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Introduction

Introduction

A given model in 5D is defined by:

A specific gravitational background: flat, warped,...
The gauge and global symmetries (this is as in 4D models)
Specifying the field content (as in 4D models): e.g. the SM field
content or extensions thereof
Specifying the fields propagating in the bulk and fields localized on
various branes
Specifying the 5D parameters: e.g. 5D Dirac masses

The procedure to establish connection with experiment is:

To perform KK decomposition for bulk fields
To compare with existing data

Electroweak precision and flavor constraints
Direct collider bounds

To make predictions
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Outline

Outline

The outline of this lecture is

The 5D SM
Electroweak precision observables

General expressions
Holographic methods

Flat extra dimensions: UED
AdS5 a.k.a. RS

The hierarchy problem
Anarchy: flavour theory
EW constraints

Relaxing the EWPT

Non-custodial models in warped dimension
Custodial models
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The 5D SM

The 5D SM

We will now consider the Standard Model (SM) propagating in a 5D
space with an arbitrary metric A(y) such that in proper coordinates 1

ds2 = e−2A(y)ηµνdxµdxν − dy 2 ,

We define the 5D SU(2)L × U(1)Y gauge bosons as W i
M(x , y),

BM(x , y) [or in the weak basis AγM(x , y), ZM(x , y) and W±
M (x , y)]

The SM Higgs

H(x , y) =
1√
2

e iχ(x ,y)

(
0

h(y) + ξ(x , y)

)
where the matrix χ(x , y) contains the three 5D SM fields ~χ(x , y)~σ
The Higgs background h(y) as well as the metric A(y) are arbitrary
functions

1Note that ηµν = (1,−1,−1,−1)
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The 5D SM

We will consider the 5D action for the gauge and Higgs fields

S5 =

∫
d4xdy

√
g

(
−1

4
~W 2
MN −

1

4
B2
MN + |DMH|2 − V (H)

)
−
∑
α

∫
d4xdy

√−ḡα (−1)α 2λα(H) δ(y − yα)

From here on we will assume that V (H) is quadratic in H and EWSB
is triggered on the IR brane
We thus choose the brane potentials as

λ0(φ0,H) = M0|H|2 , −λ1(φ1,H) = −M1|H|2 + γ|H|4

One can then construct the 4D effective theory by making the
KK-mode expansion

Aµ(x , y) =
∑
n

An
µ(x) · f n

A (y)/
√

y1, A = Aγ ,Z ,W±
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The 5D SM

The functions fA satisfy the EOM, normalization conditions and
(+,+) BC’s

m2
fA

fA + (e−2Af ′A)′ −M2
AfA = 0, f ′A

∣∣
y=0,y1

= 0∫ y1

0
f 2
A (y)dy = y1

We have introduced EWSB in the mass spectrum and defined the 5D
y -dependent gauge boson masses as

MW (y) =
g5

2
h(y)e−A(y), MZ (y) =

1

cW
MW (y), Mγ(y)

where cW = g5/
√

g 2
5 + g ′25 , and g5 and g ′5 are the 5D SU(2)L and

U(1)Y couplings respectively
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The 5D SM

Only the lightest mass eigenvalue will be significantly affected by the
breaking so we simplify our notation by defining

mA = mf 0
A
,

for the zero modes and

mn = mf nA
, f n = f n

A ,

for the higher modes (n ≥ 1).
In particular masses and wave functions of the n ≥ 1 KK excitations of
the W and Z bosons as well as photon and gluons (almost) coincide
The masses of light modes (n = 0) mZ and mW have to be matched
to the physical values. An approximated expression is given by

m2
A ≈ m2

A,0 ≡
1

y1

∫ y1

0
dy M2

A(y)
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The 5D SM

In case the lightest mode after electroweak breaking is separated by a
gap from the KK spectrum the expansion in powers of m2

A,0 can be
carried out analogously for its wave function
It turns out that

f 0
A (y) = 1 + δA − δfA(y)

δfA(y) = −m2
A,0y1

∫ y

0
e2A

(
Ω− y ′

y1

)
δA = −m2

A,0y1

∫ y1

0
e2A

(
Ω− y ′

y1

)(
1− y ′

y1

)
where the function Ω

Ω(y) =

∫ y
0 h2(y ′)e−2A(y ′)∫ y1

0 h2(y ′)e−2A(y ′)

