

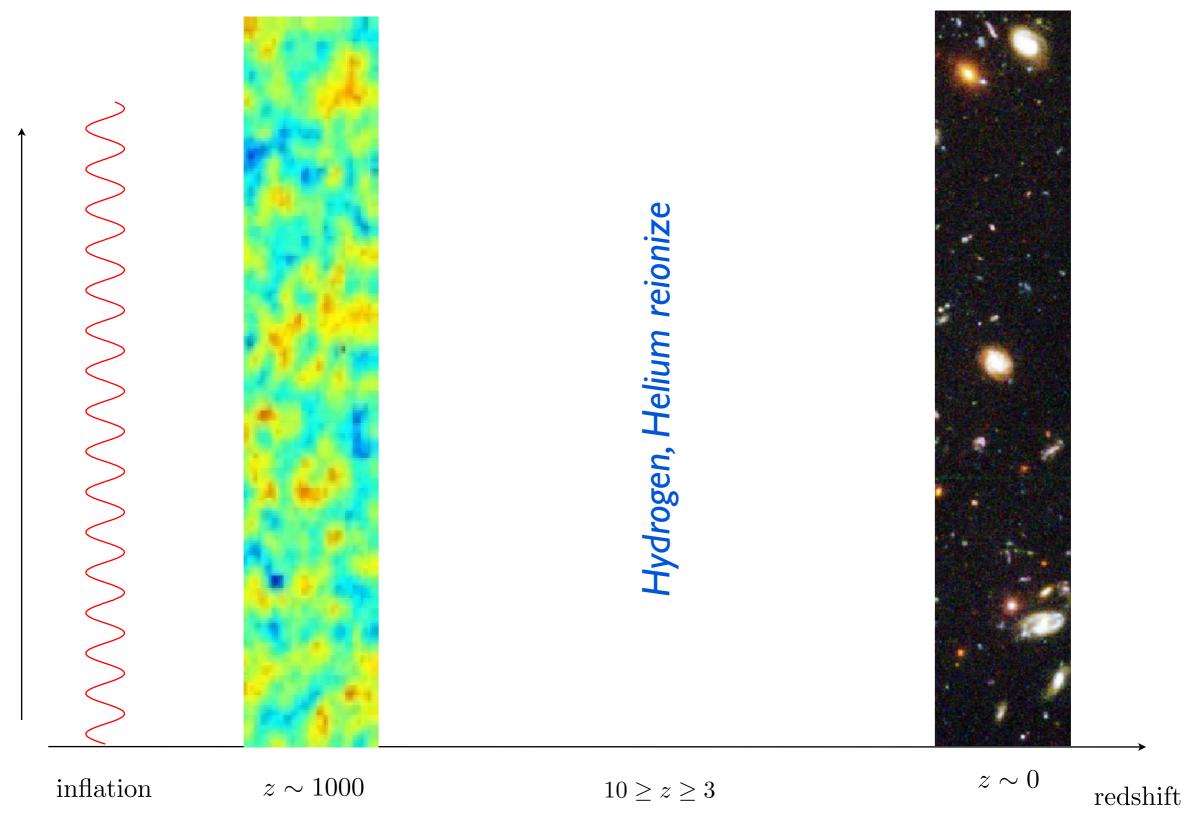
Hell-ionizing background fluctuations from clustered sources

Vincent Desjacques

Benasque cosmology 2014, August 5, 2014

Tuesday, 5 August 14

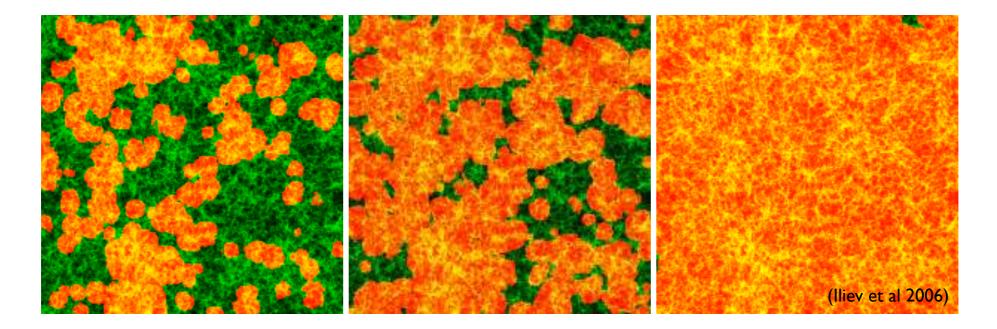
1406.6379, with A. Moradinezhad Dizgah, M. Biagetti



Z	Elem	ent									Spectrum				
		1		IJ	ш	IV	v	VI	VII	VIII	IX	x	XI	хп	'xm
	н	13.59	8												
	2 He	24.58	7	54.416											
	3 Li	5.39	2	75.638	122.451										
3	4 Be	9.32	2	18.211	153.893	217.713									
	5 B	8.29	8	25.154	37.930	259.368	340.217								
6	6 C	11.26	0	24.383	47.887	64.492	392.077	489.981							
3	7 N	14.53	4	29.601	47.448	77.472	97.888	552.057	667.029						
	80	13.61	8	35.116	54.934	77.412	113.896	138.116	739.315	871.387					
	9 F	17.42	2	34.970	62.707	87.138	114.240	157.161	185.182	953.886	1103.089				
1	0 Ne	21.56	4	40.962	63.45	97.11	126.21	157.93	207.27	239.09	1195.797	1362.164			
1	l Na	5.13	9	47.286	71.64	98.91	138.39	172.15	208.47	264.18	299.87	1465.091	1648.659		
1	2 Mg	7.64	6	15.035	80.143	109.24	141.26	186.50	224.94	265.90	327.95	367.53	1761.802	1962.613	
1	3 AI	5.98	6	18.828	28.447	119.99	153.71	190.47	241.43	284.59	330.21	398.57	442.07	2085.983	2304.0
ŀ	4 Si	8.15	1	16.345	33.492	45.141	166.77	205.05	246.52	303.17	351.10	401.43	476.06	523.50	2437.6
1	5 P	10.48	6	19.725	30.18	51.37	65.023	230.43	263.22	309.41	371.73	424.50	479.57	560.41	611.8
1	5 S	10.36	0 :	23.33	34.83	47.30	72.68	88.049	280.93	328.23	379.10	447.09	504.78	564.65	651.6
ľ	7 CI	12.96	7 :	23.81	39.61	53.46	67.8	98.03	114.193	348.28	400.05	455.62	529.26	591.97	656.65
1	8 Ar	15.75	9 :	27.629	40.74	59.81	75.02	91.007	124.319	143.456	422.44	478.68	538.95	618.24	686.0
1	9 K	4.34	1 :	31.625	45.72	60.91	82.66	100.0	117.56	154.86	175.814	503.44	564.13	629.09	714.0
20	O Ca	6.11	3	11.871	50.908	67.10	84.41	108.78	127.7	147.24	188.54	211.270	591.25	656.39	726.0
2	1 Sc	6.54		12.80	24.76	73.47	91.66	111.1	138.0	158.7	180.02	225.32	249.832	685.89	755.4
2	2 Ti	6.82		13.58	27.491	43.266	99.22	119.36	140.8	168.5	193.2	215.91	265.23	291.497	787.3
2	3 V	6.74	1	14.65	29.310	46.707	65.23	128.12	150.17	173.7	205.8	230.5	255.04	308.25	336.20
2	Cr	6.76	6 1	16.50	30.96	49.1	69.3	90.56	161.1	184.7	209.3	244.4	270.8	298.0	355
2	5 Mn	7.43	5	15.640	33.667	51.2	72.4	95	119.27	196.46	221.8	248.3	286.0	314.4	343.6
20	5 Fe	7.87	0 1	16.18	30.651	54.8	75.0	99	125	151.06	235.04	262.1	290.4	330.8	361.0

Challenging:

- Need small scales: IGM physics
- Need large scales: quasars (QSOs) are rare



Analytic/semi-numeric methods can provide physical insights into certain aspects of the problem

- How can we incorporate source clustering in (semi-)analytic models of the UV ionizing background (UVB) evolution ?
- Is quasar clustering important for the UVB at the end of Hell reionization ?

