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The squeezed limit of the three-point function of cosmological perturbations is a powerful dis-
criminant of different models of the early Universe. We present a conceptually simple and complete
framework to relate any primordial bispectrum in this limit to late time observables, such as the
CMB temperature bispectrum and the scale-dependent halo bias. We employ a series of convenient
coordinate transformations to capture the leading non-linear effects of cosmological perturbation
theory on these observables. This makes crucial use of Fermi Normal Coordinates and their con-
formal generalization, which we introduce here and discuss in detail. As an example, we apply our
formalism to standard slow-roll single-field inflation. We show explicitly that Maldacena’s results
for the squeezed limits of the scalar bispectrum [proportional to (ns−1) in comoving gauge] and the
tensor-scalar-scalar bispectrum lead to no deviations from a Gaussian universe, except for projection
effects. In particular, the primordial contributions to the squeezed CMB bispectrum and scale de-
pendent halo bias vanish, and there are no primordial “fossil” correlations between long-wavelength
tensor perturbations and small-scale perturbations. The contributions to observed correlations are
then only due to projection effects such as gravitational lensing and redshift perturbations.

I. INTRODUCTION

In this paper we present a simple and complete frame-
work to derive the late-time physical observables pro-
duced by the squeezed limit of primordial three-point
functions, in particular those produced during inflation.
These observables include the squeezed limit of the CMB
bispectrum and the scale-dependent bias for large-scale
structure tracers which crucially depends on the bispec-
trum in the squeezed limit [1–3]. The main obstacle one
encounters is the fact that, in order to calculate the bis-
pectrum consistently, one has to work to second order in
perturbation theory throughout. We show how this ob-
stacle is overcome when one is interested in the squeezed
limit. We take advantage of the fact that different sets
of coordinates are convenient in different cosmological
epochs and there is a careful choice that makes the com-
putation easy and transparent. In the remainder of the
introduction, we present a convenient way to choose co-
ordinates by discussing the different steps that are sum-
marized in Fig. 1.

A first step consists in computing the primordial corre-
lators generated during the phase of primordial inflation.
For this purpose, coordinates are used that are comoving
with respect to some unperturbed universe (see e.g. [4]).
A second step consists in describing the local late-time
physical processes, such as for example the decoupling
of photons during recombination or the formation of a
dark matter halo, that lead to the generation of some
light signal that eventually will reach the Earth. Since
these processes take place in regions that are smaller in
size than the curvature of the background metric (horizon
scale H−1), they are best described in Fermi Normal Co-
ordinates (FNC [5]): this is the unique frame (up to three
Euler angles) constructed along a timelike geodesic pass-

ing through a point P in which the metric is Minkowski
with corrections going as the spatial distance rF from
the central geodesic squared. In an unperturbed FRW
Universe, the corrections thus scale as (HrF )2, while in
the presence of a metric perturbation hµν the corrections
involve second derivatives of hµν (in particular, a con-
stant or pure gradient metric perturbation is removed on
all scales). The last step consists in relating the signals
from the point of emission, for example the last scatter-
ing surface, or the position of a halo, to the observables
measured on Earth, where scientists most naturally use
FNC centered on the Earth’s world line.

In general, calculating the evolution of the bispectrum
of perturbations in any coordinate frame including modes
outside the horizon requires a full second-order relativis-
tic calculation in cosmological perturbation theory, in-
cluding gravity, baryon physics, radiation transfer, etc.
This is in general a very complicated problem. How-
ever, a drastic simplification takes place when we limit
ourselves to a particular configuration of the bispectrum
in which two of the momenta, say k1 and k2 are much
larger than the third, k3. This is often referred to as the
squeezed limit with k3 ≡ kL being the long mode and
k1 ∼ k2 ∼ kS being the short modes.

Then, as described above, we can make use of the fact
that in a kL/kS � 1 expansion, the leading and next-to-
leading order gravitational effects of the long-wavelength
perturbation kL on the short modes can be removed by
transforming to the local FNC frame, as was empha-
sized in [7–10]. The first non-trivial effect comes from
the second spatial and time derivatives of the perturba-
tion, which are suppressed by O(k2

L/k
2
S) (see Sec. III for

a more precise statement). We will ignore terms of this
order in this paper, as they correspond to actual physi-
cal interactions, which will need to be treated in detail.
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Generation
comoving coordinates

kS < aH
−−−−−→
Eq. (12)

Evolution
FNC

τem
−−−−−→
Eq. (38)

Emission
FNC(emitter)

τobs
−−−−−−−−−−−→
cosmic rulers [6]

Observation
FNC(observer)

FIG. 1: Sequence of coordinates employed in the computation of observables predicted by a primordial bispectrum in the
squeezed limit. The arrows represent the change from one set of coordinates to the next, indicating when this transformation
is most conveniently performed and with a reference to the relevant equations. τem and τobs denote the conformal times at
which the observed photons were emitted and observed, respectively.

However, up to this order, in the local FNC frame we can
simply use linear theory. The non-Gaussian correlation
will then be captured by averaging over an ensemble of
FNC, each constructed to remove a different long mode.

In going from comoving coordinates to FNC, one sub-
tlety arises from the fact that FNC are affected not only
by perturbations but also by the expansion of the Uni-
verse. Because of this, no matter when the change of co-
ordinates is performed, when using FNC we cannot avoid
a period when the evolution at second order in perturba-
tions becomes relevant. To see this, consider an expand-
ing universe with a single long-wavelength perturbation,
in addition to short-wavelength modes as in Fig. 2. The
metric in standard FNC takes a simple flat space form
only on scales smaller than the Hubble scale H−1 or the
physical wavelength of the long mode a/kL, whichever
is smaller. Therefore for the FNC metric to be valid in
a region larger than the short modes, which is what we
want to describe, we need kS � aH (kS � kL being
always true by assumption). But as soon as the short
modes re-enter the horizon, kS & aH, they start evolv-
ing, and acquire a non-trivial transfer function. In order
to see that the evolution needs to be followed at non-
linear order, consider our result for a general squeezed
bispectrum Eq. (9). This expression contains terms in-
volving the derivatives with respect to scale and time of
the short mode power spectrum, which in general be-
come non-trivial when kS & aH and the short modes
start evolving with time. It is clear that these terms can-
not be accounted for by just multiplying each of the per-
turbations with the respective transfer function as linear
perturbation theory would suggest.

A nice way out of this complication is to use conformal
Fermi Normal Coordinates (FNC), in which the metric
is locally in the FLRW form, i.e. a homogeneous isotropic
expanding Universe, rather than in the Minkowski form.
These coordinates are valid up to a scale k−1

L , where kL
denotes the wavenumber of the long-wavelength pertur-
bation considered. At late times, the small-wavelength
modes are well inside the horizon and have in general
been subject to non-linear evolution. Then, transform-
ing from the FNC frame to the usual FNC frame at a
given spacetime point simply corresponds to a rescaling
of the spatial coordinates.

The final step is to relate quantities defined in the local
FNC frame (e.g. temperature of the gas, or halo mass) to
the photons actually measured on Earth. This involves
the photon propagation (“projection”) effects, such as
lensing and redshift-space distortions [6, 11–15]. Here,

we will adopt the “standard ruler” approach [6, 16] since
it conveniently encompasses all projection effects for var-
ious observables. Specifically, the derivation in Schmidt
and Jeong [6] assumes that a ruler, such as a ξ(r) = const
contour, corresponds to a fixed physical spatial scale on
a constant-proper-time hypersurface for a comoving ob-
server, equivalent to a fixed spatial scale in FNC at emis-
sion.

Finally, at leading order, any physical (and necessarily
non-gravitational) correlations between long-wavelength
modes and small scale modes imprinted at early times
and present in FNC then simply add to these projection
effects. The framework discussed above, which we sum-
marize in Fig. 1, thus connects the bispectrum calculated
in any convenient gauge during inflation with late-time
observables such as the CMB bispectrum or the large-
scale clustering of tracers. It can be applied to any model,
and we will give some examples for single clock infla-
tion and the “fossil” scenarios studied in [17–20]. We
should mention that the importance of FNC in applica-
tions to the calculation of inflationary perturbations has
been recognized and crucially used previously in the lit-
erature, e.g. in deriving various consistency relations [10],
in proving that ζ is constant at large distances at all loop
orders [9] and in deriving the subleading corrections in
kl/ks to Maldacena’s consistency condition [8]. The issue
of gauge artifacts in the squeezed limit of the bispectrum
was also discussed in [21].

The outline of the paper is as follows: in Sec. II we de-
rive some useful formulae to transform correlators from
one set of coordinates to another. In Sec. III we in-
troduce FNC, and show how the squeezed-limit three-
point correlations calculated in the standard way trans-
form to this frame. In Sec. IV we derive how correlations
in FNC translate to observables, illustrating that, apart
from projection effects such as lensing, the squeezed-limit
three-point function in conformal Fermi coordinates is
in fact the observed squeezed limit. In other words, if
squeezed-limit correlations vanish in FNC, then the ob-
served squeezed limit is only due to projection effects. We
conclude in Sec. V and leave some technical details to the
appendices. App. A and App. B derive the transforma-
tion of the two and three point function in the squeezed
limit, respectively, as one moves from one set of coordi-
nates to another. In App. C we review the derivation of
FNC and discuss their uniqueness in App. D.
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II. TRANSFORMATION OF SMALL-SCALE
CORRELATIONS AND THE SQUEEZED

BISPECTRUM

In this section we present some useful formulae to
transform the two-point correlation function, Eq. (4),
and three-point function and bispectrum in the squeezed
limit, Eq. (9), from any one set of coordinates to another.
The details of the derivation are left to appendix App. A
and App. B.

Consider a scalar field ρ(x), where x = (τ,x) denotes
the spacetime position. We work in comoving coordinates
throughout, so that x0 = τ is the conformal time. Under
a general coordinate transformation x→ x′(x), the field
transforms as

ρ′(x′) = ρ(x(x′)) . (1)

Consider a patch on a τ ′ = const surface centered around
the position x′0. We would like to derive the correlation
ξ′(r′, τ ′) within that patch (defined with respect to the
mean density ρ′(τ ′) over the patch) in terms of the two-
point correlation function ξ(r, τ) of ρ in the unprimed
coordinate system. Throughout the paper, we are consid-
ering the case where the coordinate transformation varies
slowly over the spatial patch, that is where we can ex-
pand x in terms of x′ as

xi(x′) = xi0 +Aij

(
x′j − x′j0

)
τ(x′) = τ0 + Tj

(
x′j − x′j0

)
, (2)

where x′ = (τ ′,x′), and

x0 = x(x′0, τ
′)

τ0 = τ(x′0, τ
′) = τ ′ + ∆τ

Aij =
∂xi(x′0, τ

′)

∂x′j
= δij − aij . (3)

Note that aij and ∆τ are functions of x′0 and τ ′. Here we

have separated Aij into a zeroth and first order piece (the

sign is chosen so that aij maps xj to x′i at linear order).
The expansion to linear order in x′−x′0 is sufficient, since
we will only be interested in Fourier space contributions
to the coordinate transformations up to order k2

L (see
App. A). As shown in App. A, the correlation function
ξ′(r′, τ ′) of ρ′ then becomes

ξ′(r′, τ ′) =
[
1− aij r′i∂jr′ + ∆τ ∂τ

]
ξ(r′, τ ′) . (4)

The dependence on x′j of the time shift Eq. (2) does not
contribute at leading order.

