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“Exploring the limits ...”



SCHRÖDINGER’S CAT

Quote from his 1935 paper

“There is a difference between a shaky or out-of-focus photograph and
a snapshot of clouds and fog-banks”
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MACROSCOPIC VS. ACCUMULATED MICROSCOPIC QUANTUM
EFFECT

Leggett (1980) noticed that there is a difference between a
accumulated microscopic quantum effect

and a “true”
macroscopic quantum effect.
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OVERVIEW

DEFINITION What is a macroscopic quantum state?

MEASURING How to verify macroscopic quantum states?

STABILITY Are macroscopic quantum states stable?
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1 IDENTIFYING MACROSCOPIC QUANTUM STATES
FF AND W. DÜR, NEW JOURNAL OF PHYSICS 14, 093039 (2012).
FF, N. SANGOUARD, AND N. GISIN, ARXIV:1405.0051 (2014).

What is a measure for macroscopic quantum states?

Properties of measures
Comparison of different measures
“Canonical form”
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GENERAL FRAMEWORK

Necessary condition: ρ is quantum state of large system:
Many spins, many photons, large masses, . . .

Mathematical structure and terminology

f : D(H)→ R+

ρ 7→ f (ρ)

If f (ρ) is large, the state ρ is macroscopically quantum.

f . . . measure for macroscopicity
f (ρ) . . . effective size of ρ.

Typical normalization: Fix resources, e.g., number of qubits M,
mean photon number N, etc.

max
ρ

f (ρ) = system size
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FURTHER REMARKS

FORM OF THE STATE Two possibilities
|ψ〉 ∝ |ψ1〉+ |ψ2〉 . . . Schrödinger cat state
(characterizing Leggett’s “macroscopically distinct”)
ρ . . . general macroscopic quantum state

SCALING VS. ABSOLUTE NUMBER Experimental vs. theoretical needs.
Scaling: Two measures are compatible if the identify the
same class of macro-states.

PRELIMINARY STRUCTURE All measures argue with some kind of
imposed structure: “Realistic” or “feasible” Hamiltonians,
measurements, etc.

Spins: Interaction with fields; two-body interaction;
collective measurements. Local operator H =

∑
i h(i)

Photons: x̂ , p̂, n̂
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PRELIMINARIES

Pure states only
Some assumptions to “fix” some problems of the measures.
Compare spins and photons:

Mapping of photonic state onto spin ensemble

PHYSICALLY A one-mode photonic state with 〈n̂〉 = N is fully
absorbed by the ground state of ensemble of M qubits.

MATHEMATICALLY

|ψphot〉 ⊗ |g〉⊗M 7→ e−iHt |ψphot〉 ⊗ |g〉⊗M = |0〉 ⊗ |φspin〉

with
H ∝ a⊗ J+ + a† ⊗ J−

(a spin excitation is created via the annihilation of a photon).
ASSUMPTION “Macroscopicity” and other properties are conserved

via
M � N
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APPROXIMATION FOR SIMPLER TREATMENT: M � N

. . . state |φspin〉 lies in the low-energy sector of the Hilbert space.
ALGEBRAICALLY 〈Jz〉φ = −M/2

[
1−O

( N
M

)]
⇒ 1

2M [J−, J+] ≈ id

GEOMETRICALLY Approximate sphere by a plane
PHYSICALLY Every spin is “hit” by at most one photon
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RESULT FOR THE MAPPING

By this approximation

A Fock state |k〉 is mapped to a Dicke state |M, k〉

|k〉 ⊗ |M,0〉 7→ |0〉 ⊗ |M, k〉

where |M, k〉 ∝
∑

permutations |e〉
⊗k ⊗ |g〉⊗M−k .

Examples:
Coherent state 7→ Spin coherent state (product state)
Squeezed state 7→ Spin squeezed state

Mapping of operators

a⊗ id 7→ Ua⊗ idU† ≈ id ⊗ 1√
M

J−
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RESULT FOR THE COMPARISON OF MEASURES

f ,g are measures for macroscopic quantum states. Then
f and g are compatible: ∀ψ : f (ψ) = O(N)⇔ g(ψ) = O(N)

g includes f : ∀ψ : f (ψ) = O(N)⇒ g(ψ) = O(N)

(general)

Macroscopic Quantum States 

Schrödinger Cat States
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AXIOMATIC APPROACH

Common feature of all these measures
All pure macroscopic quantum states exhibit large variance with
respect to “realistic” Hamiltonians or measurements.