Scales

• (Comoving) attenuation length or photon mean free path

 $r_0 \sim 30 - 50 \; {\rm Mpc}$

(Bolton & Haehnelt 2006; Furlanetto & Oh 2008)

• Quasar (QSO) clustering length

 $r_{\xi} \sim 15 - 30 \; {\rm Mpc}$

(Shen et al 2007; Francke et al 2008)

• QSO number density

 $l = \bar{n}^{-1/3}$

Scales

• (Comoving) attenuation length or photon mean free path

 $r_0 \sim 30 - 50 \; {\rm Mpc}$

(Bolton & Haehnelt 2006; Furlanetto & Oh 2008)

• Quasar (QSO) clustering length

 $r_{\xi} \sim 15 - 30 \; {\rm Mpc}$

(Shen et al 2007; Francke et al 2008)

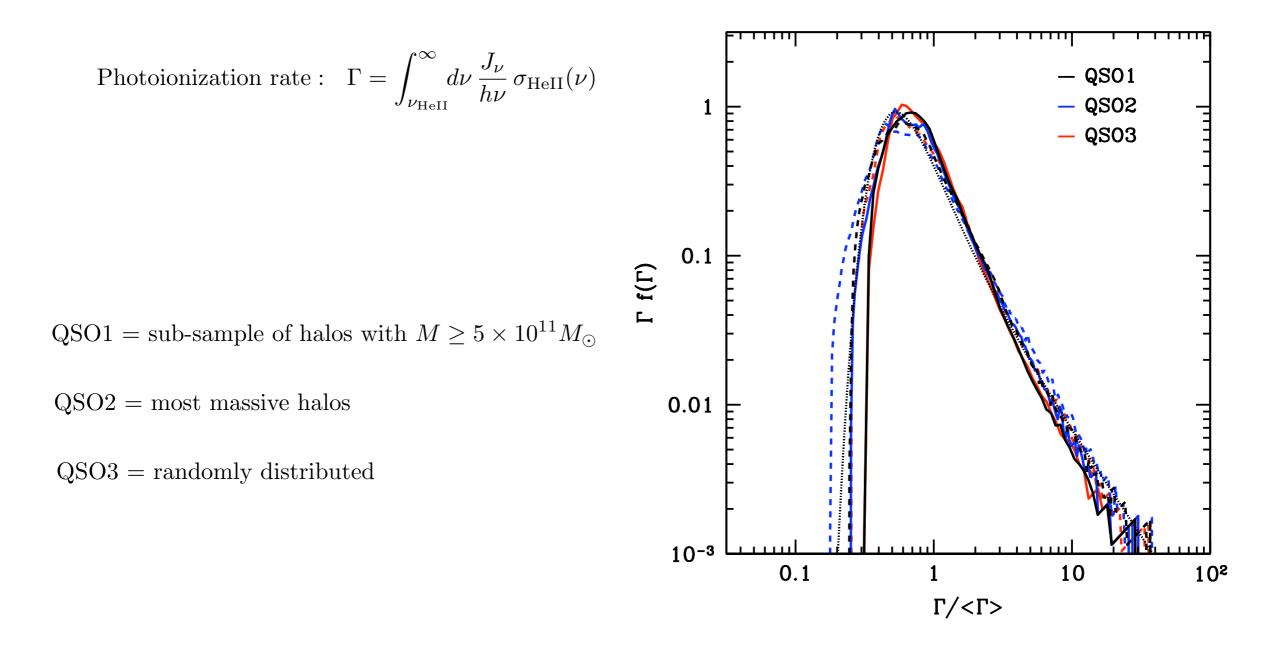
• QSO number density

$$l = \bar{n}^{-1/3}$$

Quasar clustering important if: i) $r_{\xi}/r_0 \gtrsim 1$

ii) $r_0/l \gg 1$

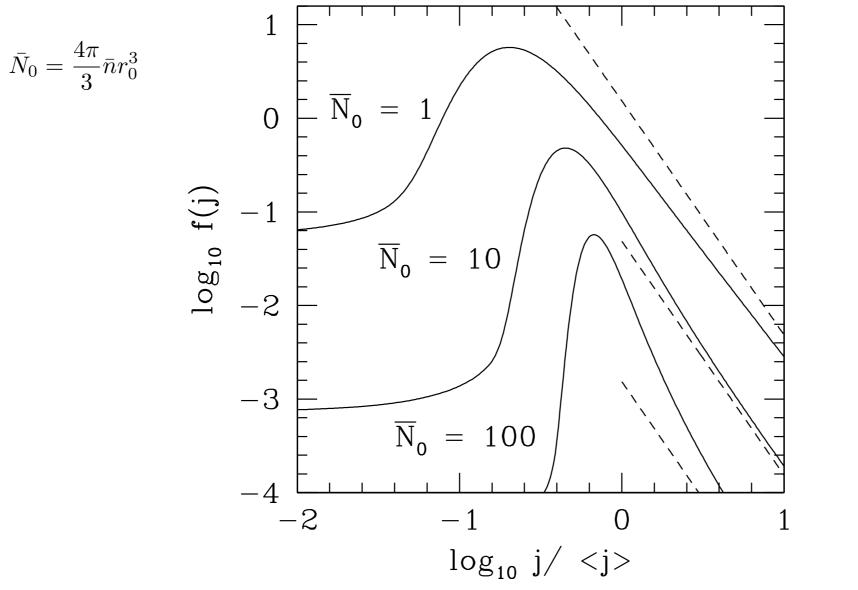
The only attempt so far:



(Dixon, Furlanetto & Mesinger 2013)

Plan of attack

Extend the work of Zuo 1992; Fardall & Shull 1993, Meiksin & White 1993; who worked out P(J) analytically for randomly distributed sources



(Meiksin & White 2003)

Count-in-cells

Consider randomly-located cells of volume V.

• **Probability to have an empty cell:**

)

 $P_0 = P(\Phi_0(V)) = \exp(\mathcal{W}_0(V))$

• Conditional void correlation:

$$\mathcal{N}_0(V) = \sum_{k=1}^{\infty} \frac{(-\bar{n})^k}{k!} \int_V d^3 \mathbf{x}_1 \dots \int_V d^3 \mathbf{x}_k \,\xi_k(\mathbf{x}_1, \dots, \mathbf{x}_k)$$
$$= \sum_{k=1}^{\infty} \frac{(-\bar{N})^k}{k!} \bar{\xi}_k(V)$$
$$\bar{N} = \bar{n}V$$