We now turn to the squeezed limit of the three-point
function 〈X ′(x′3)δ′(x′1)δ′(x′2)〉, where δ = δρ/ρ̄ denotes
the fractional perturbation to ρ (the results are identi-
cal when considering δρ instead of δ). This limit corre-
sponds to the case where |x3 − x1| � |x1 − x2|. Here,
X stands for any other field (X is not necessarily a

scalar, but we suppress all tensor indices), such as for
example density perturbations or tensor modes. Strictly
speaking, X is to be understood as coarse-grained on
a scale R > |x2 − x1|. In the following, we will drop
the primes on coordinates for clarity, since we will not
employ the unprimed coordinates anymore. Further, we
adopt the notation X ′(x) = X(x), that is, the long-
wavelength (coarse-grained) field X is not modified un-
der the small-scale coordinate transformation within the
patch. In the squeezed limit, the three-point function
describes the modulation of the local two-point function
ξ′(|x1 − x2|;x0) at the location x0 = (x1 + x2)/2 by the
long-wavelength field X evaluated at the distant point
x3:

〈X ′(x3)δ′(x1)δ′(x2)〉 squeezed
=

〈X ′(x3) ξ′(x1 − x2; τ)|X′(x0) 〉 . (5)

The precise location of the point x0 in fact does not mat-
ter in the squeezed limit (as we prove in App. B), but we
have chosen the midpoint as the most natural choice.
We can now express 〈X ′δ′δ′〉 in terms of the three-point
function in unprimed coordinates 〈Xδδ〉 and contribu-
tions from the transformation of small-scale correlations
[Eq. (4)]. This yields

〈X ′(x3)δ′(x1)δ′(x2)〉 squeezed
=

[
1− ξXaij (|x3 − x0|)ri∂jr

+ ξX∆τ (|x3 − x0|) ∂τ
]
ξ(x1 − x2; τ)

+ 〈X(x3)δ(x1)δ(x2)〉 , (6)

where ξXY (r) denotes the cross-correlation between X
and Y = aij , ∆τ . This expression gives the squeezed-
limit three-point function of X ′ and δ′ (in the primed
coordinates) in terms of derivatives of ξ(r, τ) and the
three-point function of X and δ in the unprimed coor-
dinate frame. As shown in App. B, we can derive an
analogous expression in Fourier space, corresponding to
the squeezed limit of the bispectrum:

BX′δ′δ′(kL,k1,k2)
squeezed

=[
PXaij (kL)

(
δij +

kiSk
j
S

k2
S

d

d ln kS

)
P (kS , τ)

+ PX∆τ (kL)
∂

∂τ
P (kS , τ)

]
kS=k1+kL/2

+BXδδ(kL,k1,k2) . (7)

As before, PXY (k) denote cross-power spectra between
X and Y , while P (k, τ) denotes the power spectrum of
ρ. We can now further decompose aij as

aij =
1

nD
aδij + aTij , (8)

where nD is the dimensionality of the space in which
we define the correlations, and aTij is traceless. Allowing
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nD 6= 3, in particular nD = 2 will become useful when
dealing with projected observables such as the CMB. We
then obtain

BX′δ′δ′(kL,k1,k2)
squeezed

=[
PXa(kL)P (kS , τ)

d ln(knD

S P (kS , τ))

d ln kS

+ PXaTij (kL)
kiSk

j
S

k2
S

dP (kS , τ)

d ln kS

+ PX∆τ (kL)
∂

∂τ
P (kS , τ)

]
kS=k1+kL/2

+BXδδ(kL,k1,k2) . (9)

Note that the contribution of the trace of aij scales as
the logarithmic derivative of knDP (k), while the trace-
free component aTij couples to the logarithmic derivative
of P (k) itself. Instead of writing the bispectrum in terms
of kS , one can also expand in kL/k1, yielding zeroth order
terms (with kS → k1) and first-order terms∝ kL/k1. The
corresponding expression is given in App. B.

The results of this section are useful when, say, BXδδ is
easy to calculate, while BX′δ′δ′ is more readily related to
observations. This will be the case we encounter below.

III. CONFORMAL FERMI NORMAL
COORDINATES

Our goal is to derive what the observable consequences
are (as opposed to coordinate artifacts) of a given primor-
dial bispectrum. For this purpose we follow the steps in
Fig. 1, starting with conformal Fermi Normal Coordi-
nates (FNC). As we discussed in the introduction, if we
want to avoid studying second order cosmological pertur-
bation theory, it is not possible to directly connect the
statistics of perturbations in the standard FNC frame of
galaxies or the CMB (at the time when the photons we
observe were emitted) with the statistics calculated when
all perturbations are superhorizon. The reason is that the
perturbative corrections to the Fermi frame metric are of
order (HxF )2, where xF are the physical FNC coordi-
nates, so that the metric in FNC is not approximately
flat on the scales of superhorizon perturbations. On the
other hand, if we were to move from the global coordi-
nates to FNC at a later time when the short wavelength
modes have long re-entered the horizon, we would have
to take into account their evolution after horizon entry
at second order in the global coordinates.

To overcome this obstacle, in this section we introduce
a new coordinate frame which is valid throughout infla-
tion and the hot big bang era (assuming nothing dramatic
happens to superhorizon perturbations during this time),
and further connects easily with the FNC frame at late
times. This provides a well-defined framework for study-
ing observables related to primordial non-Gaussianities in
the squeezed limit. To visualize the advantage of FNC,

consider Fig. 2. Each one of the four panels shows the
Hubble scale (solid circle) and the region of validity of
the FNC (dashed line) at a different moment in time.
The long (red line) and short (blue line) modes are also
shown for comparison. One can immediately appreciate
the fact that from very early time when the long mode is
still inside (or about to leave) the horizon all the way un-
til late time when the long mode has re-entered the hori-
zon, the region of validity of FNC amply encompasses the
short modes. This is in contrast with standard FNC for
which the presence of the Hubble scale makes this im-
possible. The primordial correlators, typically computed
in comoving coordinates, take a simple form once both
the short and long modes have left the horizon and cease
to evolve. Any time after that moment and before the
small-scale modes reenter the horizon constitutes a good
time to transform from global conformal coordinates to
FNC.

Let us assume we are given the primordial correlations
during inflation in some gauge, where the metric is writ-
ten as

ds2 = a2(τ) [ηµν + hµν ] dxµdxν = a2(τ)ḡµνdx
µdxν .

(10)

Here we have denoted the conformal metric with a bar.
In the absence of perturbations, hµν = 0 and ḡµν = ηµν .
We will work up to linear order in metric perturbations.

As in the usual Fermi normal coordinate construction,
we consider a central timelike geodesic of a comoving ob-
server. However, instead of constructing the FNC with
respect to gµν , we construct conformal Fermi normal co-

ordinates (FNC) with respect to ḡµν . That is, within a
region around the central geodesic, the metric in these
coordinates is approximately ḡFµν = a2(τF )ηµν . The cor-
rections to this metric, which determine the size of this
region which we will call “FNC patch”, are given by sec-
ond derivatives of the metric perturbations. Correspond-
ingly, the size of the FNC patch is linked to the wave-
length of the metric perturbations considered. In the
following, we will be interested in (long-wavelength) per-
turbations with wavenumber kL, so that the size of the
FNC patch is of order k−1

L .

The transformation from coordinates xµ to FNC, for
a patch centered at the spatial origin at time x0 = τF is
given by (see App. C 2)

x̄0
F (xα) = x0 − 1

2

∫ x0

0

h00(τ)dτ − (vi + h0i)x
i

− 1

4

[
h0i,j + h0j,i + h′ij

]
xixj +O[(xi)3] (11)

x̄kF (xα) = xk − vk(x0 − τF ) +
1

2
hkix

i

+
1

4

[
hki,j + hkj,i − h ,k

ij

]
xixj +O[(xi)3] .

(12)
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a) b) c) d)

τ = τ0τ ∼ 0τ ∼ −kL τ ∼ −kS

FIG. 2: Illustration of the FNC patch throughout cosmic history, in comoving units. The wavy lines indicate perturbations.
The solid circles denote the comoving horizon 1/aH, which coincides with the size of the usual Fermi coordinate patch during
inflation. The dashed circles denote the size of the FNC patch, i.e. the region within which the metric is of the form ḡFµν = a2ηµν
with small corrections. a) During inflation, when the long wavelength perturbation hij(kL) is generated (i.e. leaves the horizon),
thin red line. b) Later on during inflation; hij(kL) is far outside the horizon when the short wavelength modes ϑ(k) are generated
(thick blue line). The perturbations are generated well within the FNC patch corresponding to the long-wavelength mode. c)
Near the end of inflation. All perturbations are far outside the horizon. Nevertheless, the small-scale modes are still well within
the FNC patch. d) At observation time, after the long-wavelength mode has reentered the horizon (solid circle indicating present
horizon). The FNC patch now coincides with the usual Fermi coordinate patch, which is much larger than the small-scale modes
which have been processed by nonlinear evolution since horizon entry (distorted thick wavy line).

The inverse of this transformation is at linear order

x0(x̄αF ) = x̄0
F +

1

2

∫ x̄0
F

0

h00(τ)dτ + (vi + h0i)x̄
i
F

− 1

4

[
h0
i,j + h0

j,i − h′ij
]
x̄iF x̄

j
F +O[(x̄iF )3]

xk(x̄αF ) = vk(x̄0
F − τF ) + x̄kF −

1

2
hkix̄

i
F (13)

− 1

4

[
hki,j + hkj,i − h ,k

ij

]
x̄iF x̄

j
F +O[(x̄iF )3] .

The metric in FNC then becomes

ḡF00 = − 1 +
1

2

[
∂m∂lh00 + h′′lm − 2∂(lh

′
0m)

]
x̄lF x̄

m
F (14)

ḡF0i = − 2

3

[
∂[i∂lh0m] + ∂[mh

′
li]

]
x̄lF x̄

m
F

ḡFij = δij −
1

3

[
∂[j∂lhim] + ∂[m∂ihlj]

]
x̄lF x̄

m
F .

Here, X(ab) = (Xab + Xba)/2, X[ab] = (Xab − Xba)/2,
and primes denote derivatives with respect to τ , while
spatial derivatives are with respect to xi. The linear
and quadratic coefficients in the coordinate transform
Eq. (12) are uniquely determined by the requirement that
the lowest order contribution to ḡFµν−ηµν is order (x̄iF )2.
However, given that the quadratic corrections are deter-
mined by the cubic order terms in the coordinate trans-
formation, one might wonder whether the quadratic cor-
rections to ḡFµν are unique. One can show (see App. D)

that ḡF00 and ḡF0i are indeed unique. However, there is

freedom to change the quadratic term in ḡFij if one allows
the spatial coordinate lines to be non-geodesic at order
(xi)3.

In summary,

ḡFµν = ηµν +O
(
[h′′ij , ∂jh

′
µi, ∂i∂jhµν ]x̄2

F

)
. (15)

Let us disregard the corrections ∝ h′′ij , ∂jh′µi for the mo-
ment. The remaining corrections to the conformal Fermi
frame metric scale as second derivatives of the metric per-
turbation multiplied by the spatial coordinate squared.
Thus, instead of being order (HxF )2 as the usual FNC
corrections , they are of order (kLx̄F )2, where kL is
the comoving wavenumber of the perturbation (in slight
abuse of notation, we drop the bar over k since we will
only be dealing with comoving Fourier wavenumbers).
Within the FNC patch of size ∼ k−1

L , we can remove the
effects of the long-mode perturbation (in comoving coor-
dinates) at all times — through horizon exit and reentry.

