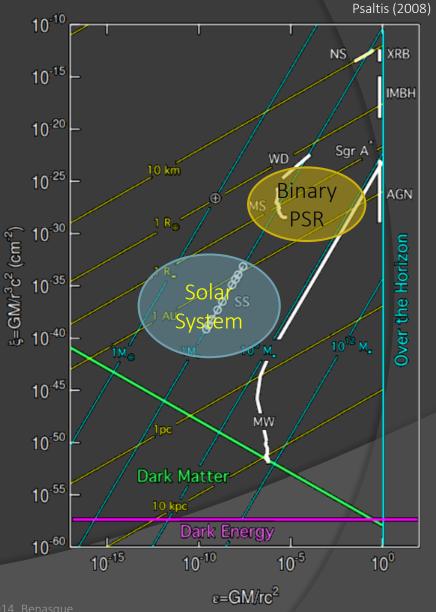
Testing Gravity at Cosmological Scales

Ignacy Sawicki Université de Genève Marie Skłodowska-Curie Actions Project DRKFRCS

Testing gravity on Earth is tough

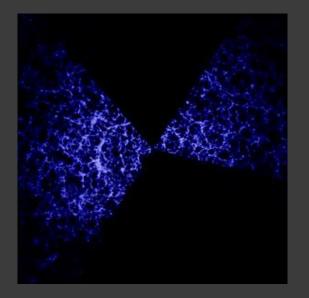
Ribera d

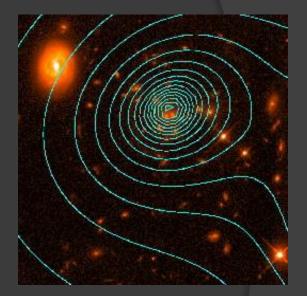
- Gravitational effects become dominant only at high volumes
 - Non-local aspects: screening/memory effects
 - Lack of sensitivity to initial conditions
- At lower volumes, gravitational oscillations subdominant to non-perturbative jet physics
 - UV/IR mixing turbulence
- Exotic generations improve signal to noise, but at significant cost



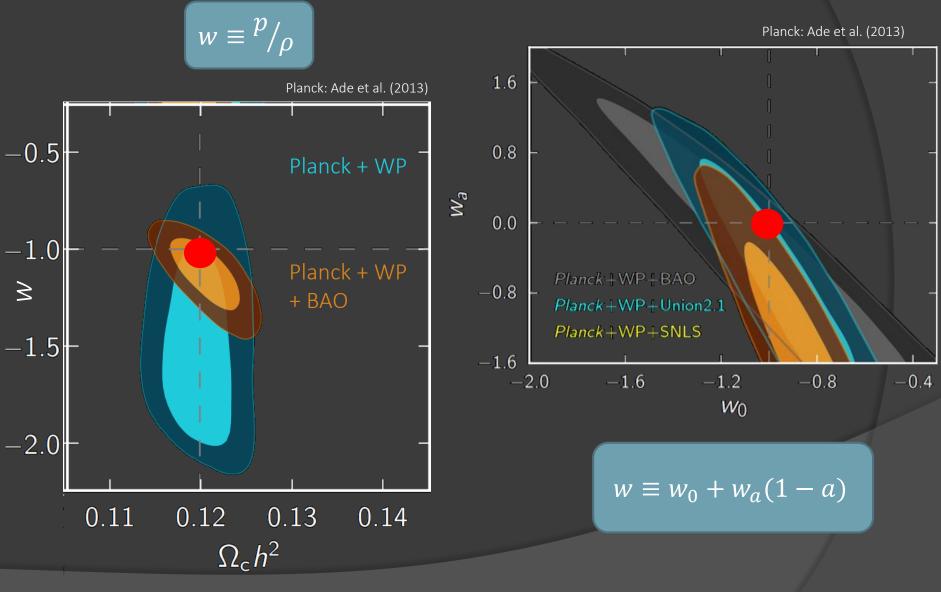
The Gist

- Model-independent observables:
 - Both background and LSS are probes of geometry
 - Saying more requires a model for gravity
- How to parameterise modifications of GR
 - Linear perturbations fully determined by functions of time only incl. superhorizon