In the case of an IR brane localized Higgs it is actually a step
function: in the bulk Ω = 0 and Ω(y1) = 1
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The 5D SM

The zero mode is no longer flat

!H" ! 0

0 L

1
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Electroweak precision observables

Electroweak precision observables

One has to check that the SM properties are not distorted too much
by the new physics (i.e. by the KK-modes).
Given that these are decoupling effects, this can be used to set a
lower bound on the KK scale.
The most sensitive and robust constraints are derived from the EW
precision measurements
Generically, the largest deviations from SM properties arise from the
fact that when the 0-mode Higgs, that by assumption has an IR-brane
localized profile (perhaps δ-function), acquires a vacuum expectation
value, it adds a y -dependent mass to the gauge EOM
The would-be 0-mode wavefunction is modified near the IR brane, as
illustrated in the previous figure
The dominant source of constraints arises from the requirement to
fulfill the relation M2

W = M2
Z cos2 θw , which is observed to hold to

excellent accuracy and suggests the existence of a custodial
symmetry : ρ− 1 ≡ αT
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Electroweak precision observables

When we embed the SM into a warped extra dimension there are
tree-level violations of custodial invariance proportional to g ′

W
(0)
µ W

(0)
ν

〈H〉

Wavy internal line is propagation of KK modes
The way to suppress them is by increasing the KK masses
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Electroweak precision observables General expressions

General expressions

There are three experimental input parameters usually referred as
Peskin-Takeuchi (S , T , U) parameters
However the U parameter is expected to be small since it corresponds
to a dimension eight operator
On the other hand, there are dimension six operators which in some
models can have sizable coefficients
It has thus been suggested to instead consider the set T , S , Y and
W as a more adequate basis for models of new physics

αT = m−2
W

[
c2
W ΠZ (0)− ΠW (0)

]
αS = 4s2

W c2
W

[
Π′γ(0)− Π′Z (0)

]
2m−2

W Y = s2
W Π′′Z (0) + c2

W Π′′γ(0)

2m−2
W W = c2

W Π′′Z (0) + s2
W Π′′γ(0)
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Electroweak precision observables General expressions

α is the electromagnetic gauge coupling defined at the Z -pole mass
The 4D gauge couplings are defined as g 2 = g 2

5 /y1 and g ′2 = g ′25 /y1

In theories with a Higgs mode H of mass mH � mKK one can relate
T , S , Y , and W to the coefficients of the dimension six operators

|H†DµH|2 , H†WµνHBµν , (∂ρBµν)2 , (DρWµν)2

T (four Higgs insertions) and S (two Higgs insertions) are related to
EWSB
Y and W are unrelated to EWSB
In the following we will assume fermions localized on the UV brane
(first and second generation fermions)
We have to worry then for the brane-to-brane gauge boson
propagators
The simplest technique uses holographic methods
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Electroweak precision observables Holographic methods

Holographic methods

In order to compute the brane-to brane propagator, let us define the
quantity

P(y , p2,m2
A,0) = e−2A(y) f ′A(p2, y)

fA(p2, y)
,

The holographic profile fA(p2, y) satisfies the EOM(
e−2Af ′A(p2, y)

)′
= (M2

A − p2)fA(p2, y) .

From this it follows that P satisfies the differential equation and
boundary condition

P ′ + e2AP2 = −p2 + m2
A,0ω(y) , P(y1, p

2,m2
A,0) = 0 , ω(y) =

M2
A(y)

m2
A,0
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Electroweak precision observables Holographic methods

We will solve for P in a series expansion in powers of p2 and m2
A,0

Matching order by order one finds (the subindex denotes the order of
both p2 and m2

A,0)

P ′0 + e2AP2
0 = 0

P ′1 + 2e2AP0P1 = −p2 + m2
A,0ω

P ′2 + e2A(P2
1 + 2P0P2) = 0

Enforcing now the boundary condition at each order one easily finds
the solution

P0 = 0

P1 = p2(y1 − y)−m2
A,0y1(1− Ω)

P2 =

∫ y1

y
e2A

[
−p2(y1 − y ′) + m2

A,0y1(1− Ω)
]2
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Electroweak precision observables Holographic methods

