Measuring the growth of matter fluctuations with third order galaxy correlations

Kai Hoffmann, Julien Bel, Enrique Gaztañaga

arXiv:1403.1259

cosmology with large scale structure

matter fluctuations:

 $\delta_{R} = (\rho_{R} - \overline{\rho_{R}}) / \overline{\rho_{R}}$

linear growth (R > 40 Mpc/h):

 $D(z) \simeq \delta_m(z) / \delta_m(0)$

growth depends on cosmology

$$D(a) \propto \frac{H(t)}{H(0)} \int_{0}^{a} \frac{da'}{\left[\Omega_{m}/a' + \Omega_{\Lambda}a' - \left(\Omega_{m} + \Omega_{\Lambda} - 1\right)\right]^{3/2}} \qquad a = \frac{1}{1+z}$$

MICE Grand Challenge simulation

3 Gpc/h box, 4000³ particles

ACDM cosmology:

$$\Omega_{m} = \Omega_{DM} + \Omega_{b} = 0.25$$

$$\Omega_{\Lambda} = 0.75, \Omega_{b} = 0.044$$

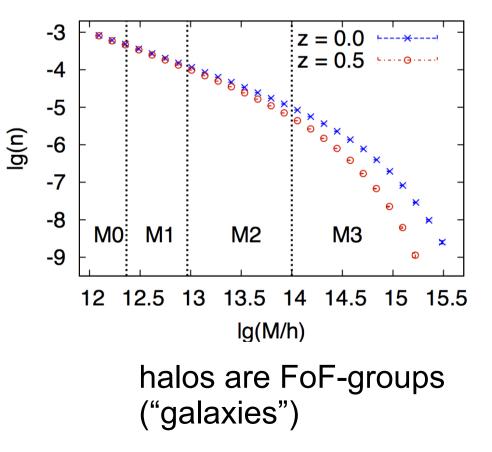
$$\sigma_{8}(z=0) = 0.8, n_{s} = 0.95$$

$$h = 0.7$$

redshifts:

box: z = 0, 0.5 light cone: 0 < z < 1.2

halo mass samples:



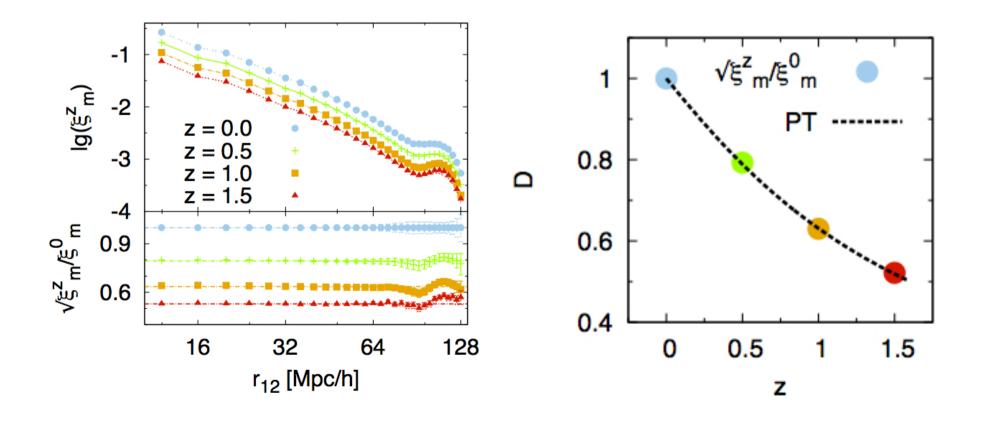
measuring growth with two-point correlations

two-point correlation:

 $\xi(r_{12}) \equiv \langle \delta_1 \delta_2 \rangle(r_{12})$

large scale growth:

$$\xi_m(z) = D^2(z)\xi_m(0)$$



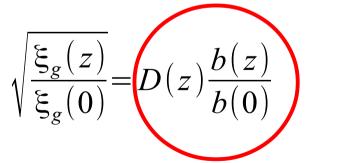
galaxy bias

quadratic model for local bias:

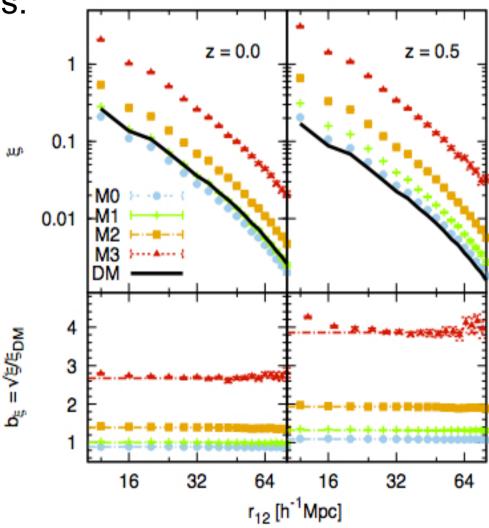
 $\delta_g \simeq b_1 \delta_m + (b_2/2) (\delta_m^2 - \langle \delta_m^2 \rangle)$

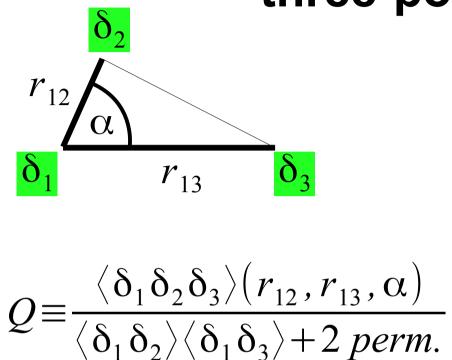
large scales: $\xi_g \simeq b_{\xi}^2 \xi_m$

growth – bias degeneracy:



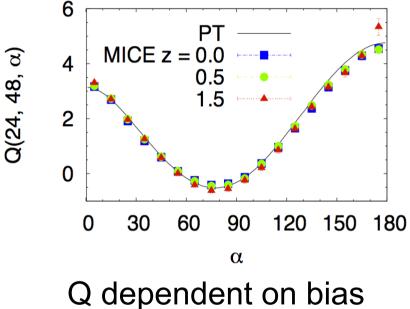
can be broken with third order correlations