This very useful result only holds if h′′ij , ∂jh
′
µi are of

order ∂i∂jhµν or smaller, which is the case for all models
of single field inflation in which the background is an at-
tractor solution. In principle one can engineer a model in
which, for a short period of time, the background is not
close to an attractor solution, but rather it is evolving
towards one. In this case, the superhorizon modes can
have, for a short period of time, sizable time derivatives
[22, 23]. For example, if h′′ij is larger than ∂i∂jhµν , cor-
responding to significant superhorizon evolution of the
spatial metric perturbation, then we cannot follow the
conformal Fermi frame through the entire duration of in-
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flation. In case the evolving part of hij is isotropic (or
can be made so by a suitable change of coordinates),

hij(0, τ) = f(τ)δij +O(∂i∂jhµν), (16)

where 0 denotes the origin in comoving coordinates
around which we construct the FNC frame, then we can
absorb its effect into a modified scale factor,

ã(τ) = a(τ)

[
1− 1

2
f(τ)

]
. (17)

In a modified FNC frame constructed with the scale fac-
tor ã(τ) the rapidly evolving part now disappears. We
thus see that in this case, a long-wavelength metric per-
turbation does not simply shift the time and rescale spa-
tial coordinates, but rather corresponds to a change in
the entire background cosmology. This is possible only
because the original “unperturbed” background cosmol-
ogy, namely f(τ) = 0, was unstable (i.e. not an attrac-
tor). Given that the generation of small-scale pertur-
bations depends on the background cosmology, we in
general expect a non-trivial coupling between very long
wavelength metric perturbations and small-scale modes
in this case. If h′′ij is not isotropic, then we cannot absorb
its effect into a modified scale factor. Instead, the differ-
ent spatial coordinates are rescaled differently, leading to
an anisotropically expanding Universe of Bianchi I type.

Similar arguments apply to the case where ∂jh
′
µi is

larger than ∂i∂jhµν . Here the lowest order effect will be
a Bianchi I-type Universe, since isotropy is necessarily
violated.

A. Bispectra in global and FNC coordinates

Let us assume that we can calculate the statistics of
a scalar field ϑ(τ,x) in the global coordinates Eq. (10).
Specifically, we consider fluctuations at a given epoch
during inflation, typically evaluated right after horizon
crossing. For simplicity, we will restrict to a scalar field,
although the extension to other spins is straightforward.
Given the results from Sec. II and the coordinate trans-
form Eqs. (12)–(13), we can then immediately derive the
transformation of the two-point correlation ξϑ(r, τ) mea-
sured in a patch around position x0 at conformal time τ
from the global coordinates to the FNC frame. Note that
if ϑ is non-Gaussian, then the correlation function mea-
sured in a given patch will correlate with long-wavelength
perturbations.

In the present case, the primed coordinate system of
Sec. II is x̄αF , while xν denote the global coordinates in
the gauge chosen. We can then read off aij and ∆τ from
Eq. (13):

aij =
1

2
hij (18)

∆τ =
1

2

∫ x′0

0

h00(τ)dτ . (19)

With this, Eq. (4) yields

ξ̄(r̄; τ̄) = (20)[
1− 1

2
hij r̄

i∂jr̄ +
1

2

(∫ τ ′

0

h00dτ

)
∂τ̄

]
ξ(r̄, τ̄) ,

where ξ̄(r̄, τ̄) denotes the correlation function of ϑ in
the local FNC frame. Now consider the bispectrum
〈X(kL)ϑ(k1)ϑ(k2)〉, where X is any perturbation. The
results from Sec. II immediately show how this bispec-
trum transforms into FNC. Denoting FNC quantities as
X̄, ϑ̄, we obtain

BX̄ϑ̄ϑ̄(kL,k1,k2; τ̄)
squeezed

=[
1

2
PXh(kL)Pϑ(kS)

d ln(k3
SPϑ(kS))

d ln kS

+
1

2
PXhT

ij
(kL)

kiSk
j
S

k2
S

dPϑ(kS)

d ln kS

+ PX∆τ (kL)
∂

∂τ
Pϑ(kS)

]
kS=k1+kL/2

+BXϑϑ(kL,k1,k2; τ̄) , (21)

where all correlations on the r.h.s. are evaluated at τ̄ .
Here h = hii/3 is the trace of the spatial metric pertur-
bation while hTij is the trace-free part. The significance of
this result will become clear in the application to single-
field inflation which we will consider next.

B. Single-field inflation in comoving gauge

In the following, we restrict hµν to comoving gauge. In
the notation of [4], we have

h00 = − 2N1

h0i =Ni

hij = 2ζδij + hTij(τ,x), (22)

where hTij is tranverse-traceless and contains the tensor
perturbations. For the attractor solution of single-field
inflation, the constraint equations in this gauge yield [4]

N1 =
ζ̇

H
=

ζ ′

aH
∝ k2

(aH)2
. (23)

To order k2
L/k

2
S , we can thus neglect the contribution

from the time shift ∆τ = −
∫
N1dτ . Note that this is

merely a consequence of the particular gauge chosen. The
only remaining contribution to the transformation of the
bispectrum [Eq. (21)] then comes from ζ and the tensors
hTij . For the scalar contribution, which we indicate with
and “S” over the equal sign, we obtain

BX̄ϑ̄ϑ̄(kL,k1,k2)
S
= PXζ(kL)Pϑ(kS)

[
3 +

∂ lnPϑ(kS)

∂ ln kS

]
+BXϑϑ(kL,k1,k2), (24)
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where throughout kS = k1 + kL/2 = (k1 − k2)/2. We
are in particular interested in the bispectrum of the cur-
vature perturbation ζ, i.e. ϑ = ζ. Since ζ is not a scalar,
our derivation in Sec. II does not strictly apply. How-
ever, it is straightforward to show that for the purposes
of this transformation, the small-scale ζ modes behave
as a scalar. Recall that only the spatial transformation
is relevant at the order we are interested. The comoving
gauge condition, δφ = 0 where δφ is the inflaton pertur-
bation is thus still satisfied in the FNC frame. Further,
the spatial components of the metric transform as

ḡFij(x̄F ) =
∂xk

∂x̄iF

∂xl

∂x̄jF
gkl(x) . (25)

We now write ζ(x) = ζL(x) + ζS(x), separating into
long- and short-wavelength pieces on the scale of the
patch within which the correlation function is measured.
Then, the transformation to FNC removes ζL up to sec-
ond derivatives, while ζS is not affected since it does not
contain any long-wavelength components. We thus ob-
tain

ζ̄(x̄F ) = ζS(x) +O(∂i∂jζL)

ζ̄S(x̄F ) = ζS(x) . (26)

Thus, the short-wavelength ζ perturbations transform ef-
fectively as a scalar [Eq. (1)]. We obtain for the bispec-
trum of curvature perturbations in the FNC frame:

Bζ̄ζ̄ζ̄(kL,k1,k2) = Pζ(kL)Pζ(kS)
∂ ln(k3

SPζ(kS))

∂ ln kS
+Bζζζ(kL,k1,k2), (27)

where Bζζζ is the three-point function calculated in co-
moving gauge. As shown in [4, 24], this is in the squeezed
limit given by

Bζζζ(kL,k1,k2) = −[ns − 1]Pζ(kL)Pζ(kS) , (28)

where ns is defined through Pζ(k) ∝ k−4+ns . Eq. (28) is
usually referred to as the consistency relation. We now
see that the first term in Eq. (27) exactly cancels the
contribution from Bζζζ , leading to

Bζ̄ζ̄ζ̄(kL,k1,k2) = O
(
kL
kS

)2

. (29)

We thus conclude that in single-field inflation, the bispec-
trum in the squeezed limit is zero in the conformal Fermi
frame, with corrections going as (kL/kS)2.

The case for non-scalar metric perturbations follows
analogously. Decomposing the long-wavelength metric
perturbation into polarization states,

hTij(kL) =
∑
s=+,×

esij(k̂L)hTs (kL), (30)

we obtain (the “T” over the equal sign now stands for
tensor)

BX̄ϑ̄ϑ̄(kL,k1,k2)
T
=

1

2

∑
s

PXhs
(kL)Pϑ(kS)esij(k̂L)k̂iS k̂

j
S

∂ lnPϑ(kS)

∂ ln kS

+BXϑϑ(kL,k1,k2). (31)

Assuming that the different polarization states are sta-
tistically independent, we obtain for the tensor-scalar-
scalar bispectrum [again using the transformation prop-
erty Eq. (26)]

Bh̄sζ̄ζ̄(kL,k1,k2) =

1

2
Phs

(kL)Pζ(kS)esij(k̂L)k̂iS k̂
j
S

∂ lnPζ(kS)

∂ ln kS
+Bhsζζ(kL,k1,k2). (32)

The squeezed-limit bispectrum in comoving gauge was
also derived in [4]:

Bhsζζ(kL,k1,k2) = −Phs
(kL)esij(k̂L)kiSk

j
S

d

dk2
S

Pζ(kS)

= −Phs
(kL)esij(k̂L)k̂iS k̂

j
S

1

2

d

d ln kS
Pζ(kS) . (33)

We again see that the two terms in Eq. (32) cancel in
single-field inflationary models. Thus, in single-field in-
flation, the tensor-scalar-scalar bispectrum vanishes in
the squeezed limit in FNC, so that there are no corre-
lations between long-wavelength tensor modes and small-
scale fluctuations in this frame. The lowest correction
are again of order (kL/kS)2.

We can phrase the main result of this section as follows:
at leading order, the squeezed-limit three-point correla-
tions in single-field inflation, which obey the “consistency
relation”, are equivalent to the statement that there is no
correlation between infinitely long and short wavelength
modes in the conformal Fermi frame, specifically,

Bh̄ζ̄ζ̄(kL,k1,k2) = O
(
kL
kS

)2

, (34)

where h stands for any component of hij , and kS = |k1−
k2|/2.

Since this latter is a physical, gauge-invariant state-
ment, it is expected to hold not only at leading order
in spacetime perturbations but at higher orders as well.
The FNC approach can also help elucidate why there is
no such correlation up to order k2

L in single field models.
One might wonder why such a correlation cannot be im-
printed at early times when the long wavelength pertur-
bation was inside the horizon, kL � aH. Far inside the
horizon, we can neglect gravity and are essentially dealing
with a scalar field in vacuum which adiabatically tracks
the slowly evolving background, and a given mode is only
excited once its wavelength becomes of order the horizon.
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Contributions to correlations from within the horizon are
exponentially suppressed [9, 10] (see also [25]). On the
other hand, when kS ∼ aH, the long-wavelength mode
is far outside the horizon and its effects can be removed
by a coordinate transformation up to order k2

L.

IV. CONNECTION TO LATE-TIME
OBSERVATIONS

As explained in Sec. III, we can follow the FNC patch
all the way through the end of inflation and horizon re-
entry of both long and short modes, provided that pertur-
bations do not evolve significantly when they are outside
the horizon. In this section, we show how the squeezed-
limit correlations in the FNC frame can be related to
observations made from Earth today.