The inverse brane-to-brane propagator in the holographic picture is

Aµ(p, 0) = fA(p2, 0)Āµ(p) =⇒ ΠA(p2) =
1

y1
P(0, p2,m2

A,0)

Finally

ΠA(p2) = p2−m2
A,0 + y1

∫ y1

0
e2A

[
−p2

(
1− y

y1

)
+ m2

A,0(1− Ω)

]2

+ . . . ,

αT = s2
W m2

Zy1

∫
e2A(1− Ω)2

αS = 8s2
W c2

W m2
Z

∫
e2A (y1 − y) (1− Ω)

Y = W =
c2
W m2

Z

y1

∫
e2A (y1 − y)2
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Flat X-dimensions

Flat extra dimensions

This is the simplest case, where A(y) = 0
Gauge fields propagate in the bulk
If all matter fields propagate in the bulk the setup is dubbed:

Universal Extra Dimensions (UED)

All KK equations reduce to the simple harmonic oscillator equation

f ′′n + m2
nfn = 0, y1 = πR, mn =

n

R
, forget EWSB

f
(+,+)
n =

 1 for n = 0
√

2 cos
ny

R
for n 6= 0

, or f
(−,−)
n =

√
2 sin

ny

R

1

πR

∫ πR

0
dy f

(+,+)
m f

(+,+)
n = δmn , and

1

πR

∫ πR

0
dy f

(−,−)
m f

(−,−)
n = δmn
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Flat X-dimensions

As the wave functions are sines and cosines there is a very simple
selection rule. For instance

1

πR

∫ πR

0
dy f

(+,+)
n1 f

(+,+)
n2 f

(+,+)
n3 =

1√
2π

{
sin(n1 + n2 + n3)π

n1 + n2 + n3
+

sin(n1 + n2 − n3)π

n1 + n2 − n3

+
sin(n1 − n2 + n3)π

n1 − n2 + n3
+

sin(n1 − n2 − n3)π

n1 − n2 − n3

}
Since n1, n2, n3 are integers the integral vanishes unless: either
n1 + n2 + n3 = 0, or n1 + n2 − n3 = 0, or n1 − n2 + n3 = 0, or
n1 − n2 − n3 = 0
The general selection rule is that

n1 ± n2 ± · · · ± nN = 0

provided there is an even number of f
(−,−)
n insertions
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Flat X-dimensions

This is the case as for instance the Yukawa couplings in the bulk are

HQU = H
(+,+)

QL
(+,+)

UR
(+,+)

+ H
(+,+)

QR
(−,−)

UL
(−,−)

The bulk theory above has an exact discrete symmetry under which

KK-Parity

φn 7→ (−1)nφn where φ = Aµ, ψ,H

KK-parity has important phenomenological consequences

A(00→ 0→ 11) 6= 0: n = 1 modes are not singly produced

0

0

0
1

1

Difficult Direct Detection
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Flat X-dimensions

Even KK modes are allowed only at loop level (suppressed)

Only n = 2 can be singly produced: loop suppressed

2

1

1

1

0

0

Difficult Direct Detection

Odd (i.e. n=1) KK modes cannot be produced by Drell-Yan processes
at LHC for external n=0 modes

A(00→ 1→ 00) = 0

m
Difficult Direct Detection
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Flat X-dimensions

As for electroweak observables the relation between mW and mZ is
produced by the mixing between W 3

µ and Bµ. In general there can be

a mixing at the level of KK-modes between W
3(0)
µ and B

(n)
µ giving

rise to a modification of the mass ratio mW /mZ as in

W
(0)
µ W

(0)
ν

〈H〉

Because of KK-parity there is no such tree-level mixing and

KK-modes only affect electroweak observables at loop level

Finally

The lightest n = 1 state is exactly stable which leads to a
WIMP dark matter candidate
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AdS5

AdS5

This case is determined by the RS metric

A(y) = k y

The wave equations reduce to Bessel functions

Scalars with M2 = (α2 − 4)k2

EOM: f ′′n − 2kf ′n +
[
(1− α2)k2 + m2

ne2ky
]

fn = 0

Solution: fn = Nn eky
{

Jα
(mn

k
eky
)

