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• An alternative model to single-field inflation for the origin of structures!

• The inflaton drives inflation while the curvaton generates curvature perturbations (hence 
the name)!

• This “liberates” the inflaton, at the expense of making inflation less predictive!

• We now have two light degrees of freedom during inflation, sensitive to two potentials and 
initial conditions.!

!

• The curvaton is a light field which!

1. has a subdominant energy density during inflation!

2. Is long lived (compared to the inflaton)!

3. Generates the primordial curvature perturbation!

• We will often drop assumption 3, and consider the mixed inflaton-curvaton scenario

The curvaton scenario
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• Adding one extra field allows for interesting new phenomenology which single-field inflation 
cannot generate!

1. Large local non-Gaussianity (breaking the Maldacena consistency relation between the 
squeezed bispectrum and the power spectrums spectral index)!

2. Isocurvature perturbations - the relative energy density of different components (e.g. 
radiation and cold dark matter) is a function of position on all scales !

3. A suppressed tensor-to-scalar ratio r!

Observations don’t (currently) require a second field, but high energy theories might 

A brief history: The usual suspects from 2001: Enqvist and Sloth, Lyth and Wands (who 
created the name and got ~900 citations), Moroi and Takahashi.  

Plus two related older papers, Linde and Mukhanov (1996), Mollerach (1990)

Curvaton phenomenology
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• Several other models predict essentially identical phenomenology (local non-Gaussianity, isocurvature 
perturbations and suppressed tensor perturbations)!

• For example !

1. Modulated reheating (the efficiency of reheating is a function of position)!

2. Inhomogeneous end of inflation (inflation ends later in some positions)!

3. Models with a subdominant field curving the trajectory during inflation!

• This is not a coincidence, all models are tracking the conversion of an initial isocurvature perturbation 
(corresponding to a light and subdominant field) into the adiabatic perturbation after inflation!

• Wait for the next two talks by Ewan and Joe!

• The models are physically different, and detailed predictions for the simplest realisations do vary!

• However the curvaton is the earliest and perhaps the simplest to study of these cases, extremely 
popular

Related models
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Planck measured power spectrumPlanck collaboration: CMB power spectra & likelihood
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-` values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.

Table 8. Constraints on the basic six-parameter ⇤CDM model using Planck data. The top section contains constraints on the six
primary parameters included directly in the estimation process, and the bottom section contains constraints on derived parameters.

Planck Planck+WP

Parameter Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022032 0.02205 ± 0.00028

⌦ch2 . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.12038 0.1199 ± 0.0027
100✓MC . . . . . . . 1.04122 1.04132 ± 0.00068 1.04119 1.04131 ± 0.00063

⌧ . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . 3.098 3.103 ± 0.072 3.0980 3.089+0.024
�0.027

⌦⇤ . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6817 0.685+0.018
�0.016

⌦m . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.37 11.1 ± 1.1

H0 . . . . . . . . . . 67.11 67.4 ± 1.4 67.04 67.3 ± 1.2

109As . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.196+0.051
�0.060

⌦mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14305 0.1426 ± 0.0025
Age/Gyr . . . . . . 13.819 13.813 ± 0.058 13.8242 13.817 ± 0.048
z⇤ . . . . . . . . . . . 1090.43 1090.37 ± 0.65 1090.48 1090.43 ± 0.54
100✓⇤ . . . . . . . . 1.04139 1.04148 ± 0.00066 1.04136 1.04147 ± 0.00062
zeq . . . . . . . . . . . 3402 3386 ± 69 3403 3391 ± 60

33

Looks complicated, but all this can be fit by a primordial power law spectrum 
with just two input parameters!
The range of scales probed is 2500/2=103=e7   - corresponds to about 7 
efoldings of inflation

Planck collab 2013 XV
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• Planck observes ~107 pixels in the CMB sky!

•  Reduced to ~103 Cl!

• Further reduced to A and ns-1!

• Can only be justified if the perturbations are Gaussian!

• Then by Wicks theorem, the odd point correlators are zero, the 
even ones are reducible to products of two points functions - i.e. 
all information is contained in the power spectrum

Enormous data compression
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Why Gaussian perturbations?
• Gaussian perturbations are found everywhere in nature!

• Often due to the central limit theorem!

• The ground state of the simple harmonic oscillator is Gaussian - quantum origin of 
perturbations!