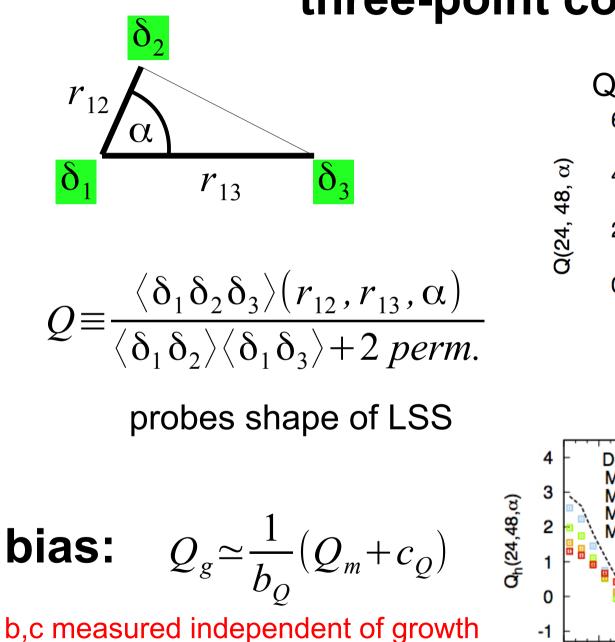


three-point correlation

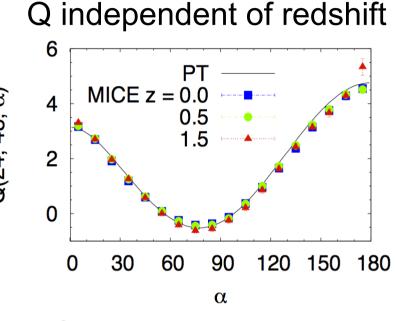
Q independent of redshift



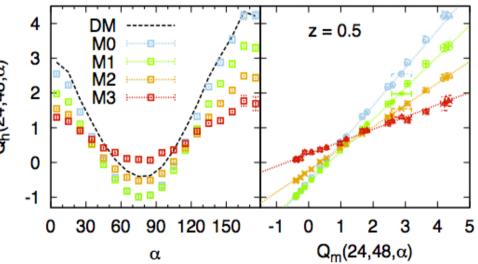
probes shape of LSS



three-point correlation

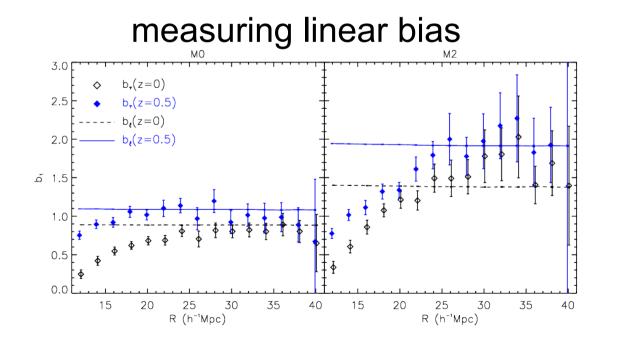


Q dependent on bias

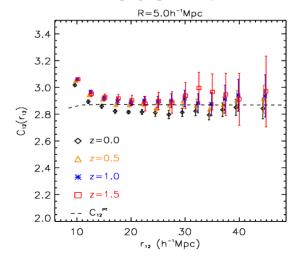


third-order moments



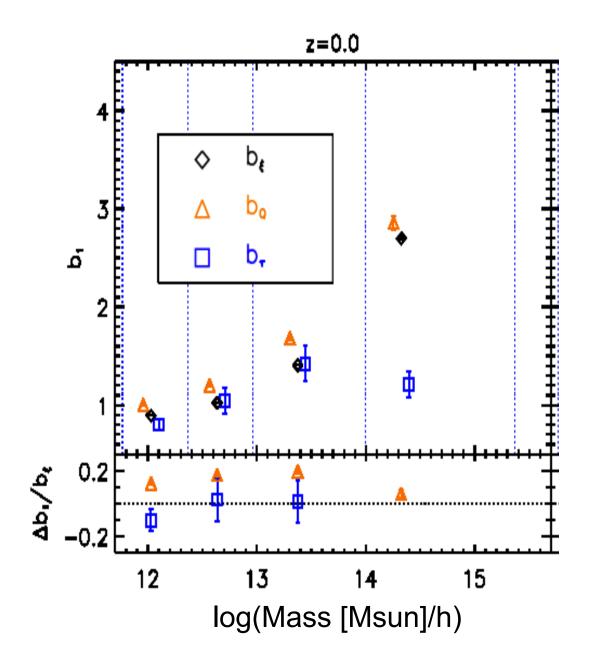


C12 independent of redshift



Results

comparing linear bias from ξ , Q, τ



ξ: two- point correlationQ: tree-point correlationτ: skewness & cumulants

Differences can be caused by

- large scale approximations
- higher order terms in bias function
- shot noise
- non-local bias (Chan et al., 2012)

Q auto: galaxy-galaxy-galaxy

$$Q_g \simeq \frac{1}{b} (Q_m + [c + g_2 Q_{nloc}])$$

non-local term

Q auto: galaxy-galaxy-galaxy

$$Q_g \simeq \frac{1}{b} (Q_m + [c + g_2 Q_{nloc}])$$

non-local term

Q cross: galaxy-matter-matter

$$Q_{gm} \simeq \frac{1}{b} (Q_m + \frac{1}{3} [c + g_2 Q_{nloc}])$$

Q auto: galaxy-galaxy-galaxy

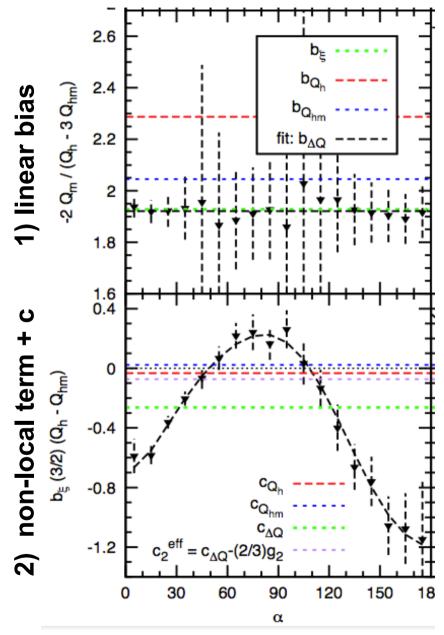
$$Q_g \simeq \frac{1}{b} (Q_m + [c + g_2 Q_{nloc}])$$