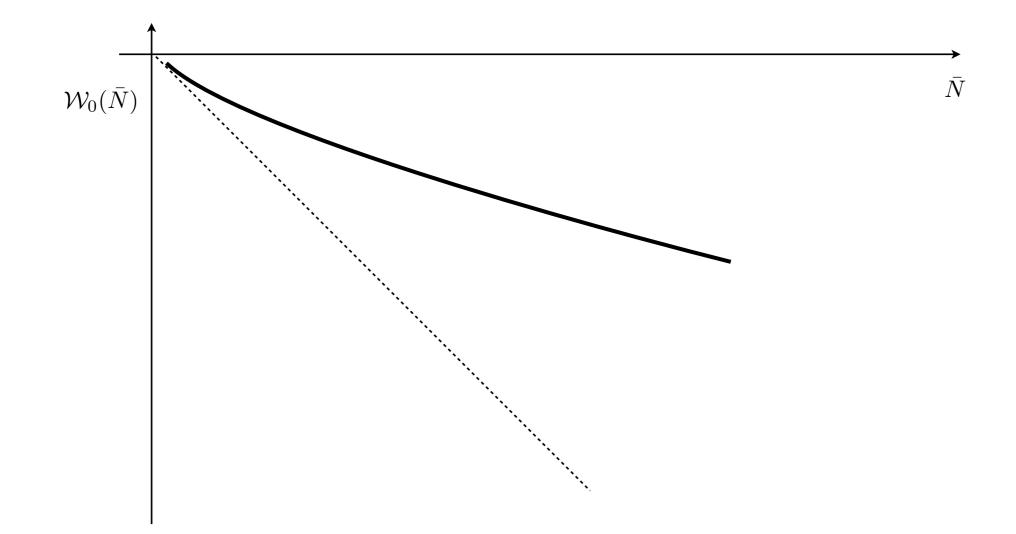
• Volume-averaged irreducible correlations:

$$\bar{\xi}_k(V) \equiv \frac{1}{V^k} \int_V d^3 \mathbf{x}_1 \dots \int_V d^3 \mathbf{x}_k \, \xi_k(\mathbf{x}_1, \dots, \mathbf{x}_k)$$

Fall et al. 1976; White 1979; Peebles 1980; Fry 1985; Balian & Schaefer 1989; Szapudi & Colombi 1996

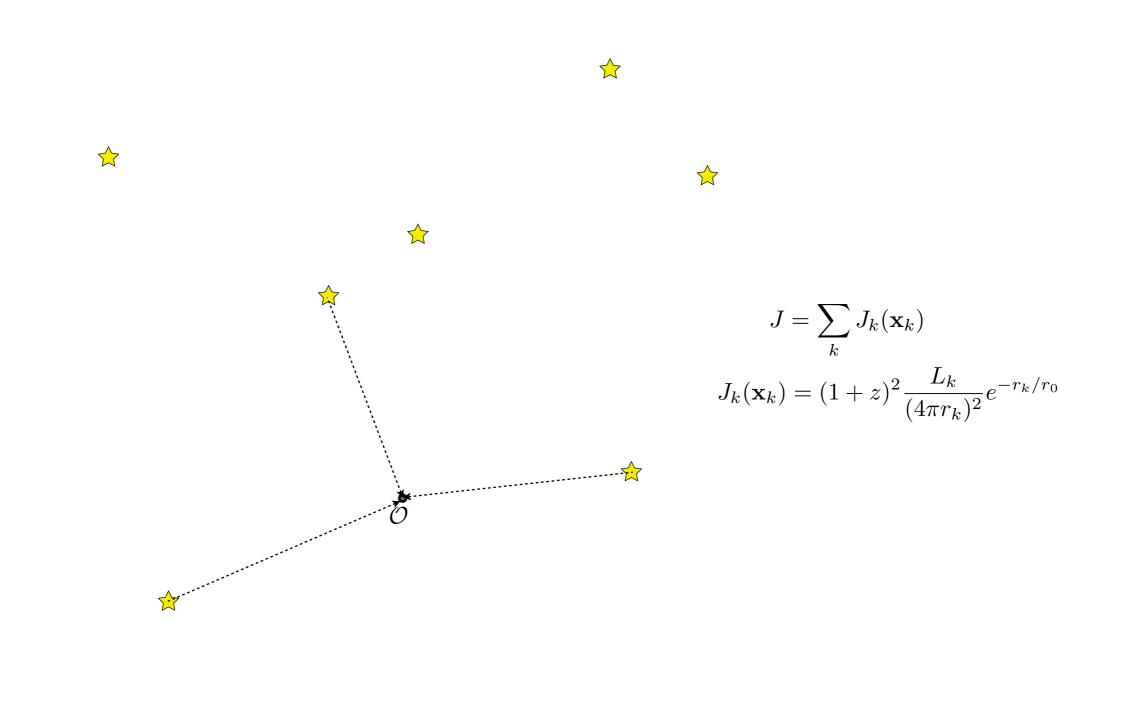
Void conditional probability

• **Poisson distribution:** $\bar{\xi}_1(V) \equiv 1$, $\mathcal{W}_0(V) = -\bar{N}$



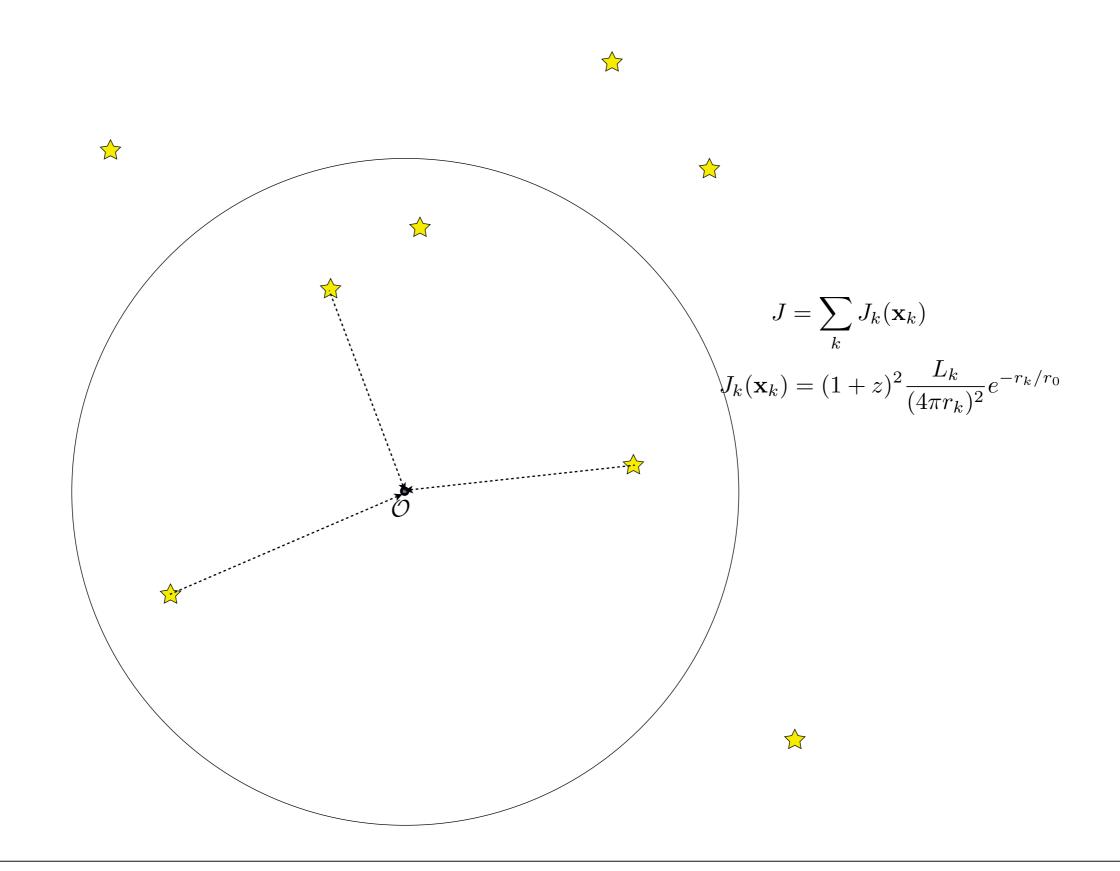
Fall et al. 1976; White 1979; Peebles 1980; Fry 1985; Balian & Schaefer 1989; Szapudi & Colombi 1996