+ bn Yα
(mn

k
eky
)}

Normalization =⇒ Nn

IR BC =⇒ bn

UV BC =⇒ mn
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AdS5

Fermions with M = ±ck with ± BC’s

EOM: (f n
L,R)′ + (c − 1

2
)k f n

L,R = ±mneky fR,L

BC: (f n
L,R)′ + (c − 1

2
)k f n

L,R

∣∣∣∣
y=yα

= 0, fR,L|y=yα
= 0

Solution: f n
L,R = Nn eky

{
Jc± 1

2

(mn

k
eky
)

+ bn Yc± 1
2

(mn

k
eky
)}

Normalization =⇒ Nn

IR BC =⇒ bn

UV BC =⇒ mn

Gauge bosons (limit of EWSB → 0) with (N,N) BC’s

Solution: f n = Nn eky
{

J1

(mn

k
eky
)

+ bn Y1

(mn

k
eky
)}
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AdS5

The 5D Einstein-Hilbert action takes the form

R5[g ] = e2AR4[g4]

S = −1

2

∫
d5x
√

gM3
5R5[g ] = −1

2

∫
d4x
√

g4M3
5

∫ y1

0
dye−2AR4[g4]

Which identifies the 4D Planck mass as

M2
P = M3

5

∫ y1

0
dye−2A =

M3
5

2k

(
1− e−2ky1

)
The warp factor ky1 is such that Planck-sized scales are warped down
to TeV scales in the IR brane

e−ky1MP ∼ O(TeV ) =⇒ ky1 ∼ 35

M2
P ' M3

5/2k
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AdS5 The hierarchy problem

The hierarchy problem

If we define the Higgs mass in the bulk

V (H) = M2|H|2, M2 = a(a− 4)k2

The EOM and BC’s are (see Lecture 1): “not the physical one”

h′′ − 4A′h′ −M2h = 0, h′(yα) =
∂λα

∂h

∣∣∣∣
y=yα

The solution is given by

h(y) = c1eaky + c2e(4−a)ky

{ ∼ c1 eaky for a > 2

∼ c2e(4−a)ky for a < 2

In the holographic picture

a ≡ dim(OH)
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AdS5 The hierarchy problem

Then for a ≥ 2

h(y) = c1eaky unless we fine tune c1 ≡ 0 =⇒ h(y) = c2e(4−a)ky

For a < 2

h(y) = c2e(4−a)ky unless we fine tune c2 ≡ 0 =⇒ h(y) = c1eaky

In all cases no fine tuning implies that

a = 2 + ∆ =⇒ h(y) ' e(2+|∆|)ky or h(y) ' eakywith a > 2

The hierarchy problem is solved in the holographic picture if

dim(OH) ≥ 2
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AdS5 Flavor anarchy

Flavor anarchy

The freedom to localize the fermion 0-modes offers an appealing
understanding of the observed fermion mass hierarchies
In 5D, a bulk Yukawa operator leads to

y5HΨ1Ψ2 + h.c. =⇒ y4v ψ̄0
1Lψ

0
2R + h.c.+ “KK-modes”

where

y4 =

(
y5√
y1

)
1

y1

∫ y1

0
dy h(y)f 0

ψ1
(y)f 0

ψ2
(y)

Thus, the 4D Yukawa couplings depend not only on the 5D Yukawa
couplings, but also on the fermion localization
The assumption of flavor anarchy in this context corresponds to
taking the 5D Yukawa matrices to be generic matrices
The hierarchical structure of the observed fermion masses (and
mixing angles) would be a consequence of the fermion geography
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AdS5 Flavor anarchy

Light fermions

c >
1

2
fermion Higgs

Heavy fermions

c <
1

2
Higgs fermion

We have randomly generated a set of 40,000 complex 5D Yukawas and
fitted the 9 parameters cψ

The result of the fit (including 1σ)

c(u,d)L = 0.66± 0.02 c(c,s)L = 0.59± 0.02 c(t,b)L = −0.11+0.45
−0.53

cuR = 0.71± 0.02 ccR = 0.57± 0.02 ctR = 0.42+0.05
−0.17

cdR = 0.66± 0.03 csR = 0.65± 0.03 cbR = 0.64± 0.02
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AdS5 Flavor anarchy