non-local term

Q cross: galaxy-matter-matter

$$Q_{gm} \simeq \frac{1}{b} (Q_m + \frac{1}{3} [c + g_2 Q_{nloc}])$$

1) Q auto – 3 Q cross: $Q_g - 3 Q_{gm} = -2 \frac{Q_m}{b}$



triangle opening angle

Q auto: galaxy-galaxy-galaxy

$$Q_g \simeq \frac{1}{b} (Q_m + [c + g_2 Q_{nloc}])$$

non-local term

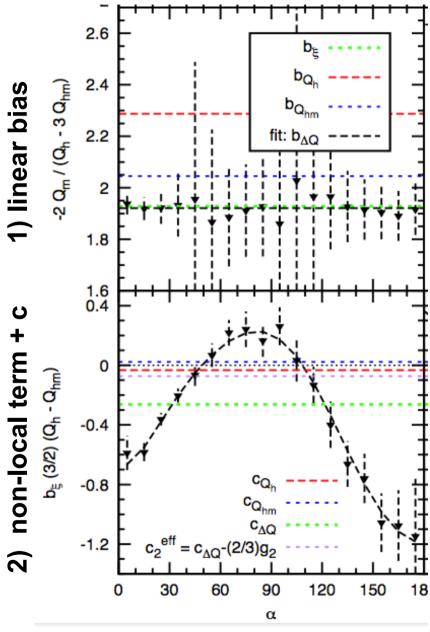
Q cross: galaxy-matter-matter

$$Q_{gm} \simeq \frac{1}{b} (Q_m + \frac{1}{3} [c + g_2 Q_{nloc}])$$

1) Q auto – 3 Q cross: $Q_g - 3Q_{gm} = -2\frac{Q_m}{b}$

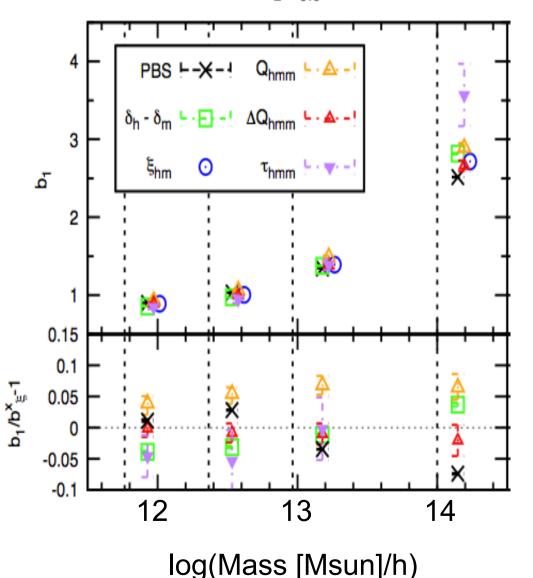
2) Q auto – Q cross:

$$Q_{g} - Q_{gm} = \frac{2}{3} \frac{1}{b_{\xi}} (c + g_{2}Q_{nloc})$$



triangle opening angle

comparing linear bias from different approaches



z = 0.0

ξ: two- point cross-correlation

Q: tree-point cross-correlation

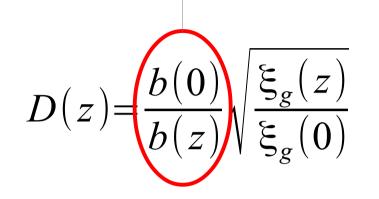
 ΔQ : tree-point auto&cross correlation

τ: cross skewness & cumulants

PBS: peak background split

δh-δm: fit to halo vs matter fluctuations

measuring growth without dark matter



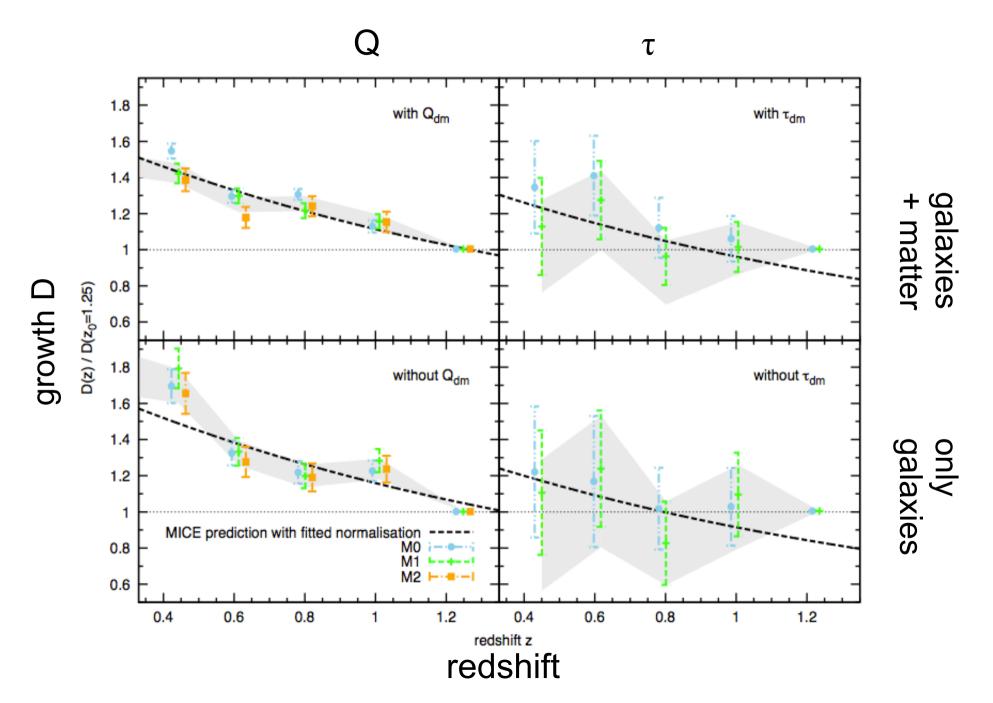
only bias ratio
$$\hat{b} \equiv \frac{b(z)}{b(0)}$$
 needs

