M}$ with $U_{\phi} = \exp[i\pi/4(\cos\phi\sigma_x + \sin\phi\sigma_y)].$
- Measure the parity with $\sigma_z^{\otimes M}$: Is number of ions in excited state even or odd?



- Prepare a GHZ state $\rho = |GHZ\rangle\langle GHZ|$ with *M* ions.
- Manipulate ρ locally: $\rho_{\phi} = U_{\phi}^{\otimes M} \rho U_{\phi}^{\dagger \otimes M}$ with $U_{\phi} = \exp[i\pi/4(\cos\phi\sigma_x + \sin\phi\sigma_y)].$
- Measure the parity with $\sigma_z^{\otimes M}$: Is number of ions in excited state even or odd?
- Repeat the experiment with different ϕ and produce statistics.

FISHER INFORMATION FROM EXPERIMENTAL DATA

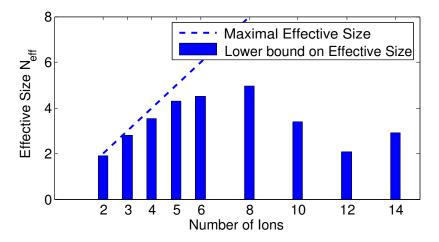




From data, bound Quantum Fisher information

RESULTS: EFFECTIVE SIZE $N_{\rm eff}$

Effective size $N_{\rm eff} = \mathcal{F}/(4M)$.



Heisenberg uncertainty relation

Given two operators *X*, *Y* and define Z = i[X, Y]. Then, $\forall \rho$

$$V_
ho(X)V_
ho(Y) \geq rac{1}{4} \langle Z
angle_
ho^2$$

Observations:

- Variance V is concave under mixing states.
- $\langle Z \rangle^2$ is **convex** under mixing.
- \Rightarrow Bound generally less tight for mixed states.

Heisenberg uncertainty relation

Given two operators X, Y and define Z = i[X, Y]. Then, $\forall \rho$

$$V_
ho(X)V_
ho(Y) \geq rac{1}{4} \langle Z
angle_
ho^2$$

Observations:

- Variance V is concave under mixing states.
- $\langle Z \rangle^2$ is **convex** under mixing.
- \Rightarrow Bound generally less tight for mixed states.

Improvement

Replace one variance by the Quantum Fisher information

$$rac{1}{4} \mathcal{F}_
ho(X) V_
ho(Y) \geq rac{1}{4} \langle Z
angle_
ho^2$$

IDEA OF THE PROOF (TO BE PUBLISHED)

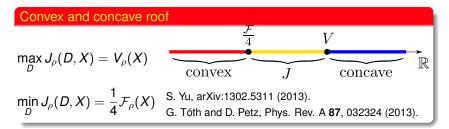
Consider following class of functions. For every decomposition $D = \{p_k, |\psi_k\rangle\}_k$ of $\rho = \sum_k p_k |\psi_k\rangle\langle\psi_k|$, we define

$$J_{
ho}(D,X) = \sum_{k}
ho_k V_{\psi_k}(X).$$

IDEA OF THE PROOF (TO BE PUBLISHED)

Consider following class of functions. For every decomposition $D = \{p_k, |\psi_k\rangle\}_k$ of $\rho = \sum_k p_k |\psi_k\rangle\langle\psi_k|$, we define

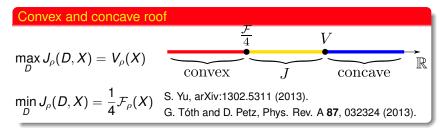
$$J_{
ho}(D,X)=\sum_{k}
ho_{k}V_{\psi_{k}}(X).$$



IDEA OF THE PROOF (TO BE PUBLISHED)

Consider following class of functions. For every decomposition $D = \{p_k, |\psi_k\rangle\}_k$ of $\rho = \sum_k p_k |\psi_k\rangle\langle\psi_k|$, we define

$$J_{\rho}(D,X)=\sum_{k}
ho_{k}V_{\psi_{k}}(X).$$



■ Easy to show $\forall D$:

$$J_
ho(D,X)J_
ho(D,Y) \geq rac{1}{4}\langle Z
angle_
ho^2$$

Choose *D* such that J_ρ(*D*, *X*) = ¼*F*_ρ(*X*).
For the same *D* : V_ρ(*Y*) ≥ J_ρ(*D*, *Y*).