• The initial curvaton field perturbation is expected to be Gaussian
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Curvaton evolution

• For simplicity, we initially assume a quadratic potential for the curvaton, 
most papers in the literature do so!

!

!

• Just for a quadratic potential, the two evolution equations are the same.  
This implies that the ratio of the two solutions is constant in time. The 
second equation neglects back reaction from gravity, accurate as long as 
its energy is subdominant
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Curvaton density perturbations

• This is a constant!

• The truncation at second order follows because we assumed a quadratic potential!

• The above formula follows the local model, and if the above was the final result for zeta 
we would have fNL~1!

• Gravity is non-linear, so further non-Gaussianities will be generated in all models, this also 
generates fNL~1, but with a different shape which can be observationally distinguished - 
Antony Lewis’s talk!

• The above form of non-Gaussianity, Gaussian + Gaussian squared is known as the local 
form of non-Gaussianity!

• However, we should consider that the curvaton is not the only component of the universe



Curvaton model I

Dimopoulos (2010)

R. Hardwick (University of Sussex) Curvaton Inflation MSc Project, 2014 6 / 16
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Curvaton background evolution:!
Log of scale factor versus log of energy density

Here we assume that the curvaton and inflaton decay instantaneously into radiation!
The longer the curvaton lives, the larger its relative energy density becomes, as measured by rdec!

The curvaton may decay before or after it becomes dominant

oscillating curvaton, m>H

frozen curvaton, m<<H

curvaton decays into radiation

⌦� = 1               is an attractor if the 
curvaton decays late enough
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Figure 2.4: An indictation of how log(�
�

) varies as a function of r
dec

by plotting it for set

values of m = 10�8M
P

and �⇤ = 10�4M
P

which both have the e↵ect of shifting the entire

plot along the vertical axis as can be seen from inspection of equation (2.29).

2.2.1 mCM2: Quadratic Inflaton n
S

and r

Beginning with the quadratic inflaton the next step is to parametrise the degree to which

the spectrum of the primordial curvature perturbation is generated by the curvaton, which

is done as in [1] by defining separate contributions P�

⇣

and P�

⇣

which sum to give

Ptotal

⇣

= P�

⇣

+ P�

⇣

, (2.32)

the total power spectrum. We now introduce a parameterisation of the total power spec-

trum as in [1]

P�

⇣

=
M2

M2
SF2

Ptotal

⇣

, (2.33)

where M
SF2 is the mass attributed to the inflaton if it were alone. The power spectrum

in the single field inflaton case is

PSF2
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Now one can use this relation and the observed power spectrum normalisation [18]

Pobs.

⇣

' 2.2⇥ 10�9, (2.35)

to substitute into equation (2.34) at which point one obtains an expression for the single

field limit inflaton mass value M [1]

Curvaton decay rate vs rdec
The curve will shift for different choices of masses and initial curvaton vev. But the 
shape remains the same.  
For small curvaton decay rates, rdec->1 
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3. is long lived.

4. generates the entire primordial curvature perturba-
tion.

In common with many other papers, we will abandon as-
sumption 4 to include the mixed inflaton–curvaton sce-
nario. We later discuss the case where the curvaton itself
drives a short period of inflation [11], which is permitted
by the above assumptions though this possibility is often
ignored.

Throughout we denote the inflaton field by �, defined
as the field which dominates the energy density when
observable scales first cross outside the horizon, and the
curvaton field by � (though in some parameter regimes
the curvaton can contribute a late-stage era of inflation).
Assumption 3 states that the curvaton has the longer de-
cay timescale of the two fields. We focus on the simplest
curvaton model [9], featuring two massive non-interacting
fields with potential

V (�,�) =
1

2
m2

��
2 +

1

2
m2

��
2 (1)

The number of e-foldings of inflation from field values
� and � is given by [decided to remove the stars
from these, so that later * means evaluating
this formula at a particular time]

N = 2⇡
�2 + �2

m2

Pl

(2)

where m
Pl

is the (non-reduced) Planck mass and we have
neglected the small contributions from the field values at
the end of inflation.