One should point out that there are tree-level FCNC effects arising
from the fact that the light families are not localized in exactly the
same way
This means that there is some flavor-dependence in the couplings of
the fermions to KK gluons as

gFiFjG =

(
g5√
y1

)
1

y1

∫ y1

0
dy f 0

Fi
(y)f 0

Fj
(y)fG (1)(y) ,

Although gFiFjG is diagonal in the fermion gauge eigenbasis, the fact
that they are fermion-dependent (through the c-dependence), means
that in the mass eigenbasis, off diagonal couplings are induced

d

s

G′
µ

s

d

K 0 − K̄ 0oscillations: ∆m2
K
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AdS5 Flavor anarchy

However the gluon KK mode es very flat at the UV brane (towards
where the light fermions are localized)

y ! 0 y ! L

0f A
!y"

Gauge KK"modes 1st

2nd

3rd

This leads to suppressed flavor changing KK-gluon vertices: known as
the RS-GIM mechanism
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AdS5 Electroweak constraints

Electroweak constraints

The T and S parameters can be readily computed from general
expressions yielding

α(mZ )TRS = s2
W

m2
Z

ρ2
(ky1)

(a− 1)2

a(2a− 1)
+ . . .

α(mZ )SRS = 2s2
W c2

W

m2
Z

ρ2

a2 − 1

a2
+ . . . mKK ' 2.4ρ

where the ellipses indicate subleading corrections in the large volume
ky1 and ρ = k exp(−ky1) ∼ TeV
T parameter is volume enhanced: strong constraints
Using the experimental values T = 0.07± 0.08, S = 0.03± 0.09,{

a→∞ (localized Higgs) mKK > 10.4 TeV
a = 2 mKK > 6 TeV
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Relaxing EWPT

Relaxing EWPT

The large values on lower bounds on KK modes make the simple RS
model

Uninteresting from the experimental side as there is no hope to detect
KK modes at the LHC
Uninteresting from the theoretical side as it creates a little hierarchy
problem between the EW scale and the KK scale

There are essentially two ways of improving the behaviour of
electroweak observables

One way is to keep the gauge structure but modify the gravitational
metric:

From AdS5 =⇒ Asymptotically AdS5

Another way is modifying the gauge structure to incorporate the
custodial symmetry as a gauge symmetry in the 5D setup
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Relaxing EWPT Deformed metric

Deformed metric

One possibility for deforming the gravitational metric was already
discussed in Lecture 1 where we considered

A(y) = ky − 1

ν2
log

(
1− y

ys

)
where the singularity lies beyond the IR brane y1

Except close to the IR brane A(y) is nearly linear which corresponds
to the AdS5 limit
The nearby presence of the singularity modifies the background
around the IR brane which in turn affects the various wave functions
In particular the physical Higgs wave function is

fh(y) = Nhe−A(y)eaky → 0 for y → y1 . ys ,
1

y1

∫ y1

0
dyf 2

h (y) = 1
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Relaxing EWPT Deformed metric

As the KK modes are localized towards y1 the overlap integrals of
gauge KK modes with the Higgs are suppressed

y ! 0 y ! L

fh0!y"

fA1!y"

As a result the constraints from electroweak observables are milder
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Relaxing EWPT Deformed metric

a = 2. Left panel: k(ys − y1) = 1; Right panel: ν = 1 (95% CL bounds)

In the limit ν →∞ and/or k(ys − y1)→∞ the results go to the RS
bounds
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Relaxing EWPT Deformed metric

a = 3.1, ν = 0.5, 0.525, 0.55, 0.6 mKK ≤ 3 TeV, ∆mKK = 0.5 TeV

0.00 0.05 0.10 0.15 0.20 0.25
0.00

0.05

0.10

0.15

0.20

0.25

S

T
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Relaxing EWPT Custodial models

Custodial models

The idea is to introduce a custodial gauged symmetry in the bulk
(dual to a 4D model with global custodial symmetry enforced)
Thus, the SM gauge group is extended to

SU(2)gaugeL × SU(2)gaugeR × U(1)gaugeX︸ ︷︷ ︸
⊃ U(1)Y

, (X = B − L), Y = X + T 3
R

This gauge group is broken by boundary conditions, so that only the
SM subgroup has associated massless gauge bosons (before EWSB)
The LR symmetry remains unbroken on the IR brane, where the
strongly interacting states are localized. Thus, the custodial
symmetry is exact on this boundary, even for g ′ 6= 0.
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Relaxing EWPT Custodial models