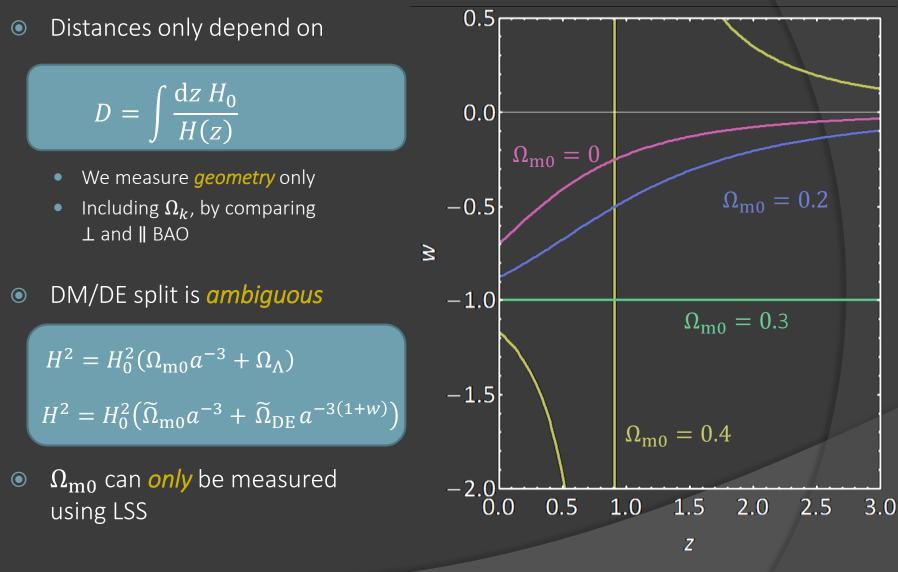

What do we know about gravity?


- Λ, famously, is too small
 - Only solution would probably be anthropic
- O Alternatives to Λ dynamical
 - *Must* introduce a d.o.f.
- Dynamics imply time- and scaledependent deviations
- No dynamics means we effectively have Λ

Our Limited Eyes


Supernovae: $d_{\rm L}$

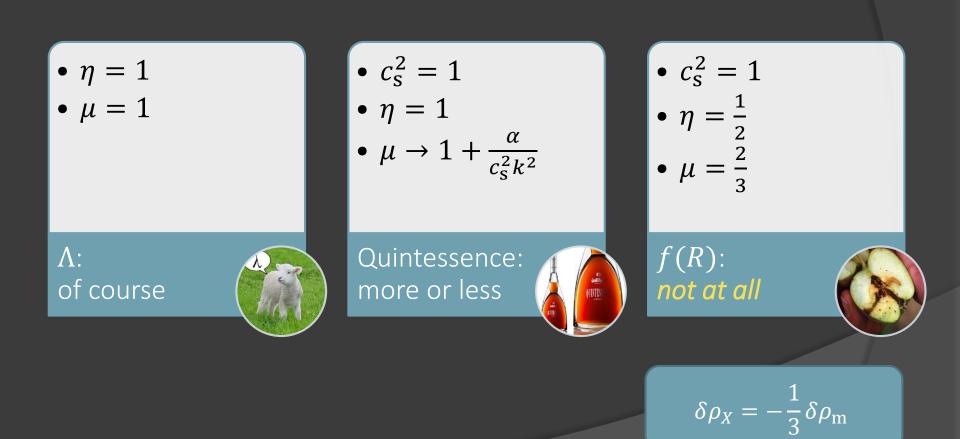
Galaxy Counts


Galaxy Shapes/ Brightness

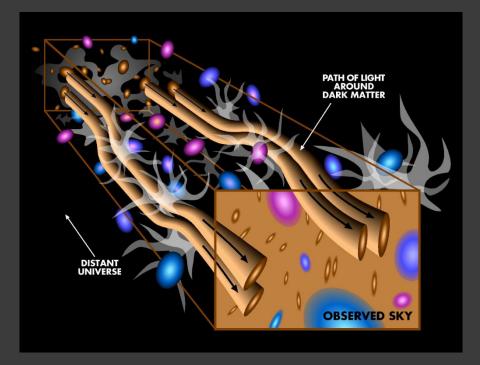
13 August 2014

We are constraining the EoS. Or?