to be known for measuring D(z)

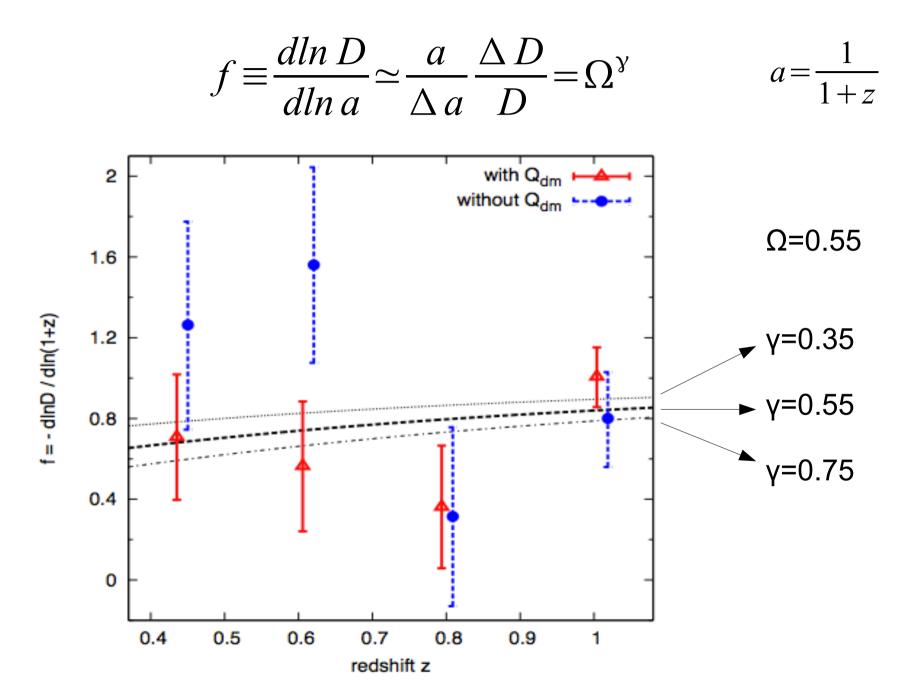
$$\begin{array}{c} Q_{g}(z) \simeq \frac{1}{b_{Q}(z)} (Q_{m} + c_{Q}(z)) \\ Q_{m}(z) = Q_{m}(0) \end{array} \right\} \begin{array}{c} Q_{g}(z) \simeq \frac{1}{\hat{b}_{Q}} (Q_{g}(0) + \hat{c}_{Q}(0)) \\ Q_{g}(z) \simeq \frac{1}{\hat{b}_{Q}} (Q_{g}(0) + \hat{c}_{Q}(0)) \end{array}$$

=> D(z) can be measured without modeling Q_m

growth in MICE light cone



growth rate in MICE light cone from Q



Summary

- growth-bias degeneracy broken with 3rd order correlations:
 i) three-point correlations (Q)
 ii) combining two- and one point statistic (S₃&C₁₂)
- 3^{rd} order methods give good qualitative measurement of bias from ξ
- deviations between bias from 3rd order methods and ξ might come from non-local terms in bias function
- growth measurement using 3rd order bias agrees qualitatively with true growth in simulation
- combining 3rd order correlations at different redshifts allows growth measurement without modeling dm correlation

thanks!