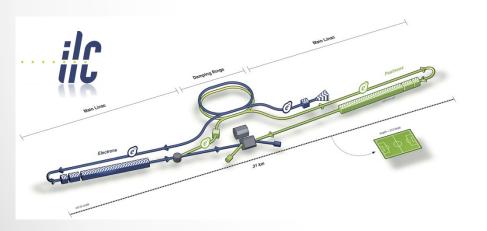
A precise determination of top quark electroweak couplings at the ILC

Ignacio García García

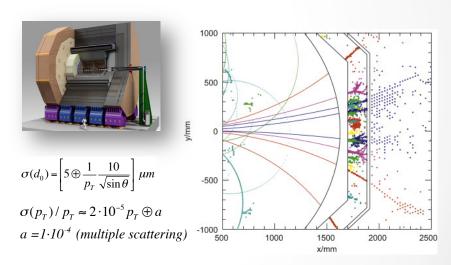
IFIC (UV-CSIC)

INDEX

- Introduction
- Experimental environment and data samples
- Event selection
- Observables and form factors
- Measurement of observables
 - The Forward–Backward asymmetry: A_{FB}
 - *Slope of the helicity distribution*
- Results
- Conclusions


Theory

- The top quark is the heaviest elementary particle and it is the most strongly coupled to the mechanism of electroweak symmetry breaking.
- In contrast to the situation at hadron colliders, the dominant pair production process $e^+e^- \rightarrow t\bar{t}$ involves only $t\bar{t}Z^0$ and $t\bar{t}\gamma$ primary vertices
- \blacksquare A way to describe the current at the $t\bar{t}X$ vertex:
 - $X = Z^0, \gamma$
 - $V = Vector\ coupling$
 - A = Axial coupling


$$\Gamma_{\mu}^{ttX}(k^2, q, \overline{q}) = ie \left\{ \gamma_{\mu} \left(\widetilde{F}_{1V}^X(k^2) + \gamma_5 \widetilde{F}_{1A}^X(k^2) \right) + \frac{(q - \overline{q})_{\mu}}{2m_t} \left(\widetilde{F}_{2V}^X(k^2) + \gamma_5 \widetilde{F}_{2A}^X(k^2) \right) \right\}$$

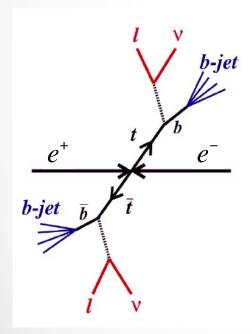
International Linear Collider (ILC)

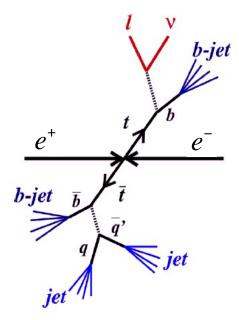
- The c.o.m. energy: $\sqrt{s} = 500 \text{ GeV}$ (default design)
- **Luminosity:** $\mathcal{L} = 500 \text{ fb}^{-1} = 5 \times 10^5$ pb⁻¹ (estimated for 4 years of running)
- Beams are **polarised**: $P(e^-) \approx \pm 80\%$, $P(e^+) \approx \pm 30\%$.

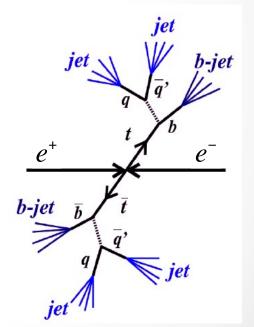
ILD detector is optimised for Particle Flow Algorithm (PFLOW), i.e. measure particles in jet in the best suited sub-detectors