Like the authors of Ref. [4], we consider the full range
from negligible to full curvaton contribution to the total
power spectrum, given by:

P total

⇣ = P�
⇣ + P�

⇣ , (3)

We can parametrize the inflaton contribution to the total
power spectrum as

P�
⇣ =

m2

�

m2

single

P total

⇣ (4)

Here m
single

is the mass that the inflaton would need if it
were to give the correct amplitude of perturbations in the
single-field case; in a scenario where both field contribute
this is an upper limit to the actual inflaton mass m�. It
is determined by

P
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where * refers to the parameter value when observ-
able scales crossed the Hubble radius during inflation,

V
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in the single-field model. Taking the observed amplitude
as [12, 13]

P obs

⇣ ⇠ 2.2⇥ 10�9 , (8)

we obtain

m2

single

m2

Pl

= 5.2⇥ 10�9

1

N2

⇤
. (9)

The ratio m2

�/m
2

single

will appear throughout in our ex-
pressions as a measure of the relative contribution of the
inflaton to the power spectrum in each model.
The curvaton contribution to the power spectrum is

determined by the ratio of curvaton to background energy
density at the time the curvaton decays into the thermal
bath:

r
dec

⌘ 3⇢�
4⇢� + 3⇢�

����
decay

(10)

where we assumed the background is radiation domi-
nated at the time of curvaton decay. We will be con-
sidering the full regime 0 < r

dec

< 1.
Equation (10) is defined to as to provide a unified ex-

pression for the curvaton perturbation in the regimes of
radiation and curvaton domination at the time of decay,
which is [14] [Probably this isn’t the first ref that
uses Eq10 but it is the oldest I found. ARL]

P�
⇣ =

r2
dec

9⇡2

H2

⇤
�2

⇤
. (11)

We use the normalization amplitude Eq. (8) to fix the
ratio r2

dec

H2

⇤/�
2

⇤ and obtain [MC noted we were us-
ing subscript * and pivot for the same thing. I
have changed all to *. ARL]

r2
dec

= 5.9⇥ 10�7
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�
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single

!
�2

⇤
2m2

�N⇤
(12)

where henceforth N⇤ is the e-foldings number at which
the Planck normalization scale 0.05Mpc�1 crosses the
Hubble radius during inflation. Requiring r

dec

to take
physically-realisable values, 0 < r

dec

< 1, is the first
constraint on the model parameters.

III. PARAMETRIZATION OF THE NUMBER
OF e-FOLDINGS

To impose accurate constraints we need to identify the
correct number of e-foldings corresponding to the pivot
scale at which observables are evaluated. The number of

Credit: Robert Hardwick
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The local model of non-Gaussianity

• The local model which arises from super-horizon evolution of the curvature perturbation!

• Zeta is conserved in single-field models on large scales, therefore this model only arises in models 
with multiple light fields present during inflation!

• The Planck constraint (and WMAP9 in brackets) are!

!

• Using the power spectrum amplitude, we see that the CMB is at least 99.9% Gaussian for this model.!

• This shape has its largest signal in the squeezed limit, when one wavelength is very large!

• Because a detection of a squeezed limit bispectrum would rule out all single-field models, the local 
model has been studied in great depth

Komatsu et al; Decadel review 2009
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Corrections to fNL

• The basic result is correct, the less efficient the transfer from the 
curvaton perturbation to total curvature perturbation, the larger the 
non-Gaussianity becomes. This holds quite generally!

• The “full” result is!

!

!

!

• If fNL is large, !

• The Planck constraint, fNL<10, tells us rdec>0.1. A priori, 10-5 was possible.!

• If the curvaton dominates before it decays fNL=-5/4

2

3. is long lived.

4. generates the entire primordial curvature perturba-
tion.

In common with many other papers, we will abandon as-
sumption 4 to include the mixed inflaton–curvaton sce-
nario. We later discuss the case where the curvaton itself
drives a short period of inflation [11], which is permitted
by the above assumptions though this possibility is often
ignored.

Throughout we denote the inflaton field by �, defined
as the field which dominates the energy density when
observable scales first cross outside the horizon, and the
curvaton field by � (though in some parameter regimes
the curvaton can contribute a late-stage era of inflation).
Assumption 3 states that the curvaton has the longer de-
cay timescale of the two fields. We focus on the simplest
curvaton model [9], featuring two massive non-interacting
fields with potential
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where m
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is the (non-reduced) Planck mass and we have
neglected the small contributions from the field values at
the end of inflation.