But w is not an observable


Natural EoS for Quintessence

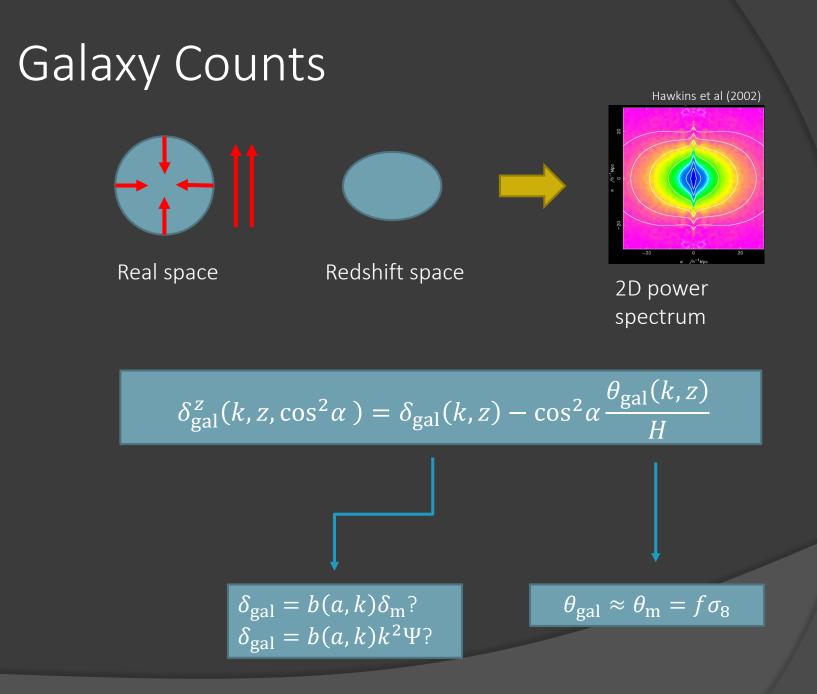
2 V(ϕ) parameters (examples from the prior) 1.0 0.5 0.0 -0.5 -1.01.0 2.0 0.0 0.5 1.5 2.5 3.0 Z


 $w = w_0 + w_a(1 - a)$?

Huterer and Peiris (2006)

Is dark energy smooth?

Galaxy Shapes


Weak lensing

- Gravity from DM and DE changes light geodesics, distorting galaxy shapes
- Shear tomography measures lensing potential

 $L = k^2 (\Phi + \Psi)$

 Measure distribution of potential not of DM

$$\sigma_{ij} = \int_{z_{s}}^{z_{o}} \mathrm{d}z \,\partial_{i}\partial_{j}(\Psi + \Phi)K(z)$$

A question of bias

•
$$\delta_{\text{gal}} = b(z,k) \cdot ?$$

Need two things

- Understand when halos form
- Understand what galaxies form inside
- In DE have extra degree of freedom

$$\delta_{\rm gal} = b_1 k^2 \Phi + b_2 k^2 \Psi + b_3 \delta_{\rm m}$$

- Stellar evolution sensitive to AC Davis et al (2011) corrections to GR
 - Screening depends on environment
 - Effect on galaxy luminosity?

Density Bias

Velocity bias is a *purely statistical* effect

Biagetti, Desjacques et al (2014)

 Effective force on galaxies modified

 $\overline{\Psi_{\text{eff}}} = \Psi + R_{v}^{2}k^{2}\Psi$ $R_{v} \sim 10 \text{ Mpc}$