Intensity distribution



 \bigstar

Intensity distribution



Count-in-cells + weight

• Assign a weight to each point:

Count-in-cells + weight

• Assign a weight to each point:

$$1 = \sum_{N=0}^{\infty} \frac{1}{N!} \int \dots \int P\{X_1 \dots X_N | \Phi_0(V)\} e^{\mathcal{W}_0(V)}$$
$$\downarrow$$
$$P_{\omega}(V) = \sum_{N=0}^{\infty} \frac{1}{N!} \int \dots \int P\{X_1 \dots X_N | \Phi_0(V)\} \omega(\mathbf{x}_1) \dots \omega(\mathbf{x}_N) e^{\mathcal{W}_0(V)}$$

Count-in-cells + weight

• Assign a weight to each point:

$$1 = \sum_{N=0}^{\infty} \frac{1}{N!} \int \dots \int P\{X_1 \dots X_N | \Phi_0(V)\} e^{\mathcal{W}_0(V)}$$

$$P_{\omega}(V) = \sum_{N=0}^{\infty} \frac{1}{N!} \int \dots \int P\{X_1 \dots X_N | \Phi_0(V)\} \omega(\mathbf{x}_1) \dots \omega(\mathbf{x}_N) e^{\mathcal{W}_0(V)}$$

• "Weighted" probability distribution:

$$P_{\omega}(V) = e^{\mathcal{W}_{\omega}(V)} - e^{\mathcal{W}_{0}(V)}$$

$$\mathcal{W}_{\omega}(V) = \sum_{k=1}^{\infty} \frac{(-\bar{n})^k}{k!} \int_V d^3 \mathbf{x}_1 \dots \int_V d^3 \mathbf{x}_k \,\xi_k(\mathbf{x}_1, \dots, \mathbf{x}_k) \left(1 - \omega(\mathbf{x}_1)\right) \dots \left(1 - \omega(\mathbf{x}_k)\right)$$

Application to UV background

- Weight is provided by the Quasar contribution to the specific intensity at x=0
- Each configuration of N quasars in cells of volume V contributes

$$\int d\alpha_1 \dots d\alpha_N \,\phi(\alpha_1) \dots \phi(\alpha_N) \\ \times P\{X_1 \dots X_N \Phi_0(V)\} \\ \times \delta_D(J_1 + \dots + J_N - J)$$

 $L = \alpha L_{\star}$

Application to UV background

- Weight is provided by the Quasar contribution to the specific intensity at x=0
- Each configuration of N quasars in cells of volume V contributes

$$\int d\alpha_1 \dots d\alpha_N \,\phi(\alpha_1) \dots \phi(\alpha_N) \\ \times P\{X_1 \dots X_N \Phi_0(V)\} \\ \times \delta_D(J_1 + \dots + J_N - J)$$

• Substitute Laplace/Fourier representation:

$$\delta_D(J_1 + \dots + J_N - J) = \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} ds \, e^{s(J - J_1 - \dots - J_N)}$$
$$\omega(\mathbf{x}_k) = \Theta_H(R - |\mathbf{x}_k|) \int_{\alpha_{\min}}^{\alpha_{\max}} d\alpha_k \, \phi(\alpha_k) \, e^{-sJ_k(\mathbf{x}_k)}$$

Application to UV background

- Weight is provided by the Quasar contribution to the specific intensity at x=0
- Each configuration of N quasars in cells of volume V contributes

$$\int d\alpha_1 \dots d\alpha_N \,\phi(\alpha_1) \dots \phi(\alpha_N) \\ \times P\{X_1 \dots X_N \Phi_0(V)\} \\ \times \delta_D(J_1 + \dots + J_N - J)$$

• Substitute Laplace/Fourier representation:

.)

$$\delta_D(J_1 + \dots + J_N - J) = \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} ds \, e^{s(J - J_1 - \dots - J_N)}$$
$$\omega(\mathbf{x}_k) = \Theta_H(R - |\mathbf{x}_k|) \int_{\alpha_{\min}}^{\alpha_{\max}} d\alpha_k \, \phi(\alpha_k) \, e^{-sJ_k(\mathbf{x}_k)}$$

• Intensity distribution is

$$P(J) = \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} ds \, e^{sJ + \mathcal{W}_{\omega}(V)}$$

Hierarchical ansatz

• Volume-averaged correlation functions are of the form

 $\bar{\xi}_k = S_k \, \bar{\xi}_2^{k-1}$

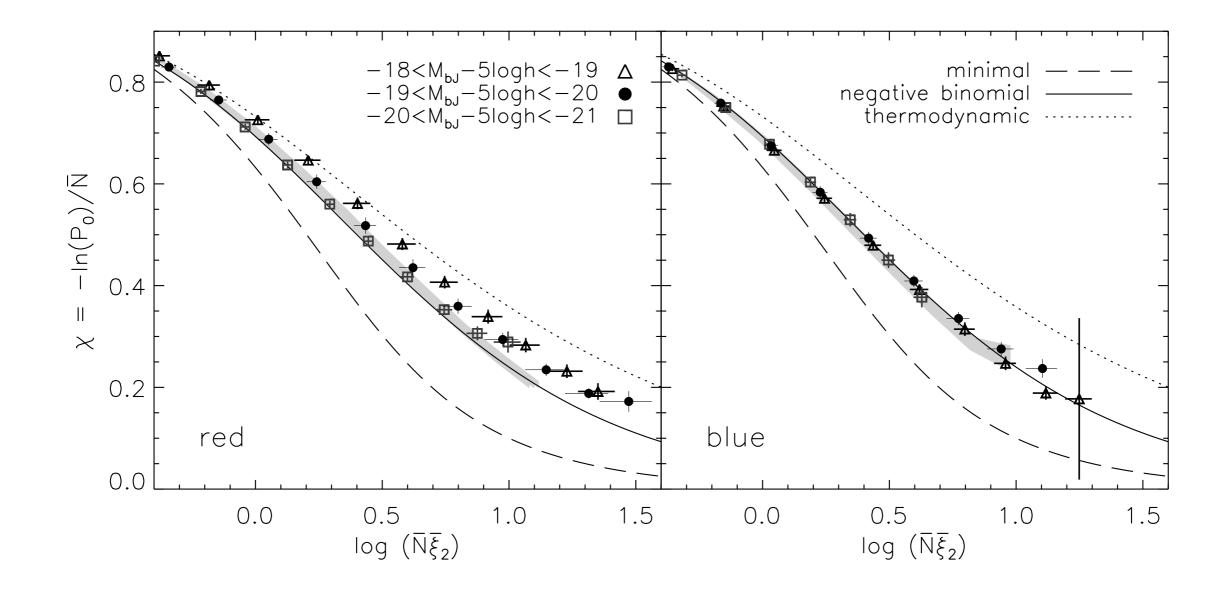
• Under this assumption, we can recast the conditional void correlation into the form

$$\mathcal{W}_0(V) = -\bar{N}\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k!} S_k \left(\bar{N}\bar{\xi}_2\right)^{k-1}$$
$$\equiv -\bar{N}\chi(\bar{N}\bar{\xi}_2)$$

void scaling function :
$$\chi = -\frac{\ln(P_0)}{\bar{N}} = -\frac{\mathcal{W}_0(V)}{\bar{N}}$$

e.g.
$$\chi(\bar{N}\bar{\xi}_2) = \frac{\ln(1+\bar{N}\bar{\xi}_2)}{\bar{N}\bar{\xi}_2}$$
 (Negative Binomial)
 $\chi(\bar{N}\bar{\xi}_2) = \frac{1}{1+\frac{1}{2}\bar{N}\bar{\xi}_2}$ (Geometric Hierarchical)