Like the authors of Ref. [4], we consider the full range
from negligible to full curvaton contribution to the total
power spectrum, given by:
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Here m
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in the single-field model. Taking the observed amplitude
as [12, 13]
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will appear throughout in our ex-
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density at the time the curvaton decays into the thermal
bath:
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nated at the time of curvaton decay. We will be con-
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uses Eq10 but it is the oldest I found. ARL]
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Hubble radius during inflation. Requiring r
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< 1, is the first
constraint on the model parameters.

III. PARAMETRIZATION OF THE NUMBER
OF e-FOLDINGS

To impose accurate constraints we need to identify the
correct number of e-foldings corresponding to the pivot
scale at which observables are evaluated. The number of
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Mixed inflaton-curvaton scenario

The power spectra due to the two fields is

P
�

⇠ 1
✏

✓
H⇤

2⇡

◆
2

, P
�

⇠ ⌦2

�

1
�2

⇤

✓
H⇤

2⇡

◆
2

,

and the total power spectrum is

P
⇣

= P
�

+ P
�

.

The bispectrum is unchanged from the pure curvaton limit (� = 0),

B
⇣

= B
�

=
1
⌦

�

P 2

�

but f
NL

is reduced because the power spectrum is enhanced by the Gaus-
sian inflaton field perturbations

f
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⇣

P 2

⇣

=
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P 2

⇣

=
1
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�

P 2

�

P 2
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.

The tensor-to-scalar ratio is also reduced

r = 16✏
P
�

P
⇣

.

The power spectra due to the two fields is
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and the total power spectrum is

P
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�
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.

The bispectrum is unchanged from the pure curvaton limit (� = 0),

B
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sian inflaton field perturbations
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How can we distinguish ⌦
�

and � if f
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is detected?
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n
�

� 1 =
@ lnP

�

@ ln k
(18)

� ! 0, n
fNL ! 0 (19)

8

All light fields are perturbed during inflation, we will now include the inflaton 
field perturbations
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Higher-order non-Gaussianity

• For a quadratic potential, we may truncate at second order, 
which implies gNL=0. Quadratic potentials are simple to 
calculate with, so gNL has been unfairly neglected.!

• |gNL|>>fNL2 is possible with non-quadratic potentials!

• gNL is hard to constrain. The current bound is |gNL|<106, 
Planck has not yet produced a constraint
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Non-Gaussianity summary

• All single-source models must obey a relation between one 
trispectrum parameter and fNL!

!

• If multiple-fields contribute to zeta (eg the curvaton and inflaton), then!

!

!

• A large gNL would signal a non-quadratic potential for the curvaton!

• fNL will be scale dependent unless the curvaton potential is quadratic 
and the inflaton fluctuations are negligible!

• An explicit example of how much we could learn from non-
Gaussianity, it may contain lots of information



Isocurvature perturbations
• Cosmological perturbations may be of two classes, adiabatic or isocurvature!

• Adiabatic perturbations mean that locally all parts of the universe look the 
same, so e.g. the ratio of photons to baryons to CDM is the same 
everywhere!

• The curvaton can generate isocurvature perturbations (most multi-field 
models can, single-field models never can), but if the universe thermalises 
after curvaton decay then none will survive. The tight Planck constraints are 
not a problem for the curvaton scenario, unless you have specified the 
reheating process (which a complete model needs)!

• Planck polarisation data should significantly improve isocurvature bounds this 
year!

• Theorists are not really able to interpret the 1% level isocurvature 
constraints in terms of early universe models, the thermal history of the 
universe prior to BBN is poorly understood

17



The simplest curvaton scenario

!

!

• Parameter constraints were originally made by Bartolo and Liddle 
(2002), the data allowed so much freedom they restricted the 
model to i) the Gaussian case ii) negligible inflaton perturbations !

• CB, Cortes and Liddle (2014) revisited the model with Planck data. 
Even dropping those two assumptions we find the model is close to 
being ruled out. Observational data has improved a lot.!

• We also allow the inflating curvaton scenario, in which the curvaton 
drives a second period of inflation. Applies when sigma>MPl.

18
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We focus on the simplest curvaton model [10], featuring
two massive non-interacting fields with potential

V (�,�) =
1

2
m2

��
2 +

1

2
m2

��
2. (1)

The number of e-foldings of inflation from field values �
and � is given by

N = 2⇡
�2 + �2

m2

Pl

, (2)

where m
Pl

is the (non-reduced) Planck mass and we have
neglected the small contributions from the field values at
the end of inflation.