Let us assume we observe correlations of some field
δ(x) at late times, i.e. at or after recombination. In
linear theory, assuming adiabatic initial conditions, we
can relate δ to the curvature perturbation through some
transfer function α,

δ(k, τ) = α(k, τ)ζ(k). (35)

For matter density perturbations, α is defined in Eq. (71)
below. Similarly, we assume the long-wavelength pertur-
bation is evolved with some transfer function,

hij(kL, τ) = G(τ)hij(kL), (36)

where we have assumed the kL → 0 limit (the lowest or-
der kL dependence of G(τ) will be k2

L; of course, G will
differ for scalar and tensor perturbations). As long as su-
perhorizon perturbations evolve slowly (in the sense that
h′′, ∂jh

′ are smaller than or of order ∂i∂jh), the confor-
mal Fermi coordinate patch, i.e. the region over which
corrections to the FNC metric are small, is essentially
constant in (comoving) size throughout horizon exit and
reentry of the short-wavelength modes. As we have seen,
this applies in particular to single-field inflation models.
Thus, at the conformal time τem at which the photons
we observe today were emitted, the metric in FNC is

ḡFµν = a2(τem)ηµν +O(∂i∂jh) . (37)

If we transform coordinates through

x0
F =

∫ τ

a(τ ′)dτ ′ ≡ t(τ)

xiF = a(τ)x̄iF , (38)

the metric in the coordinates {xµF } becomes

gFµν = ηµν +O[(HxiF )2, (∂∂hµν)x2
F ]. (39)

In other words, xµF are the usual Fermi coordinates
(FNC) defined around the same timelike geodesic as the
FNC. Depending on whether the long-wavelength modes
for which we constructed the FNC patch have entered

the horizon, either the order H or the order ∂∂hµν cor-
rections will be dominant; however, this is not relevant
for the discussion that follows. Eq. (38) corresponds to
a rescaling of the time coordinate, leaving the timelike
unit vector and τ = const hypersurfaces unchanged, and
a time-dependent rescaling of the spatial coordinates.
Since the spatial rescaling is the same everywhere on a
x0
F = const hypersurface, this implies that, for models

that obey the consistency condition, Eq. (34) is still valid
at late times in the FNC frame:

BhF δF δF (kL,k1,k2; τem) = O
(
kL
kS

)2

, (40)

where hF , δF denote perturbations in the FNC frame.
Recall that the squeezed limit of three-point functions
corresponds to the modulation of local two-point func-
tions by long-wavelength perturbations. Thus, another
way of phrasing this result is that a surface of constant
correlation in the FNC frame, ξδF (rF ) = const, defines
a standard ruler—a fixed spatial scale—as considered in
[6], with corrections proportional to second derivatives
of hµν only. Hence, in standard single-field inflation and
any other case where Eq. (34) holds, the ruler scale rF is
statistically the same everywhere on a x0

F = const hyper-
surface, and there is no correlation with long-wavelength
perturbations.

The apparent correlations induced between long-
wavelength modes and small-scale correlations are then
given by the ruler perturbations derived in [6]. We can
use their results together with Sec. II to derive these con-
tributions to observed squeezed-limit three-point func-
tions, and make the connection with known results.

In general, there are two effects modifying the observed
two-point correlation within a given patch. First, there
is the transformation from the local FNC xµF to the ob-
served comoving coordinates x̃µ, which are inferred from
the observed position n̂ of the source in the sky and its
redshift z̃ through x̃0 = τ0 − χ̄(z̃), x̃i = n̂iχ̄(z̃), where
χ̄ is the comoving distance-redshift relation in the back-
ground (in case of the CMB, this is slightly modified, as
we will discuss in Sec. IV A). Let us assume we observe
a scalar field ρ̃(x̃) (whose perturbation is δ). Then, as
described in Sec. II, ρ̃ is given in terms of the field in the
Fermi frame ρ as

ρ̃(x̃) = ρ(xF (x̃)) . (41)

At fixed observed redshift, we can write the transforma-
tion from xF to x̃ as

x̃0 = x0
F +

1

ãH̃
T

x̃i =
1

ã
Aijx

j
F . (42)

Here ã = (1 + z̃)−1, T is the perturbation in proper time
from a constant observed redshift surface [16], and Aij
can be seen as the generalization to three dimensions
of the magnification matrix. Note that T and Aij are
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gauge-invariant. Specifically, using the notation of [6],
Aij is given by

Aij = δij + aij

aij = Cn̂in̂j + n̂(iPj)kBk + PikPjlAkl, (43)

where Pij = δij − n̂in̂j is the projection operator per-
pendicular to the line of sight. C, Bi, and Aij are the
gauge-invariant ruler perturbations derived in terms of
the metric perturbations in [6]. For example, the trans-
verse matrix Aij contains the magnification and shear.

The second effect is a rescaling of the observed field by
projection effects. If there are multiplicative projection
effects, then we have

ρobs(x̃) = [1 + c(x̃)] ρ̃(x̃) = [1 + c(x̃)] ρ(xF (x̃)) . (44)

Here we think of c as averaged over the patch within
which we measure the correlation function of small-scale
perturbations. For example, in case ρ is the number den-
sity of some tracer, then projection effects such as grav-
itational lensing modify the physical volume that corre-
sponds to a fixed region in the observed coordinates x̃,
thus rescaling the number density. Gravitational redshift
and ISW effect lead to an analogous rescaling in case of
the CMB. The factor 1 + c also rescales the fluctuations
in ρ within the region considered, and correspondingly
rescales the correlation function by (1 + c)2, leading to

ξ̃(r̃, τ̃) = [1 + 2c(x̃)] ξ(rF , τF )

=

[
1− aij(x̃)r̃i∂jr̃ +

1

ãH̃
T (x̃)∂τ + 2c(x̃)

]
ξ(r̃; τ̃)

(45)

where we have used Eq. (4) in the second line. Straight-
forward application of the results of Sec. II then yields
the bispectrum of the observed density perturbation δ̃ in
the squeezed limit, in terms of the projection effects and
the bispectrum of δF in the FNC frame:

Bδ̃δ̃δ̃(kL,k1,k2) = BδF δF δF (kL,k1,k2)

+ 2PδF c(kL)PδF (kS) +
1

ãH̃
PδF T (kL)

∂

∂τ
PδF (kS)

+
1

3

∂ ln(k3
SPδF (kS))

∂ ln kS
PδF a(kL)PδF (kS)

+ PδF aTij (kL)k̂iS k̂
j
S

∂PδF (kS)

∂ ln kS
, (46)

where kS = k1 + kL/2. The bispectrum of a two-
dimensional projected field (in the flat-sky limit) corre-
spondingly becomes

Bδ̃δ̃δ̃(`L, `1, `2) = BδF δF δF (`L, `1, `2)

+ 2CδF c(`L)CδF (`S) +
1

ãH̃
CδF T (`L)

∂

∂τ
CδF (`S)

+
1

2

∂ ln(`2SPδF (`S))

∂ ln `S
CδF a(`L)CδF (`S)

+ CδF aTij (`L)ˆ̀i
S

ˆ̀j
S

∂CδF (`S)

∂ ln `S
, (47)

where again `S = `1 + `L/2.
The bispectrum BδF δF δF in FNC frame is equivalent

up to transfer functions (and radial projection, in the 2D
case) to the bispectrum in FNC, which as we have seen
vanishes in the squeezed limit for single-field inflation.
In this case, the terms due to “projection effects” are the
only remaining contributions.

In the following we present two applications of
Eqs. (46)–(47): the CMB bispectrum in the squeezed
limit, and the scale-dependent non-Gaussian halo bias.

A. CMB bispectrum

In this section, we illustrate the main result of the pre-
vious section on the observed squeezed-limit bispectrum,
Eq. (47), with the CMB. We will make direct connection
with the results of [13, 14]. A more sophisticated and
accurate treatment which is based on an closely related
approach has been presented in [15].

We assume single-field inflation so that the FNC frame
contribution vanishes. We will adopt the conformal-
Newtonian gauge in this section,

ds2 = a2(τ)[−(1 + 2Φ)dτ2 + (1− 2Ψ)dx2] , (48)

although it is straightforward to derive the results in a
general gauge.

The observed CMB photons originate from the last
scattering surface, which occurred at a fixed physical age
t∗ of the Universe, that is, at constant proper time tF =
t∗ for the comoving primordial plasma. The proper time
of a comoving source passing through x at coordinate
time τ is given in the metric convention Eq. (48) by

tF |τ,x = t̄(τ) +

∫ τ

0

Φ(x, τ ′)a(τ ′)dτ ′ , (49)

where t̄(τ) and τ̄(t) are the physical-time – conformal
time relations in the background.

The value of t∗ is obtained by combining atomic
physics with the mean observed temperature of the CMB
today. The CMB temperature perturbations on scales
that were super-horizon at recombination (` . 100) orig-
inate entirely from projection effects; in other words, the
large-scale CMB temperature perturbations can be seen
as a special case of the evolving ruler described in [16].
Essentially, the standard ruler is in this case given by
the photon occupation number Iν/ν

3. In fact, since lens-
ing conserves surface brightness, the only contribution
to the fractional CMB temperature perturbation Θ(n̂) is
the redshift perturbation on a fixed proper time surface,
which is equivalent to minus the quantity T defined in
[16]:

Θ(n̂) ≡ T (n̂)

T̄
− 1 =

d lnT (a)

d ln a
T = −T (50)

where have used that T ∝ a−1 for a free-streaming black-
body. As shown in [16], this immediately yields the CMB
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temperature perturbation in the gauge Eq. (48) as

Θ(n̂) = − H̃∗
∫ t∗

0

Φ[x, τ̄(t′)]dt′ +H0

∫ t0

0

Φ(0, τ̄(t))dt

− Φo + Φ− v‖ + v‖o + δνISW

' 1

3
Φ− v‖ +H0

∫ t0

0

Φ(0, τ̄(t))dt− Φo + v‖o + δνISW

(51)

δνISW =

∫ χ∗

0

dχ [Φ′ + Ψ′] . (52)

In the second line, we have assumed that the relevant
perturbations are superhorizon, Φ(x) ≈ const (since we
are interested in ` . 100 where the acoustic contributions
can be neglected), and that recombination happened long
after matter-radiation equality so that H∗t∗ = 2/3.

1. Transforming from FNC to observer coordinates

As we have seen, the CMB temperature on large scales
is modified by the temperature perturbation Eq. (51),
which is entirely due to the effects on photons as they
propagate from the last scattering surface to the observer.
Thus, the CMB temperature that would be measured in
the local Fermi frame at emission is rescaled by 1 + Θ(n̂)
in the observer frame, so that in the notation of Sec. IV,
c(n̂) = Θ(n̂).