Galaxies

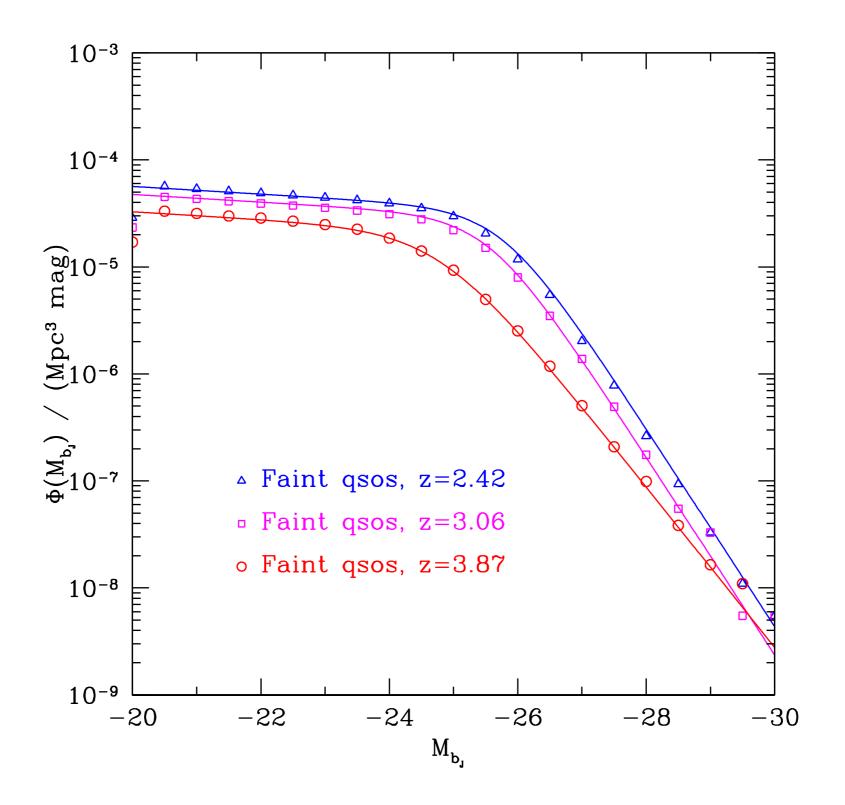


(Croton, Norberg et al 2006)

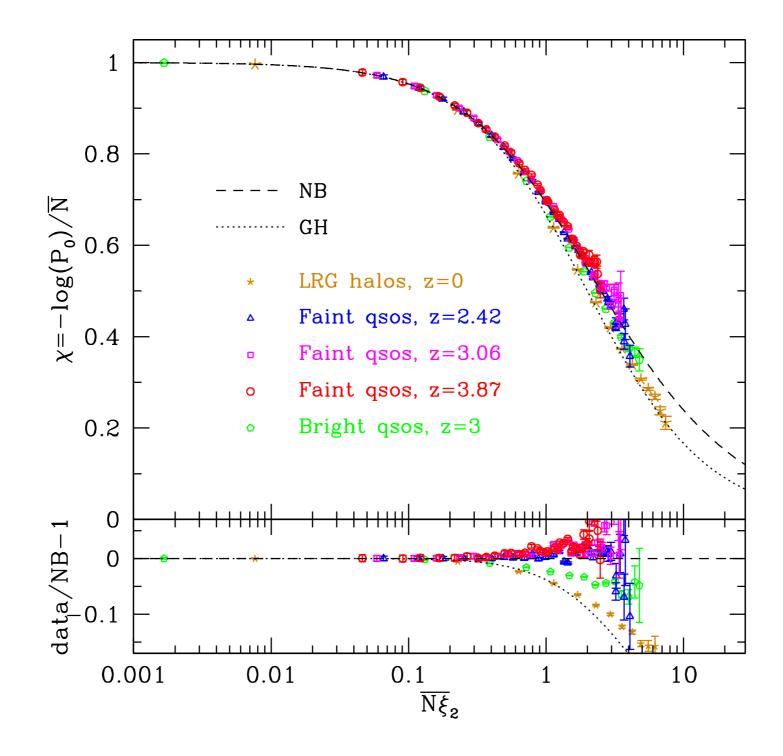
Test with mock quasars

Synthetic QSO catalogues constructed from the Millennium simulation

(Croton 2009)



Quasar void scaling function

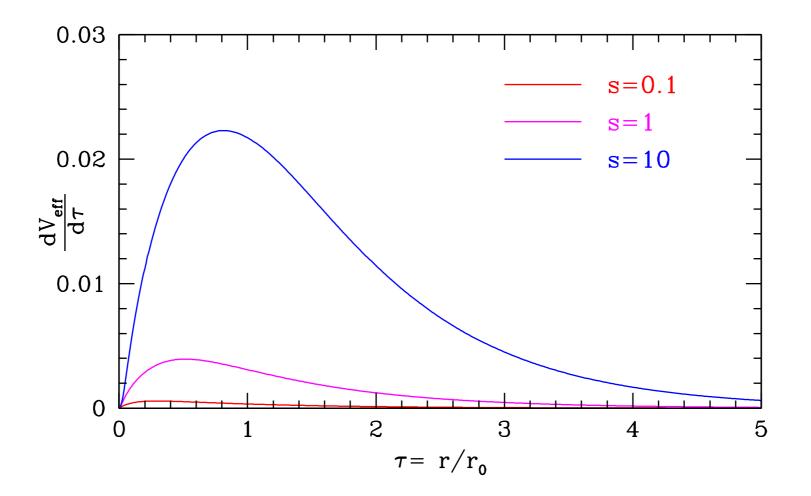


Window

Hierarchical ansatz holds regardless the shape of the window function

$$\begin{split} V_{\rm e}(s,V) &\equiv \int \! d^3 \! \mathbf{x} \left(1 - \omega(\mathbf{x}) \right) \Theta_H(|\mathbf{x}| - R) \\ &= \int_0^{R/r_0} \! d\tau \, \frac{dV_e}{d\tau}(s,\tau) \end{split}$$