Like the authors of Ref. [5], we consider the full range
from negligible to full curvaton contribution to the total
power spectrum, given by:

P total
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⇣ . (3)

We can parametrize the inflaton contribution to the total
power spectrum as
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⇣ . (4)

Here m
single

is the mass that the inflaton would need if it
were to give the correct amplitude of perturbations in the
single-field case; in a scenario where both field contribute
this is an upper limit to the actual inflaton mass m�. It
is determined by
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where * refers to the parameter value when observ-
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in the single-field model. Taking the observed amplitude
as [14, 15]

P obs

⇣ ⇠ 2.2⇥ 10�9 , (8)

we obtain

m2
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Pl

= 5.2⇥ 10�9

1
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⇤
. (9)

The ratio m2

�/m
2

single

will appear throughout in our ex-
pressions as a measure of the relative contribution of the
inflaton to the power spectrum in each model.

The curvaton contribution to the power spectrum is
determined by the ratio of curvaton to background energy

density at the time the curvaton decays into the thermal
bath:

r
dec

⌘ 3⇢�

4⇢� + 3⇢�

����
decay

(10)

where we assumed that the inflaton has fully decayed into
radiation before the curvaton decays.
Equation (10) is defined so as to provide a unified ex-

pression for the curvaton perturbation in the regimes of
radiation and curvaton domination at the time of decay,
which is [16]
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We use the normalization amplitude Eq. (8) to fix the
ratio r2
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where henceforth N⇤ is the e-foldings number at which
the Planck normalization scale 0.05Mpc�1 crosses the
Hubble radius during inflation. Evaluating Eq. (10) re-
quires knowledge of the full curvaton evolution, but in
practice we will only use r

dec

via Eq. (12) as a constraint
on model parameters by requiring that it takes the phys-
ically realisable values 0 < r

dec

< 1, in Sec. IVB we will
see that the lower bound is tightened by the constraint on
local f

NL

. We may apply this constraint even if the cur-
vaton rolls significantly during inflation, i.e. if m� ' m�

[17].

III. PARAMETRIZATION OF THE NUMBER
OF e-FOLDINGS

To impose accurate constraints we need to identify the
correct number of e-foldings corresponding to the pivot
scale at which observables are evaluated. The number of
e-foldings that occurred after exit of the current Hubble
scale is given by [18]

N
hor

= 63 +
1

4
ln ✏+

1

4
ln

V
hor

⇢
end

+
1

12
ln

⇢
reh

⇢
end

, (13)

where all quantities are as in single-field models. We
parametrize observables as a function of the number of e-
folds before the end of inflation, when the corresponding
scale left the horizon, and so Eq. (13) gets a correction
to account for the di↵erence between the Hubble length
for which it holds, and the observable scale we measure
at. For the Planck pivot k = 0.05Mpc�1 we get,

N⇤ ⇠= N
hor

� 5 . (14)

We also parametrize the total amount of reheating e-
foldings, given by the last term of Eq. (13), as N

matter
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Curvaton post Planck

Red lines are for negligible curvaton mass, blue lines have m_sigma=m_phi/2. Green lines are the inflating 
curvaton regime, where it drives a second period of inflation. !

Curvaton scenario has a lower bound on rdec from the Planck satellite via fNL. But only a detection of fNL<-5/4 
would rule it out. However, the simplest curvaton scenario, where both it and the inflaton field have quadratic 
fields may soon be ruled out. Changing the inflaton potential changes the quadratic curvaton predictions. 
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Curvaton post Planck and BICEP2

Red lines are for negligible curvaton mass, blue lines have m_sigma=m_phi/2. Green lines are the inflating 
curvaton regime, where it drives a second period of inflation. !

BICEP2 adds a lower bound on the tensor to scalar ratio, which requires that the inflaton perturbations 
contribute at least 50% of the total curvature perturbation (talk to Tomo about a caveat). If confirmed, this 
rules out the original curvaton scenario, in which the inflaton perturbations and hence r are negligible.
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A difficult time for curvaton fans?

• Has the BICEP2 detection of large tensor modes ruled out the original curvaton scenario? 
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A difficult time for curvaton fans?