The second ingredient is the coordinate transformation
from FNC to the observer frame. Projected onto the sky,
the matrix aij becomes the usual weak lensing distortion
tensor Aij , which we can write to linear order as

aij =

(
M/2 + γ1 γ2

γ2 M/2− γ1

)
. (53)

In particular, a = M. The magnification (a gauge-
invariant quantity) is easily adapted from the results of
[6]. The key difference is the meaning of the perturbation
to the logarithm of the scale factor at emission, which
here we call ∆ ln a∗. By definition,

∆ ln a∗ ≡
a(x0

em)

a∗
− 1. (54)

Whereas the quantity ∆ ln a of [6] is derived for photons
arriving with a fixed observed redshift, in the present
case we need the corresponding expression for a constant
proper time at emission. This is easily derived from the
expression for the proper time Eq. (49). Requiring tF =
t∗ and solving for τ yields

a(x0
em) = a

[
τ̄

(
t∗ −

∫ τ∗

0

Φ(x, τ) adτ

)]
= a∗ ×

[
1−H∗

∫ τ∗

0

Φ(x, τ) adτ

]
, (55)

which leads to

a(x0
em)

a∗
= 1−H∗

∫ τ∗

0

Φ(x, τ)adτ , (56)

so that

∆ ln a∗ = −H∗
∫ τ∗

0

Φ(x, τ)adτ . (57)

We now use this result in the general-gauge expression
Eq. (51) of [6],

M = − 2∆ ln a∗ −
1

2

(
hii − h‖

)
+ 2κ̂− 2

χ∗
∆x‖ . (58)

In Eq. (58), κ̂ is the coordinate convergence, i.e. the
transverse (with respect to the line of sight) divergence
of the transverse displacements, and ∆x‖ is the displace-
ment along the line of sight. In the metric Eq. (48) we
have [6]

κ̂ = − v‖o +
1

2

∫ χ∗

0

dχ
χ

χ∗
(χ∗ − χ)∇2

⊥ (Φ + Ψ)

(59)

∆x‖ =

∫ χ∗

0

dχ [Φ + Ψ]− 1

a∗H∗
∆ ln a∗

−
∫ t0

0

Φ(0, t)dt (60)

∆ ln a∗ = − 2

3
Φ , (61)

where H∗ = H(a∗), and we have made the same assump-
tions about superhorizon perturbations and matter dom-
ination as in Eq. (51). The magnification then becomes

M =
4

3
Φ− (−2Ψ) + 2κ̂− 2

χ∗
∆x‖

=
10

3
Φ + 2κ̂− 2

χ∗
∆x‖ . (62)

Here we have used that Ψ = Φ during matter domination.
Using the relation between convergence κ and shear γ

in `-space, we then have in the flat-sky approximation

CTc(`) = CTT (`)

CTa(`) = CTM(`) =
10

3
CTΦem(`) + 2CT κ̂(`)− 2

χ∗
CT∆x‖

≈ 10Cno ISW
TT (`) + 2CT κ̂(`) (63)

CThT
ij

(`) = CT κ̂(`)

[
2
`i`j
`2
− δij

]
. (64)

In Eq. (63), we have approximated CTΦem(`)/3 as the
CMB temperature power spectrum without ISW contri-
bution, and neglected the contribution from the line-of-
sight displacement ∆x‖. The latter is small due to cance-
lation along the line of sight except for the very smallest
` for the time delay [first term in Eq. (60)], and sup-

pression by (H∗χ∗)
−1 ∼

√
1089 in case of the second
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term of Eq. (60) (the third term in Eq. (60) only con-
tributes to the monopole). See [15] for a quantitative
evaluation of these contributions. Finally, for the contri-
bution from the time shift, CTT (`L) = −CTT (`L) since
Θ = −T . However, the CMB power spectrum observed
today CTT (`S) only evolves on the Hubble scale today,
so that

1

ãH̃
CTT (`L)

∂

∂τ
CTT (`S) ∼ H0

ãH̃
CTT (`L)CTT (`S) . (65)

Thus, this contribution is suppressed by ∼ 1/
√

1089 with
respect to the leading contributions, and we will neglect
it in what follows.

2. Squeezed-limit CMB bispectrum

Inserting these results into Eq. (47) then yields

B(`L, `1, `2) = 2CTc(`L)CTT (`S)

+ CTa(`L)CTT (`S)
1

2

∂ ln `2SCTT (`S)

∂ ln `S

+ CTaTij (`L)ˆ̀i
S

ˆ̀j
S

∂CTT (`S)

∂ ln `S

=

{
2CTT (`L) +

(
5Cno ISW

TT (`L) + CT κ̂(`L)
) ∂ ln `2SCTT (`S)

∂ ln `S

+ cos 2θ CT κ̂(`L)
∂ lnCTT (`S)

∂ ln `S

}
CTT (`S), (66)

where `S = `L+`1/2, and cos θ = ˆ̀
L · ˆ̀S . Apart from the

very small contribution from ∆x‖, this is an exact result
for the squeezed-limit CMB bispectrum as long as the
approximation of the Sachs-Wolfe limit is accurate for
modes of wavenumber `L (`L . 100). Note that no such
assumption has been made about the short-wavelength
modes `S . The cross-correlation between CMB temper-
ature and κ̂ can further be decomposed as

CT κ̂(`L) =
1

3
CΦemκ̂(`L) + CδνISWκ̂(`L), (67)

i.e. an early-time correlation with the potential Φem, and
a late-time correlation between κ̂ and the ISW contribu-
tion. The latter contribution has recently been detected
by the Planck satellite [26].

In order to compare with [13, 14], we neglect the ISW-
lensing correlation, and use the result of [12] for early-
time correlations in the Sachs-Wolfe regime,

1

3
CΦemκ̂(`L) = −6 Cno ISW

TT (`L). (68)

Further, we neglect the distinction between CTT (`L) and

Cno ISW
TT (`L). We then have

B(`L, `1, `2)

=

[
2CTT (`L)− CTT (`L)

∂ ln `2SCTT (`S)

∂ ln `S

− 6 cos 2θ CTT (`L)
∂ lnCTT (`S)

∂ ln `S

]
CTT (`S)

= CTT (`L)CTT (`S) (1 + 6 cos 2θ)

[
2− ∂ ln `2SCTT (`S)

∂ ln `S

]
.

(69)

This agrees with the final result of [13], while it differs
from [14] because a subset of the lensing contributions
was neglected there.

One can show (App. C of [6]) that the contribution
of metric perturbations with wavenumber k to the CMB
temperature as well as the ruler perturbationsM, γ scale
as (k/H0)2 in the limit k → 0. The contributions in the
low-k limit can be interpreted as the lowest order correc-
tions to our local conformal Fermi patch. Unless there
is some physical coupling between currently superhori-
zon and subhorizon modes [27], the observable imprint
of any superhorizon perturbation (scalar or tensor) is
suppressed by (k/H0)2.

B. Non-Gaussian halo bias

For Gaussian initial conditions, the distribution of
large-scale structure tracers (such as galaxies, clusters,
etc.) in the large-scale limit follows the distribution of
matter. More accurately, this holds on a constant proper
time slice [7, 28]. While the abundance of tracers depends
on the amplitude and shape of local small-scale fluctua-
tions, in the Gaussian case these are statistically the same
everywhere. That is, at fixed proper time in their respec-
tive FNC frame, all observers see statistically the same
small-scale fluctuations. These then do not contribute to
correlations in the tracer abundance on large scales. Non-
Gaussianity in the primordial perturbations can however
couple small-scale fluctuations to large-scale perturba-
tions. As we discussed in Sec. II, this in fact precisely
corresponds to the squeezed limit of (at lowest order)
the three-point function. Thus, neglecting for the time
being any projection effects in going from the FNC frame
to the observed positions and redshifts of tracers, there
is a non-Gaussian scale-dependent bias if and only if the
amplitude of small-scale fluctuations in the FNC frame
correlates with long-wavelength perturbations—that is,
if there is a non-zero squeezed-limit bispectrum BδF δF δF ,
where δF denotes the matter density perturbation in the
FNC frame.

Using Eqs. (35)–(36), the bispectrum of δF is re-
lated to the bispectrum of curvature perturbations in the
FNC frame through

BδF δF δF (kL,k1,k2; τem) = α(kL, τem)α(k1, τem)α(k2, τem)

×Bζ̄ζ̄ζ̄(kL,k1,k2), (70)
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where

α(k) =
5

3

2

3

k2T (k)g(z)

ΩmH2
0 (1 + z)

(71)

is the relation in Fourier space between the density and
the curvature perturbation, T (k) is the matter transfer
function normalized to unity as k → 0, and g(z) is the
linear growth rate of the gravitational potential normal-
ized to unity during the matter dominated epoch.

In order to derive the scale-dependent bias, we now as-
sume that the tracer abundance is mostly sensitive to the
variance of the density field on a scale R, typically chosen
to correspond to the Lagrangian scale of the tracer. See
[28, 29] for a more general and detailed discussion. The
contribution to the tracer two-point function is then pro-
portional to 〈δF (0)(δF,R)2(r)〉, where δF,R denotes the
FNC-frame density field smoothed on scale R. As shown
in, e.g. [30, 31], the large-scale scale-dependent bias is
then given by

∆b(kL) =
∂ ln n̄h
∂σ2

R

α−1(kL)∆σ2
R(kL)

∆σ2
R(kL) =

∫
d3k1

(2π)3
α(k1)α(|k + k1|)

Bζ̄ζ̄ζ̄(kL, k1, |k + k1|)
Pζ̄(kL)

× W̃R(k1)W̃R(|k + k1|), (72)

where W̃R(k) is the filter function in Fourier space, and
we have dropped the τem arguments for brevity. As long
as kL is much less than the typical values of k1 in the
integrand (k1 � 0.01h Mpc−1), the bispectrum here is
evaluated in the squeezed limit [32]. Let us perform a
leading order expansion in this limit,

Bζ̄ζ̄ζ̄(kL, k1, |k + k1|) =

(
f0 + f2

k2
L

k2
S

)
Pζ̄(kL)Pζ̄(kS),

where kS is as defined before. Here, we have assumed
a scale-invariant bispectrum (otherwise, the coefficients
f0, f2 are in general functions of kS), and no dependence
on the angle between kL and kS as is typically the case
(but see [33] for a counterexample). The lowest order
piece ∝ f0 leads to a scale dependence of

∆b(kL) ∝ f0 α
−1(kL) ∝ f0 k

−2
L T−1(kL), (73)

which corresponds to the usual scale-dependent bias from
local non-Gaussianity. The second part leads to a scale-
dependence of

∆b(kL) ∝ f2 k
2
L α
−1(kL) ∝ f2 T

−1(kL), (74)

which is much weaker and only relevant on scales kL &
0.02h Mpc−1 where the transfer function departs from
unity. Since f0 = 0 in single field inflation [Eq. (34)],
we conclude there is no scale-dependent bias induced on
scales kL . 0.02h Mpc−1 in these models.

The scale-dependent bias discussed here refers to the
FNC frame of the tracers; there are contributions to the

observed scale-dependent bias from projection effects, i.e.
from transforming from the tracer FNC frame to ob-
served positions and redshifts (in our own FNC frame).
Those have been derived in [7, 34–37], but are generally
quite small. Matching to the scale-dependent bias from
local non-Gaussianity, they correspond to fNL < 1 for a
wide range of tracer parameters [37].

V. CONCLUSIONS

In this work we have presented a simple and complete
framework to translate the squeezed limit of any pri-
mordial three-point function into observables such as the
squeezed limit of the CMB temperature bispectrum and
the scale-dependent halo bias. In Fig. 1 we have spelled
out the various steps of the computation and the respec-
tive choices of gauge. The different gauges have been
chosen in such a way that the whole computation from
horizon exit during inflation until observation on earth
can be performed using only linear perturbation theory.
This required the introduction of a conformal version of
the well known Fermi Normal Coordinates (used in [9, 10]
for inflationary correlators), in which the spacetime is lo-
cally FLRW as opposed to Minkowski. As an example
we have applied our formalism to standard single-field
slow-roll inflation. We have shown that Maldacena’s con-
sistency condition [4] in the squeezed limit of the scalar
bispectrum implies that the signal in the CMB bispec-
trum and halo bias vanishes exactly. Although this re-
sult was already known, our approach provides a simple,
concise and physically clear derivation. This calculation
can straightforwardly be generalized to higher N-point
functions in the squeezed limit.