Velocity Bias

LSS *also* only probes *geometry*

Motta, IS, Saltas, Amendola, Kunz (2013)

$$ds^{2} = -(1 + 2\Psi)dt^{2} + a^{2}(1 - 2\Phi)dx^{2}$$
We want:
Two functions of time and space
 $\eta(z,k) \equiv \Psi/_{\Phi}$ $Z(z,k) \equiv -\frac{k^{2}\Phi}{\rho_{m}\delta_{m}}$

$$\sigma_{ij}(z_{s}, \hat{n}) \qquad \phi_{l} = \Psi + \Phi$$
 $\eta(z,k) = \frac{\Psi}{\Phi}$
 $\Gamma(z,k) = \frac{\Psi}{\Phi}$
 $\Gamma(z,k) = \frac{\Psi}{\Psi}$
 $\theta_{gal}(z_{s},k) \qquad \Psi = (a^{2}\theta_{gal})'k^{-2}$

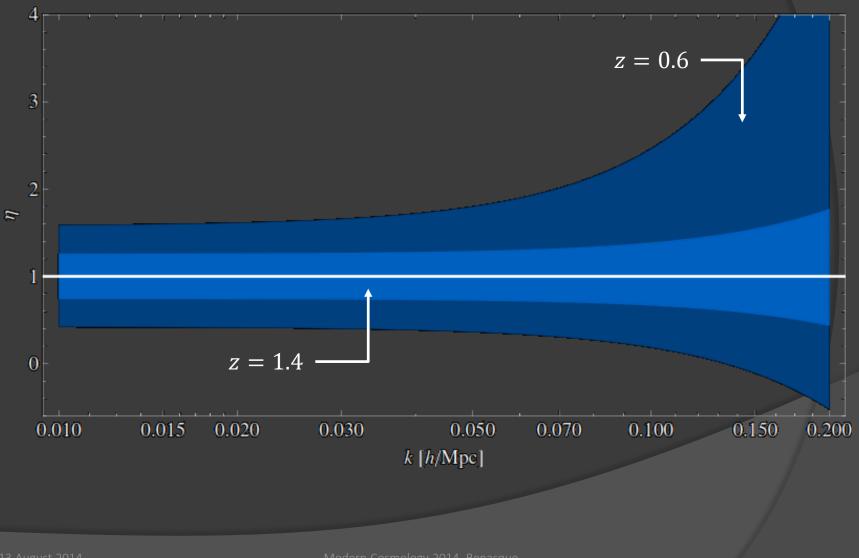
$$\theta_{gal}(z_{s},k) \qquad \Psi = (a^{2}\theta_{gal})'k^{-2}$$

Local Null Tests of ACDM Geometry

Motta, IS, Saltas, Amendola, Kunz (2013)

• We can in principle reconstruct *without DE model assumption*

 $\eta(z,k) = \Psi/\Phi$ $\Gamma(z,k) = \Phi'/\Phi$


In ΛCDM predictions *fixed*

$$\eta = 1 \qquad \Gamma = (1+z)^3 {}_2F_1\left(a, b, c, -\frac{1-\Omega_{m0}}{\Omega_{m0}(1+z)^3}\right]$$

- These are *local* and not integrated quantities
 - Avoids signal cancellation due to mixing scales and times
 - No IC dependence
- Can build similar null tests for other models:
 - typically scale-dependent
 - Can test by studying one redshift?

Scale-dependent η

Amendola et al. (2013)

Should we parameterise...

$$ds^{2} = -(1+2\Psi)dt^{2} + a^{2}(1-2\Phi)dx^{2}$$

We want:	In principle, two functions of time and <i>space</i> $\eta(z,k) \equiv \Psi/_{\Phi} \qquad Z(z,k) \equiv -\frac{k^2 \Phi}{\delta_m}$				
	$\eta = \eta(z)$ Z = Z(z)	$\mu = Z\eta = h_1 \left(\frac{1 + k^2 h_3}{1 + k^2 h_5} \right), \eta = h_2 \left(\frac{1 + k^2 h_4}{1 + k^2 h_5} \right)$			
Simple		Quite general			
Realistic?		Assumes DE follows dust			
Bad at horizon		Bad at horizon			
Time-Dependent		Quasi-Static Amendola et al. (2012) Silvestri, Pogosian, Buniy (2013)			
Are these even consistent models?					

...or test model by model?