But why should we insist on two peaks???
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PROPOSAL

Pure states
Look for the maximal variance with respect to “realistic” operators
(e.g., local with respect to qubits, modes, etc.). Define

f (ψ) =
1
M

max
X

Vψ(X )

SPINS X . . . local operator, M. . . number of qubits
PHOTONS X . . . sum of quadratures, M. . . number of modes

Mixed states

f reduces to variance if ρ = |ψ〉〈ψ|
f is convex in ρ.

Example: Quantum Fisher information F (more later):

f (ρ) ≡ Neff(ρ) =
1

4M
max

X
Fρ(X )
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2 WITNESSING MACROSCOPIC QUANTUMNESS
FF AND W. DÜR, NEW JOURNAL OF PHYSICS 14, 093039 (2012).
Unpublished Results

What signatures do macroscopic quantum states show?

Verifying fast time evolution
Improved Heisenberg Uncertainty Relation
Bound on Quantum Fisher information
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QUANTUM FISHER INFORMATION

Consider a differentiable parametrization through the set of density
operators

{

                                                       
       

     

    
   

   
   

 Space
 of density matrices         

Curve parametrized by t

One has:
(ds)2 =

1
2
F(ρ, ρ′)(dt)2

F(ρ, ρ′). . . Quantum Fisher information.
Unitary transformation ρ′ = −i[H, ρ]⇒ F(ρ, ρ′) ≡ Fρ(H)

Fρ(H) ≤ 4Vρ(H); Fψ(H) = 4Vψ(H); convex

FLORIAN FRÖWIS (U. GENEVA) MEASURES FOR MACROSCOPIC QUANTUMNESS WITNESSING MACRO-STATES 17 / 30



LARGE QUANTUM FISHER INFORMATION IMPLIES
MACROSCOPIC QUANTUM EFFECT

Bottom Line

Large changes in ρ(t) by altering t implies large Quantum Fisher infor-
mation.

Examles: M qubits.
If Fisher information large [F = O(M2)]:

Fast evolution possible that is not explainable by

separable states (“classical effect”)
short-range entangled states (“microscopic quantum effect”)
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EXPERIMENTS WITH IONS

(c) Blatt group

Experimental setup:
Prepare a GHZ state ρ = |GHZ〉〈GHZ| with M ions.

Manipulate ρ locally: ρφ = U⊗M
φ ρU†⊗M

φ with
Uφ = exp [iπ/4 (cosφσx + sinφσy )].

Measure the parity with σ⊗M
z : Is number of ions in excited state

even or odd?
Repeat the experiment with different φ and produce statistics.
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FISHER INFORMATION FROM EXPERIMENTAL DATA

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

0 0.2 0.4 0.6 0.8 1

Number
of qubits

2
3
4
5
6
8

10
12
14

Pa
ri
ty

(c) Blatt group

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

φ
P

ar
ity

fo
r8

Io
ns

Fit to exp. Data
Noiseless Simulation

From data, bound Quantum Fisher
information

FLORIAN FRÖWIS (U. GENEVA) MEASURES FOR MACROSCOPIC QUANTUMNESS WITNESSING MACRO-STATES 20 / 30



RESULTS: EFFECTIVE SIZE Neff

Effective size Neff = F/(4M).
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LITTLE DETOUR

Heisenberg uncertainty relation

Given two operators X ,Y and define Z = i[X ,Y ]. Then, ∀ρ

Vρ(X )Vρ(Y ) ≥ 1
4
〈Z 〉2ρ

Observations:
Variance V is concave under mixing states.
〈Z 〉2 is convex under mixing.

⇒ Bound generally less tight for mixed states.

Improvement

Replace one variance by the Quantum Fisher information

1
4
Fρ(X )Vρ(Y ) ≥ 1

4
〈Z 〉2ρ
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Variance V is concave under mixing states.
〈Z 〉2 is convex under mixing.

⇒ Bound generally less tight for mixed states.

Improvement

Replace one variance by the Quantum Fisher information

1
4
Fρ(X )Vρ(Y ) ≥ 1

4
〈Z 〉2ρ
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IDEA OF THE PROOF (TO BE PUBLISHED)

Consider following class of functions. For every decomposition
D = {pk , |ψk 〉}k of ρ =

∑
k pk |ψk 〉〈ψk |, we define

Jρ(D,X ) =
∑

k

pk Vψk (X ).