In addition, our approach sheds light on the proposal
that there are observable correlations between long wave-
length tensor modes and short wavelength scalar pertur-
bations [17–19] (see also [20]). These authors state that
the correlation vanishes as long as the long tensor mode
is outside of the Hubble radius k � aH. This can be un-
derstood using the results of our section Sec. III, where
we show that a constant and a pure gradient mode of the
metric are absorbed by the change of coordinates when
going to the Fermi Normal frame. The physical effects of
a long mode that a local observer can measure are hence
suppressed at least by (k/aH)2 and are therefore small
for superhorizon perturbations. Notice in particular that
the standard result for the tensor-scalar-scalar bispec-
trum in single field inflation [4] is just a restatement of
this fact but using comoving coordinates. In these coor-
dinates the tensor-scalar-scalar bispectrum takes exactly
the right form such that, changing to Fermi Normal coor-
dinates, one finds vanishing correlation up to corrections
of order (k/aH)2 as we saw in Sec. III B. After the tensor
mode enters the horizon, it starts oscillating and decays.
During the epoch around horizon crossing, k ∼ aH, the
tensor mode can induce some tidal effects on the short
scale scalar power spectrum (see [38] for an evaluation
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of this effect for the shear). We did not compute this
effect here, and leave this interesting possibility for fu-
ture work. Further, as discussed in Sec. IV, there are
projection (photon propagation) effects induced by the
long-wavelength tensor mode [38–40]. However, these are
again suppressed by (k/H0)2 in the k → 0 limit. In sum-
mary, just as for the scalar bispectrum, a detection of
a squeezed-limit tensor-scalar-scalar bispectrum through
the measurements described in [17, 20], at a level larger
than expected from tidal and projection effects, would
rule out single-field inflation.

The framework we have developed in this paper is also
useful in other classes of models that have not yet been
directly related to observations. One example is resonant
non-Gaussianity [41–45], which is a generic prediction of
many models of axion inflation (see [46] and references
therein), in particular inflation from axion monodromy
[47–49]. In these models the inflationary potential has
sinusoidal modulations, which lead to oscillations in the
time evolution of the background. Since these oscillations
average to zero over a period, they can give corrections to
the slow-roll parameter that are larger than is usually al-
lowed and nevertheless be perfectly compatible with cur-
rent power spectrum data (see e.g. [48, 50, 51]). The reso-
nant bispectrum satisfies Maldacena’s consistency condi-
tion [43, 52], but because of oscillations the amplitude
of the primordial bispectrum in the squeezed limit is
not suppressed by small slow-roll corrections. In light
of this, one might wonder whether these models lead to
some detectable signal in the scale dependent halo bias.
Cyr-Racine and Schmidt [53] showed that indeed reso-
nant non-Gaussianity produces oscillations in the mass
dependence of the non-Gaussian halo bias, which is a very
unique signature. However, the leading contribution in
the large-scale limit to the effect derived in that paper is
only a coordinate artefact as shown here. While the halo
bias thus has to asymptote to a scale-independent value
in the large-scale limit, we expect some interesting effects
on intermediate scales. To compute the actual size of this
effect it is important to re-write the primordial resonant
bispectrum in terms of FNC. It would be very interesting
to perform this analysis using the framework constructed
in this paper. There are also other models of the early
universe (both inflationary and not) in which the metric
perturbations do not freeze outside of the horizon. For
example, it has been argued in [22, 23] (see also [54]) that
this allows one to violate Maldacena’s consistency condi-
tion. Another interesting model with a peculiar behavior
in the squeezed limit is Khronon inflation, studied in [55].
It would be interesting to use our approach to derive the
observational prediction of these and similar models.

On the other hand, multifield inflationary models in
general feature a non-trivial bispectrum in the squeezed
limit. In this case, curvature perturbations evolve outside
the horizon, and the small-scale fluctuations are sensitive
to their presence as they essentially evolve in a different
FRW background (or, more generally, in a homogeneous
anisotropic Universe). This reasoning can be used to con-

nect the squeezed-limit correlators in multifield inflation
to late-time observables in a similar way as outlined here
for single-field inflation.
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Appendix A: Coordinate transformation of
two-point correlations

Consider a scalar field ρ(x) = ρ(x, τ). Under a general
coordinate transformation x→ x′(x), ρ transforms as

ρ′(x′) = ρ(x(x′)) . (A1)

We define the unequal-time two-point correlation of ρ,
measured within a patch p through

〈ρ(x, τ1)ρ(x + r, τ2)〉p
= 〈 [ρ(τ1) + δρ(x, τ1)] [ρ(τ2) + δρ(x + r, τ2)] 〉p
= ρ(τ1)ρ(τ2) + ξ(r, τ1, τ2) , (A2)

where a subscript p indicates an average over the patch,
and we have defined ρ(τ) = 〈ρ(x, τ)〉p, so that by con-
struction the average over the patch of δρ(x, τ) vanishes.
The correlation function introduced above is then defined
as

ξ(r, τ1, τ2) ≡ 〈δρ(x, τ1)δρ(x + r, τ2)〉p . (A3)

We will consider an alternative definition, the correlation
function of δρ/ρ, below and show that it transforms in
the same way. Further, we will denote the equal time cor-
relation function as ξ(r, τ) in the following for simplicity.

Now let us consider the equal-time two-point correla-
tion for ρ′, measured in the same patch:

〈ρ′(x′1, τ ′)ρ′(x′2, τ ′)〉p = 〈ρ(x1, τ1)ρ(x2, τ2)〉p , (A4)

where x′2 − x′1 = r′, and we have defined for conve-
nience x1 ≡ x(x′1, τ

′), x2 ≡ x(x′2, τ
′), and analogously

for τ1, τ2. By assumption, the coordinate transform is
slowly varying over the patch. We then Taylor expand
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the coordinate transformations around the center point
x′0 = (x′1 + x′2)/2,

xi1 = xi0 −
1

2

∂xi(x′0, τ
′)

∂x′j
r′j ; xi2 = xi0 +

1

2

∂xi(x′0, τ
′)

∂x′j
r′j

τ1 = τ0 −
1

2

∂τ(x′0, τ
′)

∂xj
r′j ; τ2 = τ0 +

1

2

∂τ(x′0, τ
′)

∂xj
r′j ,

(A5)

where x0 = x(x′0, τ
′), and τ0 = τ(x′0, τ

′). We will discuss
below why going to linear order in r′ is sufficient. We
then have

〈ρ′(x′1, τ ′)ρ′(x′2, τ ′)〉p

= ρ(τ1)ρ(τ2) + ξ

(
∂xi(x′0, τ

′)

∂x′j
r′j , τ1, τ2

)
=

[
1 +

1

2

∂τ(x′0, τ
′)

∂xj
r′j

∂

∂τ1
− 1

2

∂τ(x′0, τ
′)

∂xj
r′j

∂

∂τ2

]
×
[
ρ(τ1)ρ(τ2) + ξ

(
∂xi(x′0, τ

′)

∂x′j
r′j , τ1, τ2

)]
τ1=τ2=τ0

= ρ2(τ0) + ξ

(
∂xi(x′0, τ

′)

∂x′j
r′j , τ0

)
, (A6)

since ξ(r, τ1, τ2) is symmetric in τ1 and τ2. Thus, at linear
order in r′, the equal time correlator in primed coordi-
nates is an equal time correlator in unprimed coordinates.
We thus have

〈ρ′(x′, τ ′)ρ′(x′ + r′, τ ′)〉p = ρ2(τ0) + ξ(Ar′, τ0)

Aij =
∂xi(x′0, τ

′)

∂x′j
. (A7)

We now define the correlation function of ρ′ in the same
way as that for ρ [Eq. (A2)], which yields

〈ρ′(x′, τ ′)ρ′(x′ + r′, τ ′)〉p = ρ′2(τ ′) + ξ′(r′, τ ′) , (A8)

where

ρ′(τ ′) = 〈ρ′(x′, τ ′)〉p = 〈ρ(x(x′, τ ′))〉p = ρ(τ0) . (A9)

The second equality again holds to linear order in x′−x′0,
at which order the average of τ over the patch at fixed τ ′

is just τ0. We will discuss this definition of ρ′ in App. A 1
below. Thus, the first term in each of Eqs. (A7)–(A8)
agrees, and hence so must the second term:

ξ′(r′, τ ′) = ξ(x2 − x1, τ0) = ξ (Ar′, τ(x′0, τ
′)) . (A10)

We can similarly derive what happens to ξ̃ = ξ/ρ2, which
is the correlation function defined in terms of δρ/ρ. In
this case, we have

〈ρ(x, τ)ρ(x + r, τ)〉 = ρ2(τ)
[
1 + ξ̃(r, τ)

]
. (A11)

For ρ′, this yields

〈ρ′(x′, τ ′)ρ′(x′ + r′, τ ′)〉p = ρ2(τ0)
[
1 + ξ̃(x2 − x1, τ0)

]
.

(A12)

Now we define the correlation function of ρ′ in the same
way as that for ρ [Eq. (A2)], which yields

〈ρ′(x′, τ ′)ρ′(x′ + r′, τ ′)〉p = ρ′2(τ ′)
[
1 + ξ̃′(r′, τ ′)

]
.

(A13)

Thus, we see that ξ̃ transforms in the same way as ξ,
namely

ξ̃′(r′, τ ′) = ξ̃(x2 − x1, τ0) = ξ̃ (Ar′, τ(x′0, τ
′)) . (A14)

There are thus two ways in which the general affine
coordinate transform affects the correlation function in
primed coordinates: first, there is the spatial transfor-
mation of the separation vector, r → Ar′; second, the
primed correlation function is evaluated at a different
point in space and time (here, we have only made the
time shift explicit in the notation, but note that the cor-
rrelation function on the right hand side is to be evalu-
ated within a patch centered on x(x′0, τ

′)).
The linear order expansion in Eq. (A5) neglects higher

derivative terms in the coordinate transformation, i.e. it
is valid in the limit that the transformation is slowly
varying over the patch. The terms we are neglecting
in Eq. (A5) correspond to terms of order k2

L and higher,
where kL is the wavenumber of the long-wavelength mode
that contributes to the coordinate transformation. Since
we are neglecting terms of order k2

L throughout this pa-
per, it is sufficient to expand to linear order.