So the expected energy resolution is:

$$\sigma_E / E \sim 3\%$$

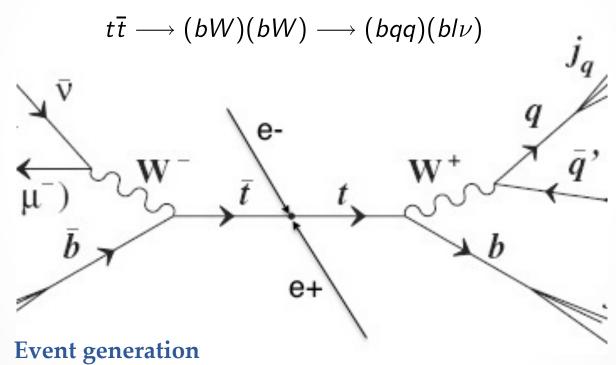

tł decay modes


 $e^+e^- \rightarrow t\overline{t}$ gives three different final states:

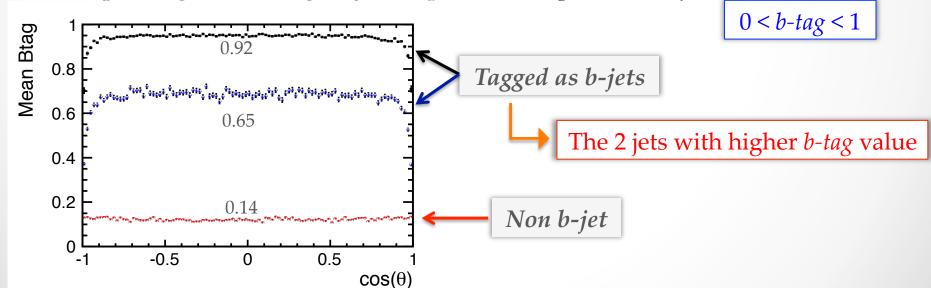

Fully leptonic (10.3%) 2jets + 2 leptons + 2 neutrinos

Semi-leptonic (43.5%) 4 jets + lepton + neutrino

Fully hadronic (46.2%) 6 jets at final state



■ This analysis concentrates mainly on events which have a **semi-leptonic final state**


http://www-flc.desy.de/lcnotes/ LC-REP-2013-007

- 1) WHIZARD: event generation (samples for the DBD)
- 2) PYTHIA: Parton shower and hadronisation

Event selection

- **Lepton identification** criteria:
 - Lepton is isolated from a jet $x_T = p_{T,lepton}/M_{jet} > 0.25$ and $z = E_{lepton}/E_{jet} > 0.6$ Taking into account the τ leptons. \longrightarrow Eff $\sim 70\%$
- **b-likeness or b-tag** is determined analysing secondary vertices \rightarrow jet mass, decay length and particle multiplicity. A **b-tag** value is assigned to each jet.

Event selection

The signal is reconstructed by choosing the combination of b quark jet and W boson that minimises the following equation:

$$d^2 = \left(\frac{m_{cand.} - m_t}{\sigma_{m_t}}\right)^2 + \left(\frac{E_{cand.} - E_{beam}}{\sigma_{E_{cand.}}}\right)^2 + \left(\frac{p_b^* - 68}{\sigma_{p_b^*}}\right)^2 + \left(\frac{\cos\theta_{bW} - 0.23}{\sigma_{\cos\theta_{bW}}}\right)^2$$

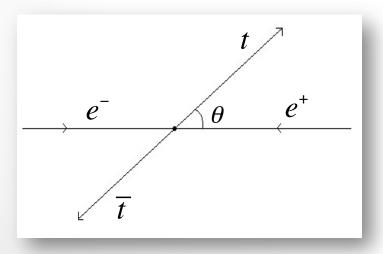
- Some cuts:
 - Hadronic mass of the final state: $180 < m_{had.} < 420 \,\mathrm{GeV}$
 - Reconstructed W mass: $50 < m_W < 250 \,\mathrm{GeV}$
 - Reconstructed top mass: $120 < m_t < 270 \,\mathrm{GeV}$
 - Isolated lepton: the best candidate
 - **b-tag values:** *b-tag*₁ > 0.8 & *b-tag*₂ > 0.3
- The **entire selection** retains:
 - **51.9**% for the configuration P,P' = -1,+1 (Left-handed electrons)
 - **55.0**% for P,P' = +1, -1 (Right-handed electrons)