Convex and concave roof

max
D

Jρ(D,X ) = Vρ(X )

min
D

Jρ(D,X ) =
1
4
Fρ(X ) S. Yu, arXiv:1302.5311 (2013).

G. Tóth and D. Petz, Phys. Rev. A 87, 032324 (2013).

Easy to show ∀D :

Jρ(D,X )Jρ(D,Y ) ≥ 1
4
〈Z 〉2ρ

Choose D such that Jρ(D,X ) = 1
4Fρ(X ).

For the same D : Vρ(Y ) ≥ Jρ(D,Y ).
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WITNESS FOR QUANTUM FISHER INFORMATION

From
Fρ(X )Vρ(Y ) ≥ 〈Z 〉2ρ

Neff(ρ) =
1

4M
max

X
Fρ(X )

For (spin) squeezed states along x :

Spins:

Neff ≥
〈Jz〉2

4MV (Jx)

Photons:
Neff ≥

1
4V (x̂)

Compare to spin squeezing inequalities, e.g., by Mølmer and
Sørensen.
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3 STABILITY ISSUES OF MACROSCOPIC QUANTUM STATES
FF, M. VAN DEN NEST, AND W. DÜR, NEW J. PHYS. 15, 113011 (2013).
Unpublished Results

Are macroscopic quantum states stable?

Scenario: Spins with local depolarization noise
Schrödinger cat states are unstable
Restrictions for the “witness for macroscopicity”
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SCENARIO: SPINS WITH LOCAL DEPOLARIZATION NOISE

NOISE MODEL Each of the M qubits locally depolarized. On qubit i :

E (i)(ρ) = pρ+ (1− p)Triρ⊗
1(i)

2

CRITERION1 A state is called |ψ〉 ∈ C2⊗M uncertifiable if
∃
∣∣ψ⊥〉⊥ |ψ〉 :

1
2
‖E(ψ)− E(ψ⊥)‖1 = αM

with p < 1, α < 1; ‖·‖1 . . . trace norm

1 FF, M. van den Nest, and W. Dür, New J. Phys. 15, 113011 (2013).
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SCHRÖDINGER CAT STATES ARE UNCERTIFIABLE

Suppose |ψ〉 ∝ |ψ1〉+ |ψ2〉 is Schrödinger cat state with
Neff = O(M).
|ψ〉 is not certifiable w.r.t. |ψ1〉 − |ψ2〉 (phase is not detectable)
⇒ indistinguishable from mixture

|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|
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MEASUREMENT PRECISION IMPORTANT FOR “WITNESS FOR
MACROSCOPICITY”

With depolarization noise 〈X 〉E(ρ) = 〈E(X )〉ρ

〈Jz〉2E(ψ) = p2〈Jz〉2ψ ≤ p2 M2

4

VE(ψ)(Jx) =
M
4
(1− p2) + p2Vψ(Jx) ≥

M
4
(1− p2)

Neff ≥
〈Jz〉2E(ψ)

MVE(ψ)(Jx)
=

p2〈Jz〉2ψ
M
[M

4 (1− p2) + p2Vψ(Jx)
]

“Ultimate limit” for this witness

Last expression is at most p2/(1− p2). For p = 0.99, one is limited to
witness only Neff . 50.
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TAKE-HOME MESSAGES

MINIMAL CONSENSUS Pure state is macroscopically quantum⇔
Large variance with respect to “realistic
operator”. Mixed state: Take some convex
function (e.g., Quantum Fisher information).

WITNESS Several ways to bound effective size from
below: Rapid changes in time (or similar);
witness with “easy” measurements.

STABILITY Schrödinger cat states |ψ1〉+ |ψ2〉 are
unstable; also difficult for general macroscopic
quantum states.

FLORIAN FRÖWIS (U. GENEVA) MEASURES FOR MACROSCOPIC QUANTUMNESS CONCLUSION 30 / 30


	Identifying Macroscopic Quantum states
	Properties of measures
	Comparison of different measures
	``Canonical form''

	Witnessing macroscopic quantumness
	Verifying fast time evolution
	Improved Heisenberg Uncertainty Relation
	Bound on Quantum Fisher information

	Stability issues of Macroscopic Quantum States
	Scenario: Spins with local depolarization noise
	Schrödinger cat states are unstable
	Restrictions for the ``witness for macroscopicity''

	Conclusion