$$\tau = r/r_0 =$$
optical depth



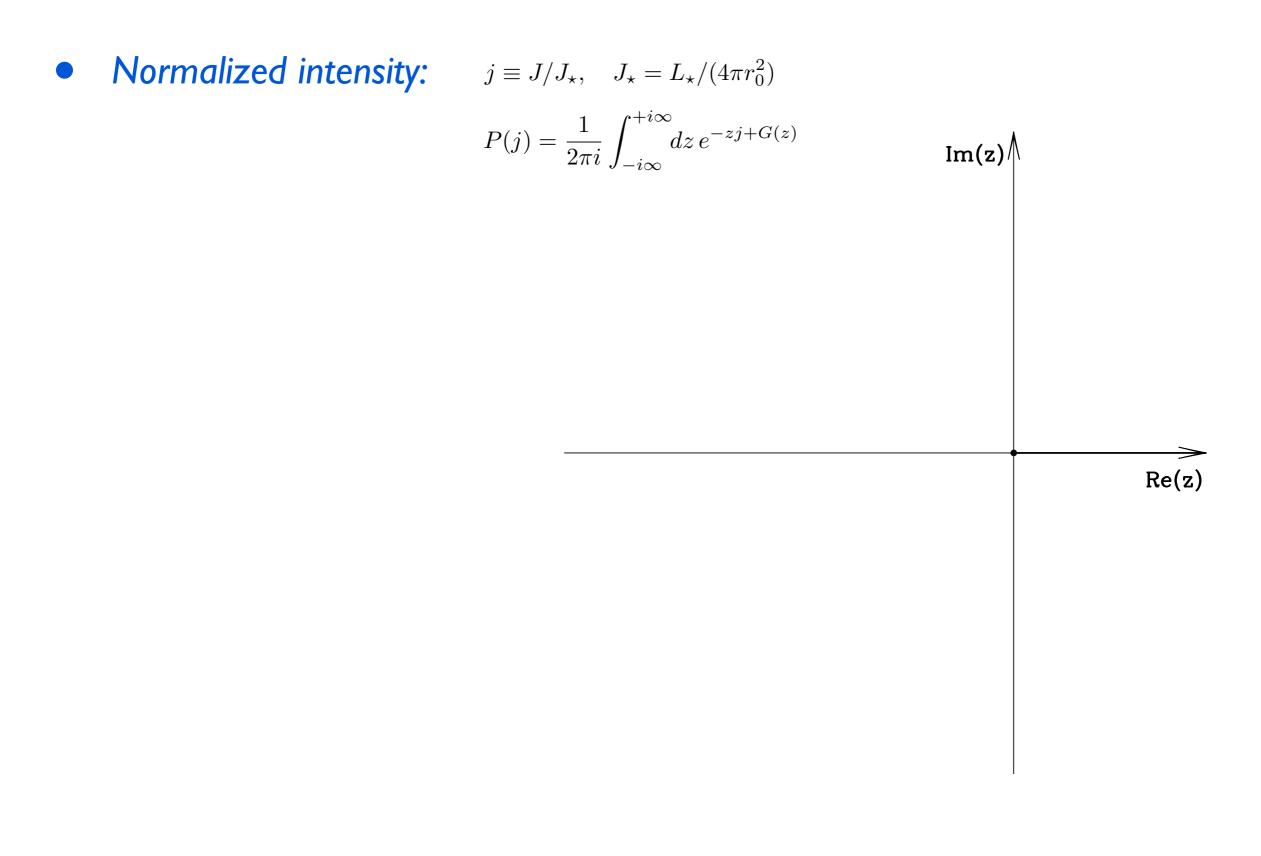
Intensity distribution in hierarchical models

PDF is:
$$P(J) = \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} ds \, e^{sJ + \mathcal{W}_{\omega}(V)}$$

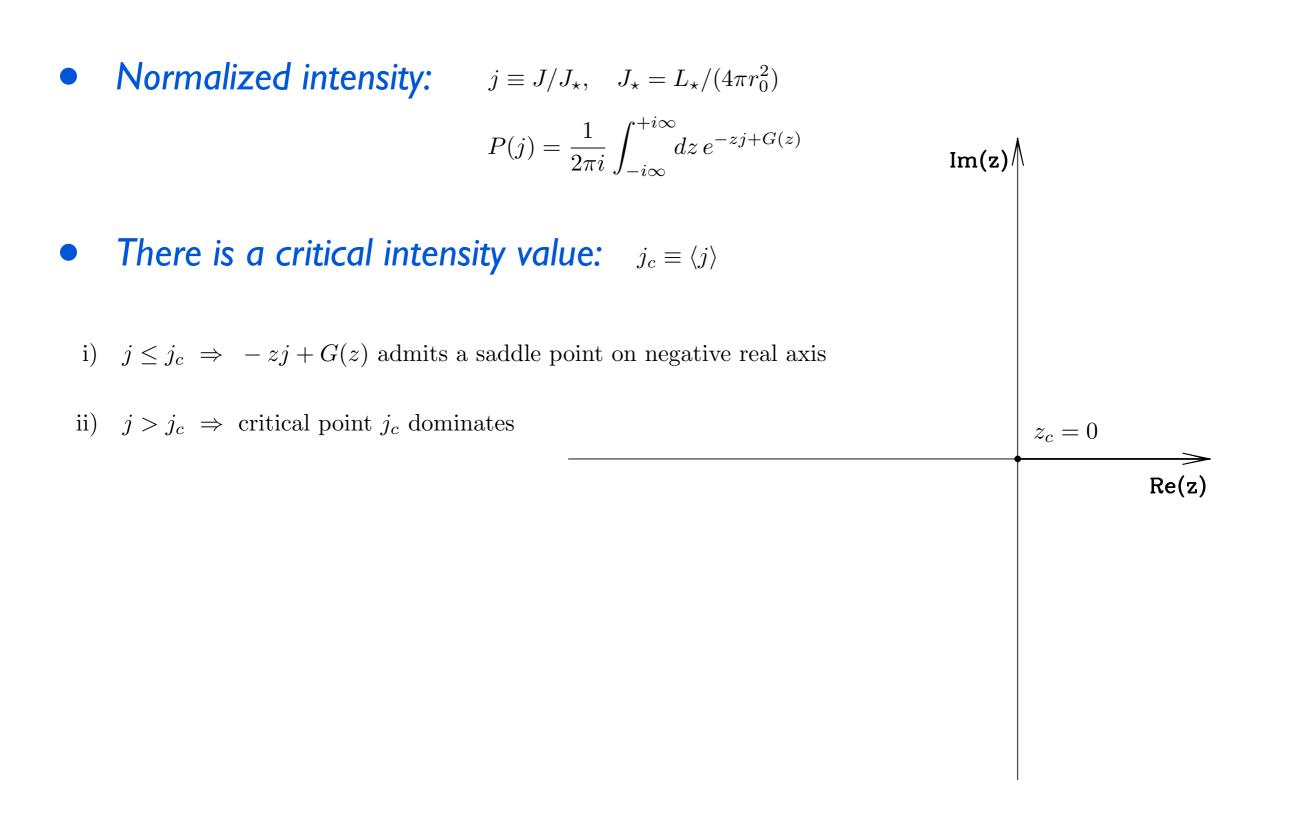
where:

$$\mathcal{W}_{\omega}(V) \equiv -\bar{N}_{e} \chi \left[\bar{N}_{e} \bar{\xi}_{2}(V_{e}) \right]$$
$$\bar{N}_{e} \bar{\xi}_{2} \equiv \left(\frac{\bar{n}}{V_{e}} \right) \int d^{3} \mathbf{x}_{1} \int d^{3} \mathbf{x}_{2} \, \xi_{2}(\mathbf{x}_{1}, \mathbf{x}_{2}) \left(1 - \omega(\mathbf{x}_{1}) \right)$$
$$\times \left(1 - \omega(\mathbf{x}_{2}) \right) \Theta_{H}(|\mathbf{x}_{1}| - R) \Theta_{H}(|\mathbf{x}_{2}| - R)$$

Numerical evaluation

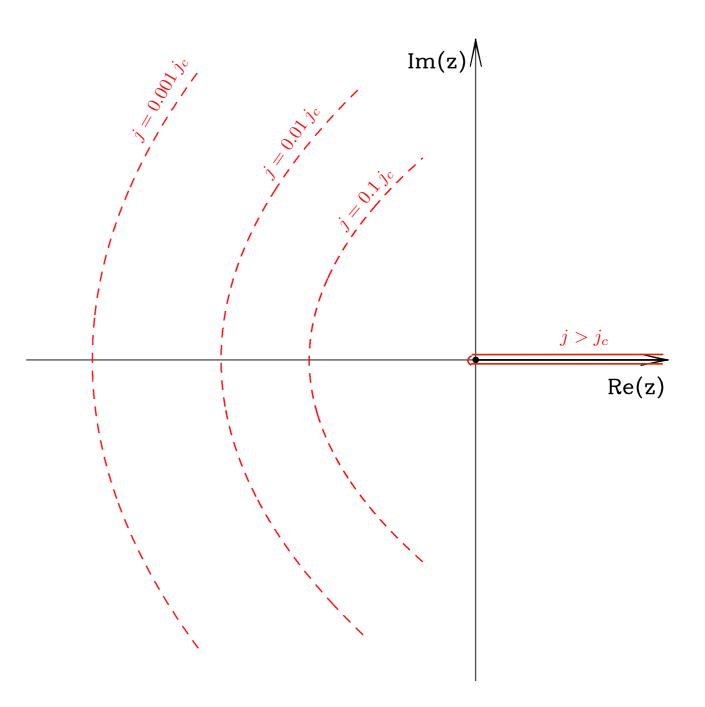


Numerical evaluation



Saddle point approximation

Construct paths in the complex plane such that $\delta(-zj+G(z)) \in \mathbb{R}$



Asymptotics

• Low-intensities: $j \le j_c$: $P(j) \sim \sqrt{F''(j)} e^{-F(j)}$

 $\sim e^{-(\ln j)^m}$

• High-intensities: $j > j_c$: $-zj + G(z) \approx -(j - j_c)z + c_{3/2}z^{3/2}$

 $P(j) \sim j^{-5/2}$

Model inputs

• Standard double power-law form for the bolometric QLF:

$$\Phi(L,z) = \frac{\Phi_{\star}(z)/L_{\star}(z)}{(L/L_{\star}(z))^{\beta_{1}(z)} + (L/L_{\star}(z))^{\beta_{2}(z)}}$$
(Boyle, Shanks & Peterson 1988)

• Power-law form for the QSO correlation function:

$$\xi_2(r) = \left(\frac{r}{r_{\xi}}\right)^{-\gamma} \qquad \gamma \approx 2$$

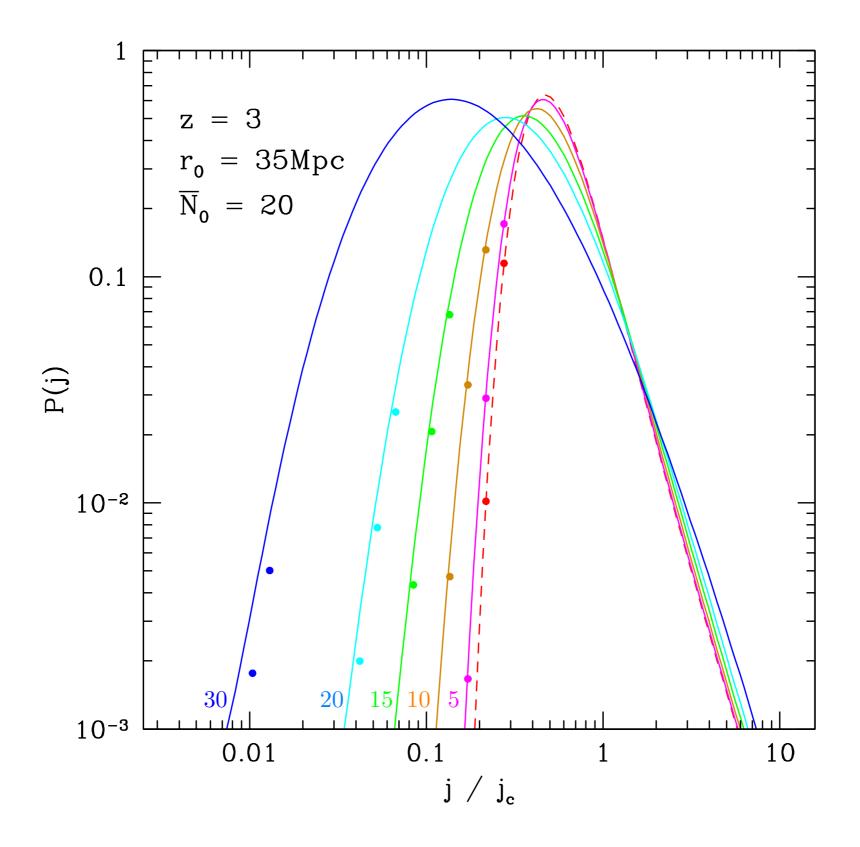
$$r_{\xi} \sim 24 \text{Mpc} \quad (2.9 \le z \le 3.5)$$

$$r_{\xi} \sim 35 \text{Mpc} \quad (z \ge 3.5) \qquad \text{(Shen, Strauss et al 2007)}$$

(Shen et al 2007)

Tuesday, 5 August 14

Intensity distribution



Varying assumptions

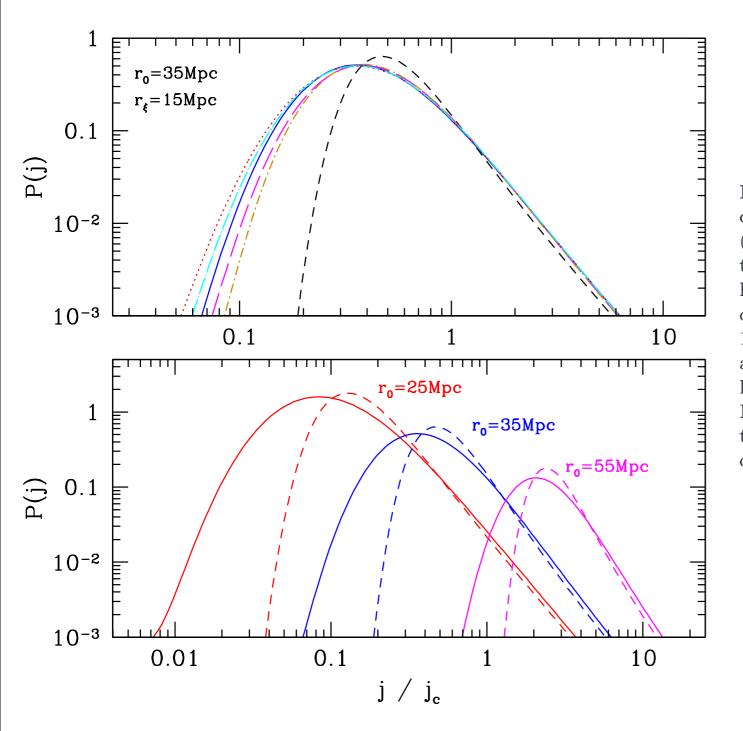


Figure 5. Top panel : Effect of changing the behaviour of the quasar correlation function on the distribution P(j). The solid (blue) curve is our fiducial model, the dotted (red) curve was obtained using the GH rather than the NB void scaling function, the long-dashed (magenta) curve has $\xi_2 = 0$ for r < 1 Mpc while the dotted-short dashed (orange) assumes $\xi_2 = 0$ outside the range 1 < r < 150 Mpc. Finally, the dotted-long dashed (cyan) curve assumes a powerlaw slope $\gamma = 1.9$ rather than 2.1. The correlation and attenuation lengths are $r_{\xi} = 15$ Mpc and $r_0 = 35$ Mpc, respectively. Bottom panel : P(j) for 3 different attenuation lengths. Results are shown for randomly distributed (dashed curves) and clustered sources with $r_{\xi} = 15$ Mpc (solid curves).