Observables

- **■** Total cross section (σ)
- The Forward-Backward Asymmetry (A_{FB})
- The slope of the distribution of the helicity angle (λ_{hel})

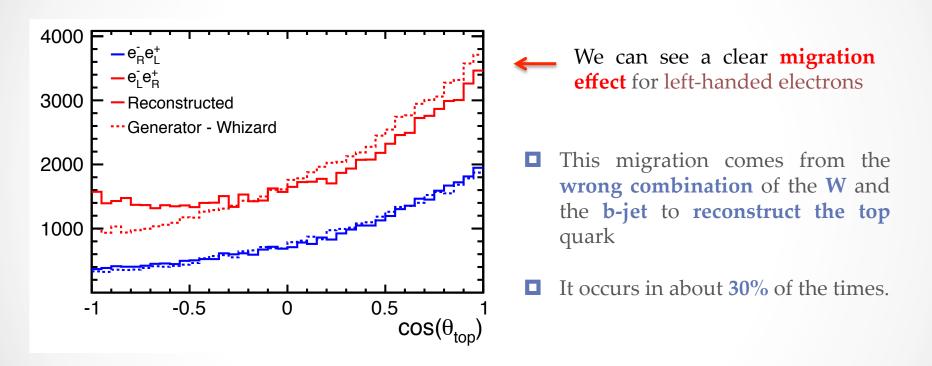
But actually there are $\mathbf{6}$ independent observables = $\mathbf{3}$ observables x $\mathbf{2}$ polarisations

So once 6 observables are measured, we can obtain the following CP conserving 5 couplings of the top quark


* $F_{1A}^{\gamma} = 0$ always because of the gauge invariance

Forward-Backward asymmetry: A_{FB}

■ The Forward-Backward Asymmetry


$$A_{FB} = \frac{N_{top}(\cos\theta > 0) - N_{top}(\cos\theta < 0)}{N_{top}(\cos\theta > 0) + N_{top}(\cos\theta < 0)}$$

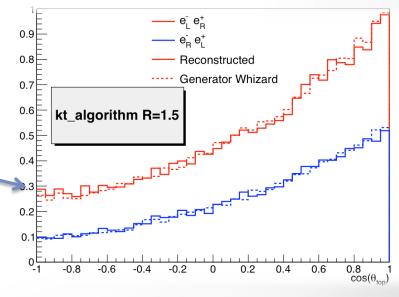
$$-1 < A_{FB} < 1$$

- The sign of the top is the one of the lepton
- For \bar{t} we change θ to $\theta + \pi$

Results for A_{FB}

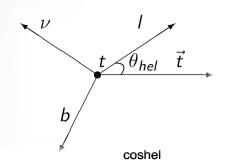
This gives a wrong direction of the reconstructed top and produces the migration effect.

How to cure migration? χ^2 strategy


$$\chi^2 = \left(\frac{\gamma_t - 1.435}{\sigma_{\gamma_t}}\right)^2 + \left(\frac{E_b^* - 68}{\sigma_{E_b^*}}\right)^2 + \left(\frac{\cos\theta_{bW} - 0.26}{\sigma_{\cos\theta_{bW}}}\right)^2$$

- If we cut on χ^2 we reduce the number of wrong combinations of W and bjet
- \sim $\chi^2 < 15 \rightarrow$ Reconstruction efficency : 29.6%

\mathcal{P},\mathcal{P}'	$(A_{FB}^t)_{gen.}$	A_{FB}^t	$(\delta_{A_{FB}}/A_{FB})_{stat.}$ [%]
-1, +1	0.360	0.344	1.7 (for $\mathcal{P}, \mathcal{P}' = -0.8, +0.3$)
+1, -1	0.433	0.428	1.3 (for $\mathcal{P}, \mathcal{P}' = +0.8, -0.3$)