Custodial models

The specific breaking pattern is

W 1,2
R (−,+)

Z ′ =
1√

g 2
R + g 2

X

{gRW 3
R − gXX} (−,+)

W 1,2,3
L (+,+)

Bµ =
1√

g 2
R + g 2

X

{gXW 3
R + gRX} (+,+)

The LR symmetry remains unbroken in the IR brane.
The custodial symmetry is exact on the IR brane even for g ′ 6= 0
In the bulk the T -parameter receives contributions from the massive
WL and WR fields, leading to a good degree of cancellation, since at
the massive level the differences between L and R are small

Mariano Quirós (ICREA/IFAE) Non-SUSY BSM: Lecture 2/2 38 / 44
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Since we are enlarging the bulk gauge symmetry the right-handed
fermions should be promoted to doublets under SU(2)R

QR 1 =

(
uR

d̃R

)
, QR 2 =

(
ũR

dR

)
, LR =

(
eR
ν̃R

)
where only the untilded fields possess a zero mode. Since we are breaking
the SU(2)R through the orbifold BC: one component of SU(2)R doublet
must be even (with zero mode) and the other odd (without zero mode).
This doubling on the number of fields is only required in the quark sector
as in the lepton sector for the SU(2)R doublet

The contribution from KK modes tends to cancel at tree-level

WL

−
WR
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At the one-loop level, on top of the usual Standard Model leading
contribution from the top quark, the dominant contribution comes from a
loop where the KK-modes of (tL, tR) and (bL, b̃R) are exchanged, as in
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mKK ≤ 6 TeV, ∆mKK = 0.25 TeV; mKK & 3 TeV, 95% CL
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The Higgs potential and the Higgs mass can also be obtained
dynamically by the Coleman-Weinberg mechanism if the Higgs is
identified with the fifth component of a 5D gauge boson:
Gauge-Higgs-Unification
GHU is actually an alternative to supersymmetry, where the gauge
symmetry in the bulk G protects the mass of extra-dimensional
components of gauge bosons
This solution to the hierarchy problem requires an extended gauge
group with respect to the SM gauge group
It can be constructed in flat or warped space, although in warped
space the GIM-RS mechanism protects the theory with differently
localized fermion fields from huge flavor violation, which otherwise
would require severe constraints on the mass of KK modes
The four-dimensional components of 5D gauge bosons (Aa

µ) of G with
(N,N) boundary conditions constitute the four-dimensional gauge
bosons while the fifth components (Aâ

5), with (N,N) boundary
conditions, contain the four-dimensional Higgs fields in a number
equal to the number of Pseudo Goldstone Bosons
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In general G will be broken by boundary conditions to HUV (HIR) on
the UV (IR) brane.
For HUV = SU(2)L ⊗ U(1)Y the number of PGB is dim(G/HIR) so
different models differ by different choices for G and HIR .
Some models are defined in the table below

Model # Goldstones (Aâ
5)

SO(4)/SO(3) 6-3=3 (Higgsless SM)
SU(3)/SU(2)×U(1) 8-4=4(HSM)

SO(5)/SO(4) 10-6=4 (HSM)
SO(6)/SO(5) 15-10=5 (HSM + singlet)

SO(6)/SO(4)×SO(2) 15-6-1=8 (Hu,Hd)

The model with G = SO(5) is a sort of minimal model (MCHM)
which contains custodial symmetry on the IR brane and where the
Higgs sector=SM Higgs
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In the dual theory G/HIR is characterized by the spontaneous
breaking scale fh such that the expansion parameter in the theory is ξ

ξ ≡
(

v

fh

)2 {
• ξ → 0⇒ SM limit
• ξ → 1⇒ Technicolor limit

The ξ parameter controls perturbative unitarity
However unlike in the models with a scalar fundamental Higgs, where
the parameter ξ � 1, in the models presented in this section ξ
depends on fh and can thus be considered as a free parameter.
For instance in the limit ξ → 0 the SM result is obtained and the
Higgs unitarizes the theory without the need of any extra particle.
On the other extreme in the Technicolor limit ξ → 1 all unitarity must
be provided by new TeV resonances at scales close to the electroweak
scale.
For intermediate values of 0 < ξ < 1 unitarity must be partially
restored by resonances at scales which depend on the value of ξ.
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