A second simplification occurs because we are only con-
sidering three-point correlations in this paper. In this
case, it is sufficient to consider the linear response of
ξ′(r′, τ ′) to the coordinate transformation. We thus write

Aij = δij − aij
∆τ = τ(x′0, τ

′)− τ ′ (A15)

and work to linear order in aij and ∆τ . Further, we can
neglect the effect of the spatial shift in the position at
which ξ is evaluated. This is because the contribution
from this shift,

ξ′(r′, τ ′) ⊃ [x(x′0, τ
′)− x′0] · ∇x′0

ξ(r′, τ ′)|x′0 (A16)

is second order, since both the spatial shift and the lo-
cation dependence of ξ are at least linear order in the
long-wavelength perturbations. Eq. (A10) then simpli-
fies to Eq. (4),

ξ′(r′; τ ′) =
[
1− aijr′i∂jr′ + ∆τ ∂τ

]
ξ(r′; τ ′) . (A17)

1. Coordinate transformations in the presence of
non-trivial backgrounds

There is a conceptual point to clarify about the trans-
formation properties of perturbations under changes of
coordinates. There are two different but equivalent ways
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to work with coordinate transformations when study-
ing perturbations on top of some non-trivial background.
The first one consists in changing every field in the same
way, whether it is going to be treated as a background
or not in the rest of the computation. This “democratic”
approach is conceptually very simple. For example, if a
scalar field transforms as ρ′(x′) = ρ(x(x′)), so does its
background ρ̄′(x′) = 〈ρ′(x′)〉 = 〈ρ(x)〉 = ρ̄(x). Using
this point of view, perturbation of the scalar field around
that same background must transform in the same way
as well. To see this, consider δ(x) ≡ ρ(x) − ρ̄(x) (notice
that 〈δ〉 = 0). Then

δ′(x′) = ρ′(x′)− ρ̄′(t′) = ρ(x)− ρ̄(t) = δ(x) , (A18)

In the second approach to the problem one splits the
field in perturbation and background in such a way that
the latter is invariant under coordinate transformations,
i.e. ρ̄′(x) = ρ̄(x) (in the cosmological context, the back-
ground quantity is only a function of τ). This simplifica-
tion comes at the cost of more complicated transforma-
tion laws for the perturbations, which now do not trans-
form as a scalar field. Considering the same example as
above and a transformation x′ = x+ ε, at linear order in
ε one gets

δ′(x′) = ρ′(x′)− ρ̄′(x′) = ρ′(x′)− ρ̄(x′) (A19)

= ρ(x)− ρ̄(x) + εµ∂µρ̄(x) = δ(x) + εµ∂µρ̄(x) .

Notice that in both approaches ρ′(x′) = ρ(x(x′)), while
the two different conventions above concern only the
transformations of background and perturbations. A
similar discussion can be given for tensor fields such as
the metric. Again one has two choices: either one defines
metric perturbations that transform like the component
of a tensor, in which case the metric background changes
when one changes coordinates or the background is as-
sumed fixed in any coordinates and metric perturbations
have additional terms in their transformations.

We warn the reader that in the derivation of App. A
we have used the “democratic convention” as opposed
to the fixed background convention which is standard in
the cosmological literature (e.g. [56]). However, it should
be kept in mind that around a homogeneous background
with a long wavelength perturbation, the additional con-
tribution in the last term of Eq. (A19) is just a con-
stant or a pure gradient at the order we are working in,
and hence does not contribute to the correlation function
evaluated on much smaller scales r. This means that our
final result Eq. (A17) is valid independently of the con-
vention used for defining the perturbations.

Appendix B: Squeezed-limit three-point function from transformed two-point correlation

This section derives the squeezed-limit three-point function and bispectrum from a coordinate transformation of
the two-point function given by Eq. (A17),

ξ′(r; τ) =
[
1− aijri∂jr + ∆τ ∂τ

]
ξ(r; τ) , (B1)

where we have dropped the prime on coordinates since we will only deal with primed coordinates in this section.
Specifically, we want to derive the three point function 〈X ′(x3)δ′(x1)δ′(x2)〉 in the limit where |x3 − x1| � |x1 − x2|
(squeezed limit). Here, X and δ stand for any perturbation variables with mean zero (of course, the auto-three-point
function X = δ is a special case). In this limit, the three-point function quantifies the modulation of the local two-point
function ξ′(|x1 − x2|) by a long-wavelength perturbation X ′ (modes with wavelength much less than |x3 − x1| will
not contribute to this correlation). As discussed in Sec. II, the coordinate transformation only acts on the small-scale
fluctuations, so that we set X ′(x) = X(x). Thus,

〈X ′(x3)δ′(x1)δ′(x2)〉 squeezed
= 〈X ′(x3)ξ′(x1 − x2; τ)|X′(xc)〉, (B2)

where we have defined the point of evaluation of the long-wavelength X perturbation as

xc = cx1 + (1− c)x2 . (B3)

Choosing xc along the axis connecting x1 and x2 is necessary since Eq. (B2) describes a homogeneous and isotropic
three-point function. The midpoint x0 = (x1 + x2)/2 corresponds to c = 1/2. We will see that the choice of c does
not influence the final result below. Using Eq. (B1), this yields

〈X ′(x3)δ′(x1)δ′(x2)〉 squeezed
=

[
−ξXaij (|x3 − xc|)ri∂jr + ξX∆τ (|x3 − xc|) ∂τ

]
ξ(x1 − x2; τ) + 〈X(x3)ξ(x1 − x2; τ)|X(xc)〉

=
[
−ξXaij (|x3 − xc|)ri∂jr + ξX∆τ (|x3 − xc|) ∂τ

]
ξ(x1 − x2; τ) + 〈X(x3)δ(x1)δ(x2)〉 . (B4)

This expression gives the squeezed-limit three-point function of X ′ and δ′ (in the primed coordinates) in terms of
derivatives of ξ(r, τ) and the three-point function of X and δ in the unprimed coordinate frame.
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The left-hand side of Eq. (B4) is clearly symmetric under x1 ↔ x2. For a general choice of xc, this does not hold
for the right-hand side, so we should symmetrize:

〈X ′(x3)δ′(x1)δ′(x2)〉 squeezed
=

1

2

[
− ξXaij (|x3 − xc|)ri∂jr − ξXaij (|x3 − x′c|)ri∂jr

+ ξX∆τ (|x3 − xc|) ∂τ + ξX∆τ (|x3 − x′c|) ∂τ
]
ξ(x1 − x2; τ) + 〈X(x3)δ(x1)δ(x2)〉 ,

(B5)

where x′c = (1 − c)x1 + cx2. Of course, if we choose xc to be the midpoint of x1 and x2, the two permutations are
identical.

We now derive the Fourier-space analog of Eq. (B5). In terms of the cross-power spectra PXaij (k), PX∆τ (k) and
the auto power spectrum Pδ(k), we have

〈X(x3)aij(xc)〉 =

∫
d3kL
(2π)3

PXaij (kL)eikL[x3−xc]

〈X(x3)∆τ(xc)〉 =

∫
d3kL
(2π)3

PX∆τ (kL)eikL[x3−xc]

r̄j∂iξ(r, τ) =

∫
d3kS
(2π)3

Pδ(kS , τ)r̄j∂ie
ikSr

= −
∫

d3kS
(2π)3

∂

∂kjS

[
kiSPδ(kS)

]
eikSr

∂τ̄ξ(r̄, τ) =

∫
d3kS
(2π)3

∂τPδ(kS , τ)eikSr . (B6)

The bispectrum in the squeezed limit kL � k1, k2 becomes

〈X ′(kL)δ′(k1)δ′(k2)〉 =

∫
d3x3

∫
d3x1

∫
d3x2e

−i(kLx3+k1x1+k2x2)〈X(x3)δ′(x1)δ′(x2)〉

squeezed
=

1

2

{[
PXaij (kL)

∂

∂kjS

[
kiSPδ(kS)

]
+ PX∆τ (kL)

∂

∂τ
Pδ(kS)

]
kS=k1+ckL

+ (c→ 1− c)
}

× (2π)3δD (k1 + k2 + kL) + 〈X(kL)δ(k1)δ(k2)〉 . (B7)

Thus, the transformed bispectrum has the proper delta function ensuring the triangle condition, and we can identify
the X ′δ′δ′−bispectrum in the squeezed limit as

BX′δ′δ′(kL,k1,k2)
squeezed

=
1

2

{[
PXaij (kL)

∂

∂kjS

[
kiSPδ(kS)

]
+ PX∆τ (kL)

∂

∂τ
Pδ(kS)

]
kS=k1+ckL

+ (c→ 1− c)
}

+BXδδ(kL,k1,k2)

=
1

2

{[
PXaij (kL)

(
δij +

kiSk
j
S

k2
S

d

d ln kS

)
Pδ(kS) + PX∆τ (kL)

∂

∂τ
Pδ(kS)

]
kS=k1+ckL

+ (c→ 1− c)
}

+BXδδ(kL,k1,k2) . (B8)

Since we are working in the squeezed limit, we can expand in k1/kL. We have

F (|k1 + ckL|) = F (k1) + ck̂1 · k̂L
kL
k1

d

d ln k1
F (k1) +O(k2

L/k
2
1)

kiSk
j
S

k2
S

=
ki1k

j
1

k2
1

(
1− 2c

k1 · kL
k2

1

)
+ 2c

k
(i
1 k

j)
L

k2
1

+O(k2
L/k

2
1)

dPδ(ks)

d ln kS
=
dPδ(k1)

d ln k1
+ ck̂1 · k̂L

kL
k1

d2

d(ln k1)2
Pδ(k1) +O(k2

L/k
2
1) . (B9)
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We already see that all corrections are linear in c, so that the two permutations c, 1− c add up to 1. Thus, the result
becomes independent of the choice of c, and the squeezed limit bispectrum in terms is, to order (k2

L/k
2
1),

BX′δ′δ′(kL,k1,k2)
squeezed

= PXaij (kL)

(
δij +

ki1k
j
1

k2
1

d

d ln k1

)
Pδ(k1) + PX∆τ (kL)

∂

∂τ
Pδ(k1)

+ k̂1 · k̂L
kL
k1

1

2

{
PXaij (kL)

(
δij +

ki1k
j
1

k2
1

[
d

d ln k1
− 2

])
dPδ(k1)

d ln k1
+ PX∆τ (kL)

∂

∂τ

dPδ(k1)

d ln k1

}

+ PXaij (kL)
k

(i
1 k

j)
L

k2
1

dPδ(k1)

d ln k1
+BXδδ(kL,k1,k2) . (B10)

Since k2 = −k1 +O(kL/k1), this expression can be equivalently written in terms of k2 instead of k1. Since the choice
of c is arbitrary, we will use the most natural choice, c = 1/2, in which case Eq. (B8) becomes simply

BX′δ′δ′(kL,k1,k2)
squeezed

=

[
PXaij (kL)

(
δij +

kiSk
j
S

k2
S

d

d ln kS

)
Pδ(kS) + PX∆τ (kL)

∂

∂τ
Pδ(kS)

]
kS=k1+kL/2

+BXδδ(kL,k1,k2) . (B11)

While this expression is equivalent to Eq. (B10) up to order k2
L, we will work with this result since it is more compact

and convenient.
Including the effect of a mean density modulated by X following Eq. (44) in Sec. IV is now an obvious generalization.