WITNESS FOR QUANTUM FISHER INFORMATION

From

$$\mathcal{F}_{
ho}(X)V_{
ho}(Y)\geq \langle Z
angle_{
ho}^2$$

$$N_{\rm eff}(
ho) = rac{1}{4M} \max_X \mathcal{F}_{
ho}(X)$$

For (spin) squeezed states along *x*:

Spins:

$$N_{\rm eff} \geq rac{\langle J_z
angle^2}{4MV(J_x)}$$

Photons:

$$N_{\rm eff} \geq rac{1}{4V(\hat{x})}$$

Compare to spin squeezing inequalities, e.g., by Mølmer and Sørensen.

STABILITY ISSUES OF MACROSCOPIC QUANTUM STATES

FF, M. VAN DEN NEST, AND W. DÜR, NEW J. PHYS. **15**, 113011 (2013). *Unpublished Results*

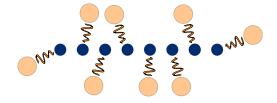
Are macroscopic quantum states stable?

- Scenario: Spins with local depolarization noise
- Schrödinger cat states are unstable
- Restrictions for the "witness for macroscopicity"

SCENARIO: SPINS WITH LOCAL DEPOLARIZATION NOISE

NOISE MODEL Each of the *M* qubits **locally depolarized**. On qubit *i*:

$$\mathcal{E}^{(i)}(
ho) = oldsymbol{p}
ho + (1 - oldsymbol{p})\mathrm{Tr}_i
ho \otimes rac{\mathbbm{1}^{(i)}}{2}$$



¹ FF, M. van den Nest, and W. Dür, New J. Phys. **15**, 113011 (2013).

FLORIAN FRÖWIS (U. GENEVA)

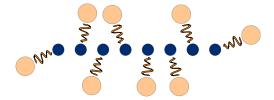
MEASURES FOR MACROSCOPIC QUANTUMNESS

STABILITY 26/30

SCENARIO: SPINS WITH LOCAL DEPOLARIZATION NOISE

NOISE MODEL Each of the *M* qubits locally depolarized. On qubit *i*:

$$\mathcal{E}^{(i)}(\rho) = p
ho + (1-p)\mathrm{Tr}_i
ho\otimes rac{\mathbb{1}^{(i)}}{2}$$



CRITERION¹ A state is called $|\psi\rangle \in \mathbb{C}^{2\otimes M}$ uncertifiable if $\exists |\psi^{\perp}\rangle \perp |\psi\rangle$:

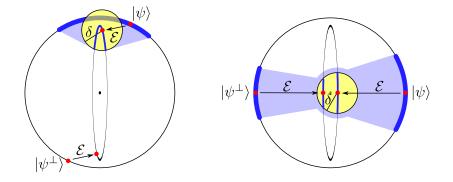
$$\frac{1}{2}\|\mathcal{E}(\psi)-\mathcal{E}(\psi^{\perp})\|_{1}=\alpha^{M}$$

with $p < 1, \alpha < 1$; $\|\cdot\|_1$... trace norm

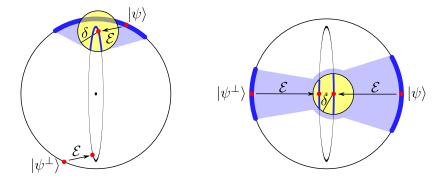
¹ FF, M. van den Nest, and W. Dür, New J. Phys. **15**, 113011 (2013).