Quintessence

$$\ddot{\phi} + 3H\dot{\phi} = V'$$

• Pick $V(\phi)$ and iteratively guess acceptable ICs

Linear

$$\ddot{\delta\phi} + 3H\dot{\delta\phi} + V''\delta\phi + \frac{k^2}{\sigma^2}\delta\phi = \cdots$$

U

Evolution specified given ICs

But

- How to pick $V(\phi)$?
- symmetry and redundancy: $ilde{\phi} \equiv ilde{\phi}(\phi)$ etc.
- How do you compare this with other models?

What do (I think) we actually want?

Like a perfect fluid

$$\dot{\delta} + (1+w)\left(\theta - 3\dot{\Phi}\right) + 3H\left(\frac{\delta p}{\rho} - w\delta\right) = 0$$
$$\dot{\theta} + H(2 - 3c_a^2)\theta + \frac{k^2}{a^2}\Psi + \frac{k^2}{a^2}\frac{\delta p/\rho}{1+w} = 0$$

• Any $K(X, \phi)$

•
$$\delta p/\rho = c_s^2 \delta + (c_s^2 - c_a^2)\theta/k^2$$

- Everything determined by w(z), $c_{
 m s}^2(z)$ and $\Omega_{
 m m}$
- No loss of information

• Dependence on $V(\phi)$ disappeared!

Background, sound speed and pert. ICs determine everything

Scalar-Tensor: EFT-like Approach

 $\mathcal{L} \sim K(X,\phi) + G_3(X,\phi) \Box \phi +$ $+ G_4(X,\phi) [\nabla_{\!\mu} \nabla_{\!\nu} \phi \dots]^2 + G_5(X,\phi) [\nabla_{\!\mu} \nabla_{\!\nu} \phi \dots]^3$

c.f. EFT

$$\begin{split} \mathcal{L}_2 &\sim H^2 \left(\alpha_{\mathrm{K}}(t) + \frac{3}{2} \alpha_{\mathrm{B}}^2(t) \right) \left(\dot{\zeta}^2 - c_{\mathrm{s}}^2 (\partial_i \zeta)^2 \right) \\ &+ M_*^2(t) \left(\dot{h}^2 - \left(1 + \alpha_{\mathrm{T}}(t) \right) (\partial_i h)^2 \right) \end{split}$$

- Use *observed* background *H*(*z*) as *input* (or specify arbitrary)
- Perts, with *no loss* of information, determined by:
 - 1. $\Omega_{
 m m0}$ (this is a perturbation variable!)
 - 2. 4 $\alpha_i(z)$ define physical properties

 $(lpha_{
m H}(z)$ new third-diff terms)

Gubitosi, Gleyzes, Piazza, Vernizzi (2013) Bloomfield et al. (2013)

Zumalacàrregui & Garcìa-Bellido (2013) Gleyzes, Langlois, Piazza, Vernizzi (2013, 2014)

Linear-Property Functions

$\alpha_{\mathbf{M}}$: Planck-Mass Run Rate

$$\alpha_{\rm M} = H^{-1} \frac{\mathrm{d}M_*^2}{\mathrm{d}\ln a}$$

- From G_4 and G_5
- Switches on η
- Non-conservation of matter $\dot{\rho} + 3H(\rho + p) = -\alpha_{\rm M}H\rho$