We obtain

BX′δ′δ′(kL,k1,k2)
squeezed

=

[
PXaij (kL)

(
δij +

kiSk
j
S

k2
S

d

d ln kS

)
Pδ(kS) + PX∆τ (kL)

∂

∂τ
Pδ(kS) + 2PXc(kL)Pδ(kS)

]
kS=k1+kL/2

+BXδδ(kL,k1,k2) . (B12)

We can now further decompose aij as

aij =
1

nD
aδij + aTij , (B13)

where nD is the dimensionality of the space in which we define the correlations, and aTij is traceless. In particular
nD = 3 for three-dimensional observables such as galaxy densities or 21cm flux, and nD = 2 for projected quantities
on the sky such as the CMB. We then obtain

BX′δ′δ′(kL,k1,k2)
squeezed

=

[
PXa(kL)

(
1 +

1

nD

d

d ln kS

)
Pδ(kS) + PXaTij (kL)

kiSk
j
S

k2
S

dPδ(kS)

d ln kS

+ PX∆τ (kL)
∂

∂τ
Pδ(kS) + 2PXc(kL)Pδ(kS)

]
kS=k1+kL/2

+BXδδ(kL,k1,k2)

=

[
PXa(kL)Pδ(kS)

d ln(knD

S Pδ(kS))

d ln kS
+ PXaTij (kL)

kiSk
j
S

k2
S

dPδ(kS)

d ln kS

+ PX∆τ (kL)
∂

∂τ
Pδ(kS) + 2PXc(kL)Pδ(kS)

]
kS=k1+kL/2

+BXδδ(kL,k1,k2) . (B14)

Note that the contribution of the trace of aij scales as the logarithmic deerivative of knDPδ(k), while the trace-free
component aTij couples to the logarithmic derivative of Pδ(k) itself.

Appendix C: Fermi Normal Coordinates

1. FNC construction and metric

In this section, we show how for a general metric, the
coordinates xµF defined through Eq. (C2) below in fact

do lead to a metric of the form

gFµν = ηµν +O(x2
F ) . (C1)
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To quadratic order, the Fermi coordinate transformation
is given by

xµ(xiF )
∣∣∣
tP

= xµ(P ) + (ei)
µ
P x

i
F −

1

2
Γµαβ

∣∣∣
P

(ei)
α
P (ej)

β
Px

i
Fx

j
F .

(C2)

Straightforward algebra yields the transformation matrix
as

∂xα

∂xµF
= (eµ)αP +Aαµjx

j
F +O(x2

F ), (C3)

where a subscript P denotes the evaluation at the point
on the central geodesic specified by x0

F . Here,

Aα0j = (e0)βP [∂β(ej)
α]P

Aαij = − Γαβγ

∣∣∣
P

(ei)
β
P (ej)

γ
P (C4)

Using the fact that the unit vectors (ej)
α are assumed

to be parallel-transported along the central geodesic, we
have

0 = (e0)βP [∇β(ej)
α]P = (e0)βP

{
∂β(ej)

α + Γαβλ(ej)
λ
}
P
,

which can be used to bring Aαµj into a uniform expression:

Aαµj = −Γαβγ

∣∣∣
P

(eµ)βP (ej)
γ
P . (C5)

Next, we expand

gαβ(x(xF )) = gαβ

∣∣∣
P

+ (ej)
γ
P [∂γgαβ ]P x

j
F . (C6)

Finally, using that

gαβ

∣∣∣
P

(eµ)αP (eν)βP = ηµν (C7)

by construction of the orthonormal tetrad (note that this
holds for any velocity vi at order v), we obtain

gFµν(xF ) = gαβ(x(xF ))
∂xα

∂xµF

∂xβ

∂xνF

= ηµν +
[
∂γgαβ − 2gλβΓλαγ

]
(e(µ)αP (eν))

β
P (ej)

γ
Px

j
F

+O(x2
F ). (C8)

Assuming that we have a metric connection so that

∇γgαβ = ∂γgαβ − 2Γλγ(αgλβ) = 0, (C9)

we see that the order xjF correction to the metric van-
ishes.

So far, we have not used the condition that the central
curve whose tangent vector is (e0)µ is a geodesic. How-
ever, if we want the metric in FNC to be of the form
Eq. (C1) at more than just one point along the central
curve, we clearly need at lowest order

(e0)γ∇γ
[
gαβ(eµ)α(eν)β

]
P

= 0. (C10)

This in particular implies

(e0)γ∇γ(e0)µ = 0 (C11)

along the curve, which is precisely the condition for the
central curve to be a geodesic.

2. Transformation from general coordinates to FNC

We now explicitly derive the transformation Eqs. (12)–
(13) into the FNC frame. We write the conformal metric
as

ḡµν = ηµν + hµν , (C12)

and work to linear order in hµν . The tetrad around P is
given by

(e0)µ =

(
1 +

1

2
h00, v

i

)
(ej)

µ =

(
vj + h0j , δ

i
j −

1

2
h i
j

)
. (C13)

Note that we treat v as O(h) here, as we are assuming
comoving observers. Since (eα)µ = δ µα +O(h) and Γµαβ =

O(h), we have for the transformation into FNC at lowest
order in h:

xµ(x̄αF ) = Pµ + (ei)
µ
P x̄

i
F −

1

2
Γµij

∣∣∣
P
xiFx

j
F , (C14)

where Pµ ≡ xµ(P ) are the global coordinates of the cen-
tral geodesic, so that vi = ∂P i/∂x0 and we define analo-
gously P̄µ ≡ x̄µF (P ) for FNC. The conformal proper time

P̄ 0 defines the time coordinate of FNC, namely P̄ 0 = x̄0
F .

Without loss of generality, we can choose the spatial ori-
gin so that P̄ i(τF ) = 0 at some fixed proper time τF .
To lowest order in h and v, the conformal proper time is
related to the global time by

x0(P ) = x̄0
F +

1

2

∫ x̄0
F

0

h00(0, τ)dτ . (C15)

The Christoffel symbols are given by

Γµij =
1

2

[
hµi,j + hµj,i − h ,µ

ij

]
, (C16)

where indices are raised and lowered with ηµν . Thus,

x0(x̄αF ) = x̄0
F +

1

2

∫ x̄0
F

0

h00(τ)dτ + (vi + h0i)x̄
i
F

− 1

4

[
h0
i,j + h0

j,i − h′ij
]
x̄iF x̄

j
F

= x̄0
F +

1

2

∫ x̄0
F

0

h00(τ)dτ + (vi + h0i)x̄
i
F

+
1

4

[
h0i,j + h0j,i + h′ij

]
x̄iF x̄

j
F (C17)

xk(x̄αF ) = P k − 1

2
hkix̄

i
F −

1

4

[
hki,j + hkj,i − h ,k

ij

]
x̄iF x̄

j
F .

(C18)

Here all terms linear in perturbations, namely hµν and
vi, should be evaluated along the central geodesic Pµ.
For x̄0

F 6= τF , the spatial position of the geodesic differs
from the origin in the xµ coordinate system by an amount
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∆x0
F v

i, which is linear in perturbations (we will shortly
find vi from the geodesic equation). Therefore, up to
terms quadratic in metric perturbations, we can evaluate
hµν and vi at the origin of the FNC x̄iF = P̄ i(x0

F∗) ≡ 0.
At linear order in h, the inverse transformation is very

easily derived:

x̄0
F (xα) = x0 − 1

2

∫ x0

0

h00(τ)dτ − (vi + h0i)x
i

− 1

4

[
h0i,j + h0j,i + h′ij

]
xixj (C19)

x̄kF (xα) = xk +
1

2
hkix

i +
1

4

[
hki,j + hkj,i − h ,k

ij

]
xixj .

(C20)

Note that when h0i 6= 0 there is no solution in which
the observer is at rest. We now focus on this case now,
where we can set hij = h00 = 0, since their effect is
simply additive and was considered above. For hi0 6= 0,
one needs to know the relation between vi and h0i that is
enforced by the geodesic equation for P. Assuming as we
did previously that the velocity vi = ∂P i/∂x0 is of the
same order as h0i, the geodesic equations at linear order
in perturbations in global coordinates are given by(

∂

∂x0

)2

P 0 = 0 ,

(
∂

∂x0

)2

P i + Γi00

(
∂P 0

∂x0

)2

= 0 ,

where we used the fact that Γµνσ is at least linear in met-
ric perturbations. The first equation tells us that proper
time coincides with the global time coordinate at this or-
der, up to two arbitrary integration constants, which we
fix by choosing P 0 = x0. This is no surprise since we are
assuming h00 = 0. Then, from the second equation, we
find vi = ∂P i/∂x0 = −h0i, where we have set another in-
tegration constant to zero following the assumption that
∂0P

i is linear in h0i. Specifically, for x̄0
F close to τF , we

have

xi(P ) = vi(x̄0
F − τF ), (C21)

so that to leading order

xk(x̄αF ) = vk(x̄0
F − τF ) + x̄kF −

1

2
hkix̄

i
F

− 1

4

[
hki,j + hkj,i − h ,k

ij

]
x̄iF x̄

j
F (C22)

x̄kF (xα) = xk − vk(x0 − τF ) +
1

2
hkix

i

+
1

4

[
hki,j + hkj,i − h ,k

ij

]
xixj . (C23)

Appendix D: Uniqueness of Fermi Normal
Coordinates

In this section we investigate what residual coordinate
freedom remains when requiring that the metric be of
“FNC form”:

gFµν = ηµν + Sµνijx
i
Fx

j
F . (D1)

Here, Sµνij in general depends on the affine parameter
along the central geodesic, i.e. the Fermi-frame time coor-
dinate tF . Let us consider a general inertial frame {x′µ}
constructed around point P . Without loss of generality,
we let P be at the origin of both the {x′µ} and {xµF }
coordinate systems. The requirement that {x′µ} be in-
ertial, i.e. that g′µν = ηµν at P and that ∂′αg

′
µν = 0 at

P , restricts the relation between the coordinates to be at
least of cubic order:

x′α = xαF +
1

3
Cαβγδx

β
Fx

γ
Fx

δ
F +O(x4

F )

xαF = x′α − 1

3
Cαβγδx

′βx′γx′δ +O(x′4). (D2)

Here,

Cαβγδ =
∂3x′α

∂xβFx
γ
Fx

δ
F

∣∣∣
P
, (D3)

which implies

Cαβγδ = Cα(βγ)δ = Cαβ(γδ) = Cα(βγδ), (D4)

i.e. the last equality states that Cαβγδ = Cαδγβ . The

metric in the primed frame then becomes to order x′2:

g′µν = ηµν +
[
Sµνγδ − 2C(µν)γδ

]
x′γx′δ. (D5)

By assumption, Sµνγδ obeys the “FNC condition”

Sµν0δ = 0 = Sµνγ0. (D6)

Imposing the same restriction on g′µν leads to the condi-
tion

C(µν)0δ = 0 = C(µν)γ0. (D7)

Using the symmetry properties Eq. (D4), we obtain

C(µ0)γδ = 0. (D8)

This says that there is no freedom in the orderO(x2
F ) cor-

rections to the Fermi-frame metric components gF00 and
gF0i for coordinates satisfying the condition Eq. (D1) (but
see below). However, there is some freedom in choosing
the spatial part gFij , since a non-zero Cijkl is allowed by
Eq. (D1).

Finally, there is an additional freedom in the choice of
coordinates which does not affect the metric at order x2

F .
Namely, we can choose C[0µ]ij 6= 0. Specifically,

C0kij = −Ck0ij = 3αkAij , (D9)

where we have introduced a 3-vector αk and a sym-
metric 3-tensor Aij . By construction, C(0µ)γδ = 0.
This corresponds to a coordinate transform of (note that
C0
kij = −αkAij)

x′0 = x0
F − αkxkF AijxiFxjF

x′i = xiF − αix0
F Aljx

l
Fx

j
F . (D10)
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In other words, this coordinate transform is a spatially
location-dependent Lorentz boost with a velocity given
by

vk(xlF ) = αk Aijx
i
Fx

j
F , (D11)

which vanishes quadratically on the central geodesic.
This type of coordinate transform leaves the Fermi frame
metric entirely invariant at order x2

F .
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