FLORIAN FRÖWIS (U. GENEVA)

SCHRÖDINGER CAT STATES ARE UNCERTIFIABLE



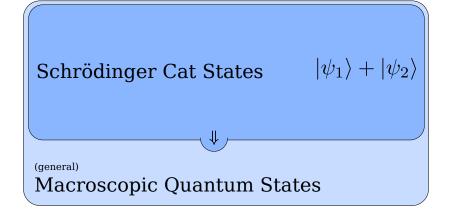
SCHRÖDINGER CAT STATES ARE UNCERTIFIABLE



- Suppose $|\psi\rangle \propto |\psi_1\rangle + |\psi_2\rangle$ is Schrödinger cat state with $N_{\rm eff} = O(M)$.
- $|\psi\rangle$ is not certifiable w.r.t. $|\psi_1\rangle |\psi_2\rangle$ (phase is not detectable)
- \blacksquare \Rightarrow indistinguishable from mixture

$$|\psi_1\rangle\langle\psi_1|+|\psi_2\rangle\langle\psi_2|$$

SCHRÖDINGER CAT STATES ARE UNCERTIFIABLE



FLORIAN FRÖWIS (U. GENEVA)

MEASURES FOR MACROSCOPIC QUANTUMNESS

MEASUREMENT PRECISION IMPORTANT FOR "WITNESS FOR MACROSCOPICITY"

With depolarization noise $\langle X \rangle_{\mathcal{E}(\rho)} = \langle \mathcal{E}(X) \rangle_{\rho}$

MEASUREMENT PRECISION IMPORTANT FOR "WITNESS FOR MACROSCOPICITY"

With depolarization noise $\langle X \rangle_{\mathcal{E}(\rho)} = \langle \mathcal{E}(X) \rangle_{\rho}$

$$\langle J_z \rangle^2_{\mathcal{E}(\psi)} = p^2 \langle J_z \rangle^2_{\psi} \le p^2 \frac{M^2}{4}$$

$$V_{\mathcal{E}(\psi)}(J_x) = rac{M}{4}(1-p^2) + p^2 V_{\psi}(J_x) \geq rac{M}{4}(1-p^2)$$

MEASUREMENT PRECISION IMPORTANT FOR "WITNESS FOR MACROSCOPICITY"

With depolarization noise $\langle X \rangle_{\mathcal{E}(\rho)} = \langle \mathcal{E}(X) \rangle_{\rho}$

$$\langle J_z \rangle^2_{\mathcal{E}(\psi)} = p^2 \langle J_z \rangle^2_{\psi} \le p^2 \frac{M^2}{4}$$

$$V_{\mathcal{E}(\psi)}(J_x) = rac{M}{4}(1-p^2) + p^2 V_\psi(J_x) \geq rac{M}{4}(1-p^2)$$

$$N_{ ext{eff}} \geq rac{\langle J_z
angle^2_{\mathcal{E}(\psi)}}{MV_{\mathcal{E}(\psi)}(J_x)} = rac{p^2 \langle J_z
angle^2_{\psi}}{M\left[rac{M}{4}(1-p^2)+p^2 V_{\psi}(J_x)
ight]}$$

"Ultimate limit" for this witness

Last expression is at most $p^2/(1-p^2)$. For p=0.99, one is limited to witness only $N_{\rm eff} \lesssim 50$.

FLORIAN FRÖWIS (U. GENEVA)

MANY THANKS TO ...

Coauthors:

Wolfgang Dür Maarten van den Nest Nicolas Sangouard Nicolas Gisin

Plus ongoing collaborations: Pavel Sekatski, Michael Skotiniotis, Enky Oudot

MINIMAL CONSENSUS Pure state is macroscopically quantum ⇔ Large variance with respect to "realistic operator". Mixed state: Take some convex function (e.g., Quantum Fisher information).

WITNESS Several ways to bound **effective size** from below: Rapid changes in time (or similar); witness with "easy" measurements.

STABILITY Schrödinger cat states $|\psi_1\rangle + |\psi_2\rangle$ are **unstable**; also difficult for general macroscopic quantum states.