• Is the BICEP2 detection correct? The mood is swinging strongly against it, but we need to wait 
for new data and Planck dust maps!

• Right or wrong, mixed scenarios in which both the inflaton and curvaton contribute to the 
primordial curvature perturbation can never be ruled out by a detection of tensors!

• We may take a positive view, either a large negative running of the curvaton (Sloth 2014) or 
anti-correlated isocurvature modes (Kawasaki & Yokoyama 2014) as means to suppress the 
large scale power and alleviate possible Planck/BICEP tension

• Has the BICEP2 detection of large tensor modes ruled out the original curvaton scenario? 
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A difficult time for curvaton fans?

• In addition, Planck did significantly improve the constraints on both local non-Gaussianity 
and isocurvature perturbations, but there was no detection of either.  This makes the 
curvaton phenomenology less interesting.!

• However, the curvaton does not in any way require the existence of isocurvature 
perturbations today, and a natural limit of non-Gaussianity is local fNL=-5/4. So Planck data 
does not come close to ruling it out all curvaton scenarios.!

• Planck data alone puts pressure on the simplest curvaton scenario

• Is the BICEP2 detection correct? The mood is swinging strongly against it, but we need to wait 
for new data and Planck dust maps!

• Right or wrong, mixed scenarios in which both the inflaton and curvaton contribute to the 
primordial curvature perturbation can never be ruled out by a detection of tensors!

• We may take a positive view, either a large negative running of the curvaton (Sloth 2014) or 
anti-correlated isocurvature modes (Kawasaki & Yokoyama 2014) as means to suppress the 
large scale power and alleviate possible Planck/BICEP tension

• Has the BICEP2 detection of large tensor modes ruled out the original curvaton scenario? 
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The curvaton on a knife-edge?

Few people still believe BICEP 
The mixed scenario can never be ruled out 
But Planck has ruled out a lot of interesting 
parameter space
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Can we ever learn the truth?

• The curvaton scenario really is different from single-field inflation!

• During inflation we have a second, perturbed degree of freedom!

• From the end of inflation until after the curvaton decays, the universe 
behaves very differently. Both at the homogeneous and the perturbed 
level. !

• Because the perturbations are so tiny, fNL=-5/4 is a small perturbation. 
This might be the only surviving observational signature!

• The predictions are not similar because of fine tuning, and the curvaton is 
not a perturbative correction to single-field inflation!

• There is a good motivation to distinguish fNL~1 from 0
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Conclusions

• If confirmed, BICEP2 has ruled out the original curvaton scenario in which the 
inflaton perturbations can be neglected!

• Ignoring BICEP2, Planck has put pressure on the simplest curvaton scenario 
(quadratic inflaton and curvaton potentials), due to a combination of the spectral 
index and r. !

• The above is true even if we allow an arbitrary proportion of the perturbations to 
come from the inflaton (we also allow the curvaton to drive a second period of 
inflation). The data is good enough to start ruling out two-field scenarios!

• Non-Gaussianity constrains the curvaton to not be too subdominant, but are a 
long way from testing the fNL=-5/4 limit. If non-G is detected, we could learn a lot.!

• Without a detection of local non-Gaussianity or isocurvature perturbations we 
will never need a curvaton type mechanism, but this does not imply the curvaton 
didn't exist. How should we proceed? 
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A general test of single-source models

• For all models in which only one field generates the primordial curvature 
perturbation (other than the inflaton), there is a consistency relation between one 
term of the trispectrum and bispectrum!

!

• In models where multiple fields contribute there is instead the Suyama-Yamaguchi 
inequality!

!

• For the mixed inflaton curvaton scenario!

!

!

• From Planck, tauNL<2800 (95% confidence)
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where � is the inflaton field with Gaussian perturbations, and � is any
other field which is subdominant during inflation and has a quadratic
potential.
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Scale-dependence of fNL

• Analogously to the power spectrum, fNL is expected to have some scale 
dependence. This reflects evolution during inflation, e.g. it ends!
!

• It can distinguish between different non-Gaussian scenarios, not just between 
Gaussian and non-Gaussian models!

• The amplitude of fNL can be tuned in most non-Gaussian models, so a precise 
measurement of fNL wont do this!
!

• In contrast, the scale dependence often can not be tuned independently of: !
1. fNL !
2. spectral index of the power spectrum!