α_{T} : Tensor Speed Excess

$$c_{\mathrm{T}}^2 = 1 + \alpha_{\mathrm{T}}$$

- From G_4 and G_5
- Switches on η

$\alpha_{ m B}$: Braiding

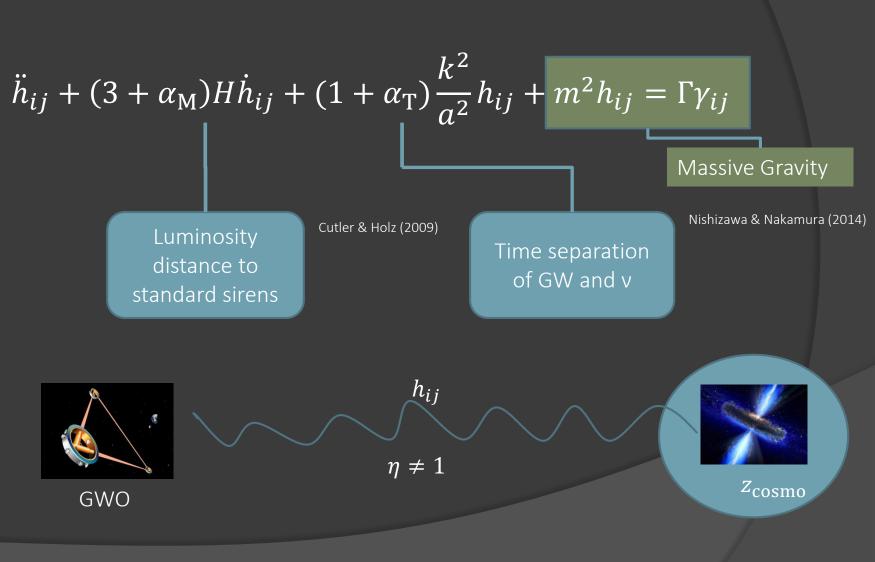
- From G_3 , G_4 and G_5
- Sinetic mixing of graviton and scalar
- Allows for dark energy clustering
 - $Z \neq 1$ at small scales

$lpha_{ m K}$: Kineticity

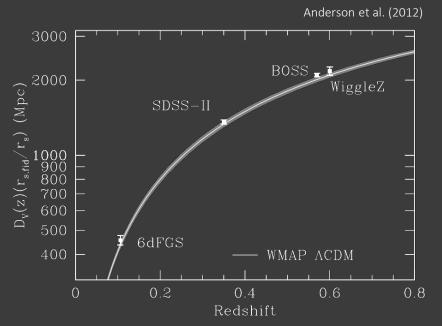
- From all operators
- Perfect fluid: $\alpha_K = \Omega_{\rm DE}(1+w)/c_{\rm s}^2$
- Suppresses sound speed
- Controls transition scale for Z and η

$$k_{\rm B}^2 \sim \Omega_{\rm DE}(1+w) \frac{\alpha_K}{\alpha_B^2} + \frac{9}{2} \Omega_{\rm m}$$

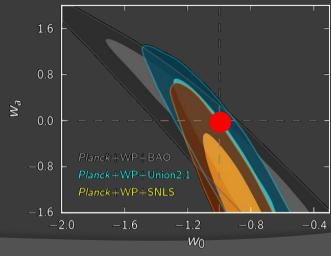
- Guaranteed that a Horndeski model exists for any choice of H(z), Ω_{m0} , $\alpha_i(z)$
- There is *nothing* beyond this at linear order in Horndeski


All Models Become Nested

Model	$lpha_{ m K}$	$\alpha_{\rm B}$	α_{M}	α_{T}
ΛCDM	0	0	0	0
Quintessence	$\Omega_{\rm DE}(1+w)$	0	0	0
K-essence	$\Omega_{\rm DE}(1+w)/c_{\rm s}^2$	0	0	0
f(R)	0	$-\alpha_{\rm M}$	$B\dot{H}/H^2$	0
KGB	$m^2 n_m$	тк/Н	0	0
f(G)	0	Х	Х	Х


• Parameterise the $\alpha_i = \Omega_{\text{DE}} * \text{const}$

• If all $lpha_i \ll \Omega_{
m DE}$ it is mostly just Λ


$\eta \neq 1$: Modified GW *Propagation*

How important is w?

Planck: Ade et al. (2013)

 Large w on errors since w is irrelevant in the past

EFT formulation only contains

 $2\dot{H} \approx -3H^2\Omega_{\rm m}$

The Take Away

- Cosmological probes only see *geometry*
 - *Both* background and LSS
 - To get more, must *specify* DE/MG model or calculate bias
 - But: $\eta = \Psi/\Phi$ is a direct observable
 - Can build null tests for ACDM structure and more
- $\eta(z,k), \mu(z,k)$ parameterisation *too wide*
 - Use *unambiguously* observed background H(z) as *input*
 - Dynamically consistent model described by just functions of time
 - Horndeski is just 4 $lpha_i$ and $\Omega_{
 m m0}$
 - All models *nested*, \land CDM is $\alpha_i = 0$
- GW provide a completely *independent probe* of the same parameters

Thank you!