Variance of intensity fluctuations

$$\frac{\left\langle \Delta j^2 \right\rangle \Big|_{\text{clus}}}{\left\langle \Delta j^2 \right\rangle \Big|_{\text{ran}}} = \frac{\left\langle j^2 \right\rangle - \left\langle j \right\rangle^2 \Big|_{\text{clus}}}{\left\langle j^2 \right\rangle - \left\langle j \right\rangle^2 \Big|_{\text{ran}}}$$

	$r_{\xi} = 5$	$r_{\xi} = 10$	$r_{\xi} = 15$	$r_{\xi} = 20$	$r_{\xi} = 30$
$r_0 = 25$	1.02	1.08	1.19	1.35	1.56
$r_0 = 35$	1.03	1.10	1.23	1.41	1.95
$r_0 = 55$	1.05	1.15	1.32	1.56	2.25

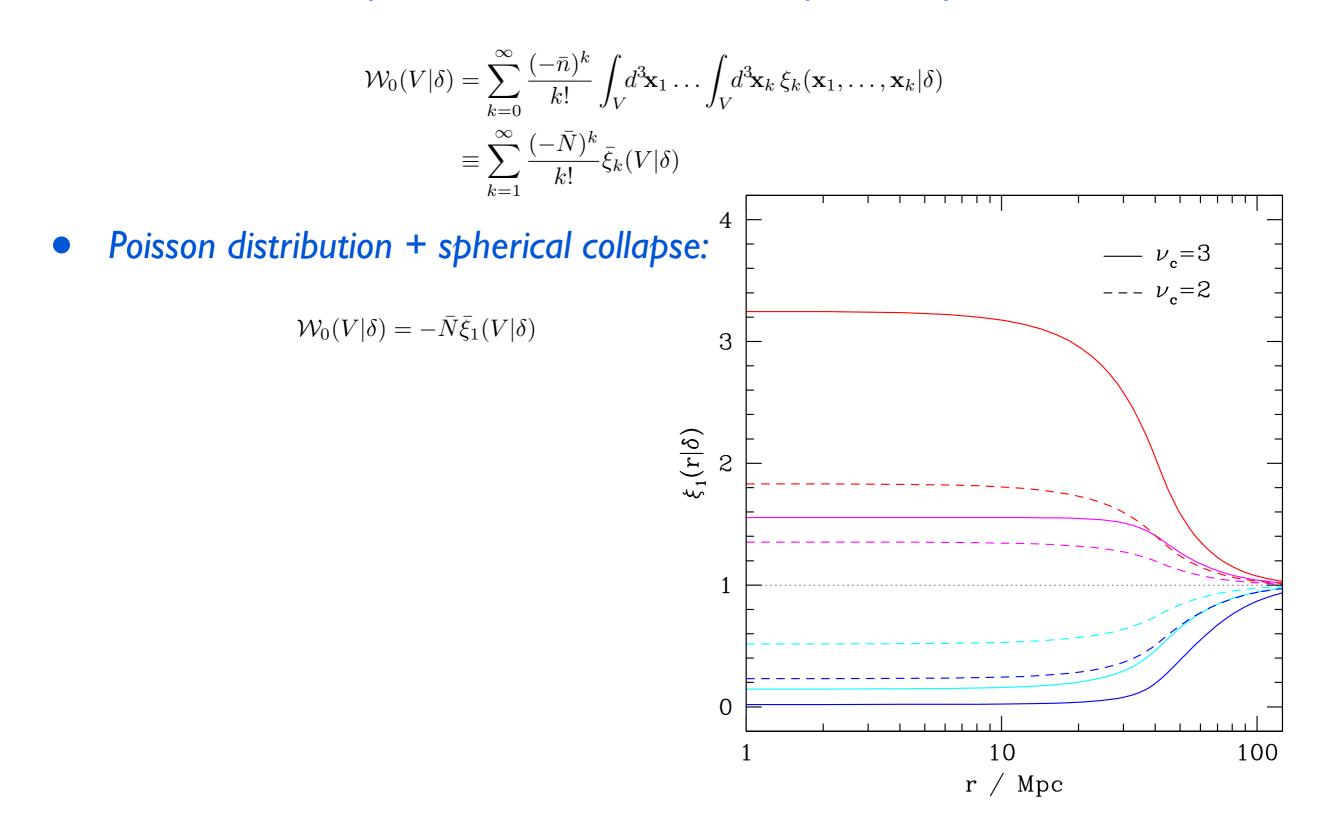
Environmental dependence

• Environmental dependence of conditional void probability:

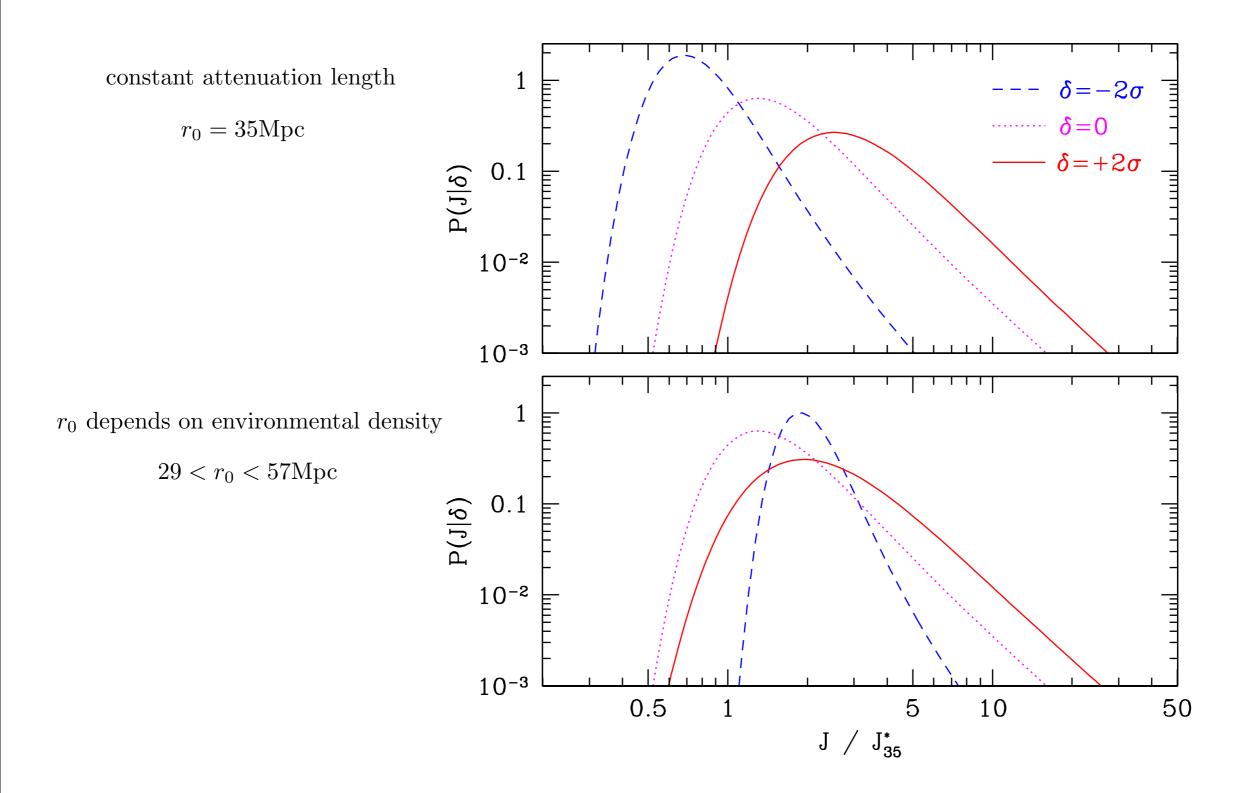
$$\mathcal{W}_0(V|\delta) = \sum_{k=0}^{\infty} \frac{(-\bar{n})^k}{k!} \int_V d^3 \mathbf{x}_1 \dots \int_V d^3 \mathbf{x}_k \,\xi_k(\mathbf{x}_1, \dots, \mathbf{x}_k|\delta)$$
$$\equiv \sum_{k=1}^{\infty} \frac{(-\bar{N})^k}{k!} \bar{\xi}_k(V|\delta)$$

Environmental dependence

• Environmental dependence of conditional void probability:



Environmental dependence



Take home message

• Count-in-cells + Hierarchical ansatz can be very powerful to describe strongly clustered distributions