!
• Scale dependence arises from either multiple fields contributing to zeta, or due to self-

interactions in the potential (leading to non-linear equations)!

CB et al 2010
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Planck and scale dependencePlanck Collaboration: Planck 2013 Results. XXIV. Constraints on primordial NG
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Fig. 22. Evolution of the fNL parameters (solid blue line with data points) and their uncertainties (dashed lines) for the five bispectrum
templates as a function of the maximum multipole number `max used in the analysis. From left to right and top to bottom the figures
show respectively local, equilateral, orthogonal, di↵use point sources (all four with the ISW-lensing bias subtracted), ISW-lensing
and local again (the last two without subtracting the ISW-lensing bias). To show better the evolution of the uncertainties, they are
also plotted around the final value of fNL (solid green lines without data points). The results are for SMICA, assume all shapes to be
independent, and have been determined with the binned bispectrum estimator.

Table 16. Results for fNL (assumed independent, without any correction for the ISW-lensing bias) of the SMICA cleaned map using
di↵erent values of `max, for the KSW and binned estimators.

fNL

Shape `max = 500 `max = 1000 `max = 1500 `max = 2000 `max = 2500

KSW

Local . . . . . . . . . 38 ± 18 6.4 ± 9.7 6.9 ± 6.2 9.1 ± 5.8 9.8 ± 5.8
Equilateral . . . . . �119 ± 121 �45 ± 88 �41 ± 75 �40 ± 75 �37 ± 75
Orthogonal . . . . . �163 ± 109 �89 ± 52 �57 ± 45 �45 ± 40 �46 ± 39
Di↵.ps /10�29 . . . (�1.5 ± 1.3)⇥104 (�7.9 ± 3.1)⇥102 �39 ± 18 10.0 ± 3.1 7.7 ± 1.5
ISW-lensing . . . . 3.2 ± 1.2 1.00 ± 0.43 1.00 ± 0.35 0.83 ± 0.31 0.81 ± 0.31

Binned

Local . . . . . . . . . 33 ± 18 6.6 ± 9.8 7.1 ± 6.1 8.5 ± 5.9 9.2 ± 5.9
Equilateral . . . . . �95 ± 107 �55 ± 77 �47 ± 72 �22 ± 73 �20 ± 73
Orthogonal . . . . . �102 ± 94 �69 ± 58 �60 ± 44 �35 ± 40 �39 ± 41
Di↵.ps /10�29 . . . (�1.4 ± 1.2)⇥104 (�8.2 ± 2.9)⇥102 �42 ± 17 9.9 ± 2.9 7.7 ± 1.6
ISW-lensing . . . . 2.6 ± 1.6 0.57 ± 0.52 0.80 ± 0.42 0.85 ± 0.38 0.91 ± 0.37

frequency maps - with the union mask U73 (for mask details
see Planck Collaboration XII 2013 for U73, CS-SMICA89, and
CG60; Planck Collaboration XV 2013 for CL31). The results of
this analysis are presented in Table 17 for two di↵erent esti-
mators: binned and modal. The fNL are assumed independent
here. In order to correctly interpret our results and conclusions,
an important point to note is that binned results have been ob-
tained choosing `max = 2500, while modal results correspond to
`max = 2000. Primordial shape and ISW-lensing results and er-

ror bars saturate at `max = 2000 (see Sect. 8.1), so the results
from the two estimators are directly comparable in this case.
The Poisson (point sources) bispectrum is however dominated
by high-` equilateral configurations and the signal for this spe-
cific template still changes from ` = 2000 to ` = 2500. The
di↵erences in central values and uncertainties between the two
estimators for the Poisson shape are fully consistent with the dif-
ferent `max values. Direct comparisons on data and simulations
between these two estimators and the KSW estimator showed

40

WMAP had consistently found a preference for positive fNL. Planck is consistent with this, 
because the low l modes do prefer a positive value!

Large fNL on large scales from a self-interacting curvaton model could also help to explain 
the power spectrum dipole asymmetry
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Potentially large scale dependence of fNL

Curvaton potential:  V=quadratic + higher-order monomial!
!
s=(higher-order monomial)/quadratic at horizon crossing !
  =“self-interaction” strength

The scale dependence can be much 
larger than the slow-roll parameters, 

even for small self-interactions!
!
!

CB, Enqvist, Nurmi & Takahashi 2011


