A. Dosil Suárez

Taller de Altas Energías (TAE) 15th - 28rd September, 2013 Benasque

Álvaro Dosil Suárez

The LHCb experiment

The Upgrade

Test beam

Schedule

Conclusions

Outline

1 The LHCb experiment

2 The Upgrade

3 Test beam

4 Schedule

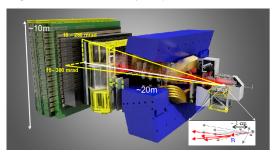
5 Conclusions

Álvaro Dosil Suárez

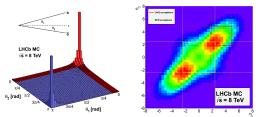
The LHCb experiment

The Upgrade

Test beam

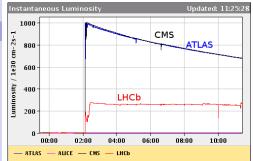

Schedule

Conclusions


The LHCb experiment

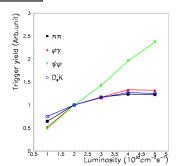
LHCb is a forward spectrometer designed to study flavor physics exploiting the enormous production cross sections of heavy hadrons at the LHC

- Excellent vertex, momentum and particle identification
- 2 < η < 5
- 40% of heavy quark production x-section with 4% of solid angle


Álvaro Dosil Suárez

Schedule

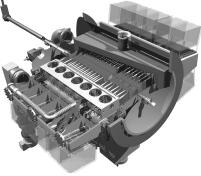
Conclusions

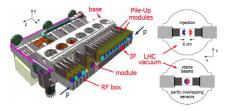

The LHCb experiment

- · Design luminosity lower than the LHC can deliver.
 - \rightarrow Built for
 - $\mathcal{L} = 2 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$ at 25 ns spacing, with an average of $\mu=0.4$ interactions per bunch crossing
 - \rightarrow Running at a $\mathcal{L} = 4 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$ at 50 ns spacing with μ =1.4 \rightarrow Has recorded 1.1 fb⁻¹ in 2011
 - and 2 fb $^{-1}$ in 2012

· Running at higher luminosity does not improve hadronic event yield due to trigger bottleneck

Álvaro Dosil Suárez


The LHCb experiment


- The Upgrade
- Test beam
- Schedule
- Conclusions

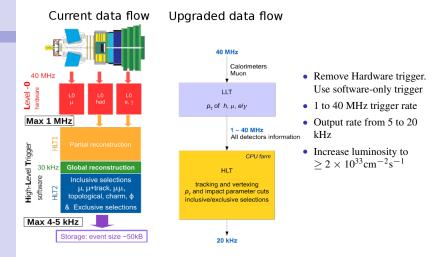
The Vertex Locator (VELO)

- Silicon strip detector surrounding the interaction point
- 88 silicon n⁺-on-n sensors, 300 μ m thick, R- ϕ design
- Located only 8 mm from the beams
- Enclosed into a separated vacuum box (RF Foil)
- Halves are separated for beams injection
- 1 MHz trigger rate
- Bi-phase CO₂ cooling system

Álvaro Dosil Suárez

The LHCb experiment

The Upgrade


Test beam

Schedule

Conclusions

LHCb upgrade

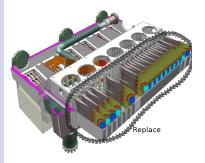
Apart from the increase in luminosity and trigger rate, we expect an increment of approx. a factor 10 and 20 in the muonic and hadronic channels yield respectively.

6/13

Álvaro Dosil Suárez

The LHCb experiment

The Upgrade


- Test beam
- Schedule
- Conclusions

VELO upgrade

Requirements and challenges

- Data-driven readout at 40 MHz. >2 Tbit/s from whole VELO
- Radiation tolerance. Higly non-uniform radiation: 4.8 × r^{-1.9} hits event⁻¹cm⁻²
- Keep/improve performance
- Increase granularity to allow operation at $\mathcal{L} \geq 2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$

- Sensors, electronics, modules and RF foil need to be replaced.
- Vacuum tank, cooling plant and motion system will be re-used.