The χ^2 cut removes the migration effect

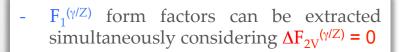
for left-handed electrons

Helicity angle (θ_{hel})

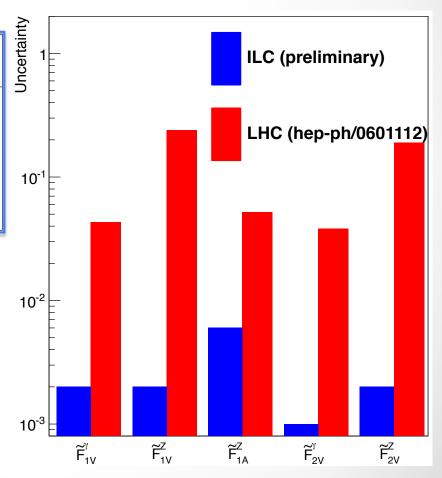
In the rest frame of the top, θ_{hel} is the angle between the initial direction of the top and the lepton

The slope (λ_t) of the distribution gives the fraction of t_L and t_R in the sample.

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{hel}} = \frac{1 + \lambda_t \cos\theta_{hel}}{2} = \frac{1}{2} + (2F_R - 1) \frac{\cos\theta_{hel}}{2}$$


$$\lambda_t = 1 \text{ for } t_R \quad \lambda_t = -1 \text{ for } t_L$$

1 _F
0.9 — e_ e_ e_ +
—— e _R e _L
0.8 Generator - Whizard
0.7 Reconstructed
0.5
0.4
0.3
0.2 Leptons not well isolated in the
jet: lower energy
0.1
0-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
$\cos(\theta_{hel})$


\mathcal{P},\mathcal{P}'	$(\lambda_t)_{gen.}$	$(\lambda_t)_{rec.}$	$(\delta \lambda_t)_{stat.}$	$(\delta \lambda_t)_{syst.}$
			for $\mathcal{P}, \mathcal{P}' = \mp 0.8, \pm 0.3$	
-1, +1	-0.519	-0.489	0.016	0.011
+1, -1	0.544	0.547	0.016	0.010

Summary of the results

Coupling	SM value	LHC [1]	$e^{+}e^{-}$ [6]	$e^+e^-[ILC\ DBD]$
		$\mathcal{L} = 300 \text{ fb}^{-1}$	$\mathcal{L} = 300 \text{ fb}^{-1}$	$\mathcal{L} = 500 \text{ fb}^{-1}$
			$\mathcal{P}, \mathcal{P}' = -0.8, 0$	$\mathcal{P}, \mathcal{P}' = \pm 0.8, \mp 0.3$
$\Delta \widetilde{F}_{1V}^{\gamma}$	0.66	$^{+0.043}_{-0.041}$	_ _	$^{+0.002}_{-0.002}$
$\Delta \widetilde{F}_{1V}^Z$	0.23	$^{+0.240}_{-0.620}$	$^{+0.004}_{-0.004}$	$^{+0.002}_{-0.002}$
$\Delta \widetilde{F}_{1A}^{Z}$	-0.59	$^{+0.052}_{-0.060}$	$^{+0.009}_{-0.013}$	$^{+0.006}_{-0.006}$
$\Delta \widetilde{F}_{2V}^{\gamma}$	0.015	$^{+0.038}_{-0.035}$	$^{+0.004}_{-0.004}$	$^{+0.001}_{-0.001}$
$\Delta \widetilde{F}_{2V}^{Z}$	0.018	$^{+0.270}_{-0.190}$	$^{+0.004}_{-0.004}$	$^{+0.002}_{-0.002}$

- $F_{2V}^{~(\gamma/Z)}$ are extracted fixing all $F_1^{~(\gamma/Z)}$ to their SM values