Álvaro Dosil Suárez

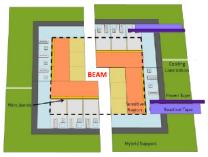
The LHCb experiment

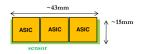
The Upgrade

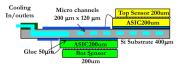
Test beam

Schedule

Conclusions


Modules

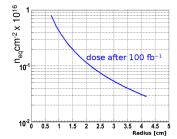

- based on Velopix ASIC (successor of Timepix3) 55 μm x 55 μm pixel size, 256 x 256 matrix
 - → simultaneous measurement of time-over-threshold (ToT) and time-of-arrival (ToA)
 - \rightarrow peaking time < 25 ns, timewalk < 25 ns
 - \rightarrow hit rate up to 500 MHz. (Above 12 Gbit/s)
 - \rightarrow submission planned for early 2014
- L-shaped half modules with two blocks of 6 chips
- Closest pixel is at 5.1 mm from the beam center
- Geometrical efficiency > 99 % for R < 10 mm



- → Novel method: evaporate CO2 via micro-channels etched in Si substrate
- \rightarrow Bring the cooling power where you need it, using least material
- \rightarrow No CTE difference (Si on Si)

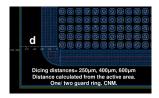
Álvaro Dosil Suárez

The LHCb experiment


The Upgrade

- Test beam
- Schedule
- Conclusions

Silicon sensors



- Planar silicon, n-in-n or n-in-p to be decided
- Tile for 3 VeloPix chips: \sim 43 x 14 mm, thickness 200 μ m
- 55 μ m x 55 μ m pixel size
- Non homogeneous irradiation sets constraints on guard ring design
 - $\rightarrow\,$ factor ${\sim}40\,$ difference in fluence from tip to far corner
 - $\rightarrow~$ bias voltage at end on life ${\sim}1000$ Volts for tip
 - $\rightarrow~{\rm guard}~{\rm ring}~{\rm width}~{\sim}400~\mu{\rm m}$

Sensor wafer with variable guard ring designs (Tiles 2-1 and 3-1. CNM)

Álvaro Dosil Suárez

The LHCb experiment

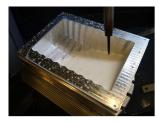
The Upgrade

- Test beam
- Schedule
- Conclusions

RF foil

The RF foil is a de facto beam pipe

Severe requirements:

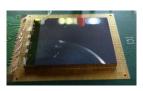

- Vacuum tight ($< 10^{-9}$ mbar l/s)
- Radiation hard
- Low mass but rigid to prevent deflection onto the sensors or pinhole leaks
- Good electrical conductivity to mirror beam currents and shield against RF noise pick-up in FE electronics
- Thermally stable and conductive (heat load from the beam)

Material and fabrication:

- Mill foil from solid Al alloy block
- By 5-axis milling head
- Achieve 300 µm thickness
- More flexibility to change shape than made by pressing method

Álvaro Dosil Suárez

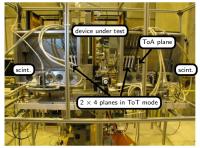
The LHCb experiment


The Upgrade

- Test bear
- Schedule
- Conclusions

Test beam

TimePix telescope


- Constructed for LHCb upgrade
- Timepix assemblies (with 300 μm sensors) used as telescope planes (8 ToT + 1 ToA)
- device under test can be moved/rotated and cooled (portable CO₂ cooling plant)
- Resolution at the DUT plane $\leq 2\mu$ m (with 180 GeV/c π beam)
- Track time-stamping with
 - $\rightarrow~pprox$ 1 ns resolution
 - $ightarrow \,$ $m \approx$ 3-12 kHz track rate
- available to external users within the framework of AIDA WP 9.3

Focus on

- sensor performance after irradiation (Medipix3 assemblies)
- evaluation of guard-ring designs, edge efficiencies

Álvaro Dosil Suárez

The LHCb	
experiment	

The Upgrade

Test beam

Schedule

Conclusions

LoI: CERN-LHCC-2011-001 FTDR: CERN-LHCC-2012-007

	2013	2014	2015	2016	2017	2018
Sensor R&D						
Electronics R&D						
Module R&D						
Infrastructure R&D						
TDR						1
Sensor Production						
Electronics Production						
Module Production						1
Mechanics Production						
Assembly						

... to be installed in LHC Long Shutdown 2, in 2018-2019

Álvaro Dosil Suárez

The LHCb experiment The Upgrade

Test beam

Schedule

Conclusions

Conclusions

The requirements for the LHCb VELO upgrade are very demanding:

- Luminosity will be increased by a factor ≥ 10
- Trigger readout will be increased by a factor of 40
- Keep or improve the performance of the current VELO

R&D effort is underway:

- Vertex Locator will consist of planar silicon pixels, 55 x 55 μ m²
- · Evaporative CO2 cooling in Silicon micro-channel substrate
- Material budget reduction in elements placed in the acceptance (modules, RF-Foil)
- Intense testbeam program to study: sensor technologies, radiation hardness, cooling schemes and readout electronics

Installation during long shutdown 2 in 2018