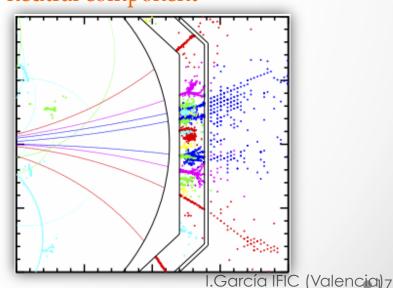
Conclusions

- **Polarisation** is a powerfull tool for analysis because it allows to **double** the number of **observables**
- In LC with polarised beams we can measure ttZ and ttγ vertices with accuracies one or two orders of magnitude better than LHC
- Current aim: We are looking for new observables sensitive to the CPV form factors $F_{2A}^{\gamma/Z}$. For instance spin correlations between the lepton and the top.

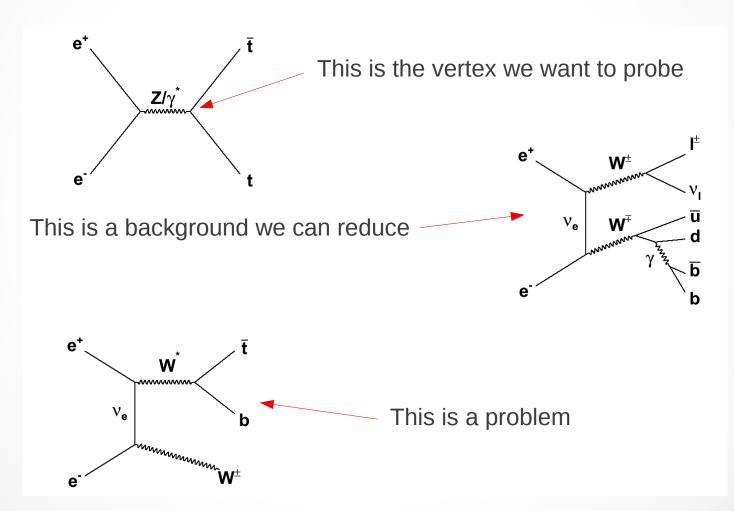
Thanks for your attention

(you are free for leaving)

Particle Flow


Particle Flow (a powerful tool to measure the energy of the jets)

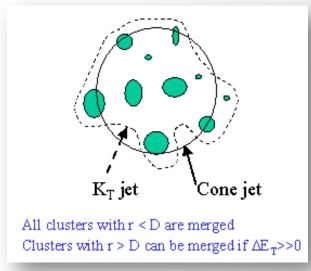
- Measurement of the charged particle momentum in the tracker → charged component of the jet
- Measurement of the momentum of the neutral component of the jet_= total energy measured in the calorimetry energy of the charged particles in the calorimeter.
- Total energy of the jet = charged component + neutral component


$$\sigma_E / E \approx 3\% \ (E \ en \ GeV)$$

Great granularity of the calorimeters

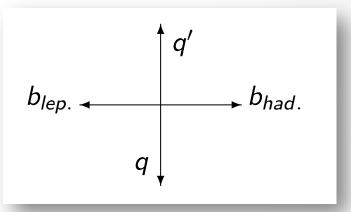
Calormeter (Silicon-Tungsten)




Single top

kt algorithm FastJet

http://arxiv.org/pdf/1111.6097v1.pdf



with $\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$, where k_{ti} , y_i and ϕ_i are the transverse momentum, rapidity and azimuth of particle i and R is a jet-radius parameter usually taken of order 1; for each parton i also work out the beam distance $d_{iB} = k_{ti}^2$.

- 2. Find the minimum d_{\min} of all the d_{ij} , d_{iB} . If d_{\min} is a d_{ij} merge particles i and j into a single particle, summing their four-momenta (this is E-scheme recombination); if it is a d_{iB} then declare particle i to be a final jet and remove it from the list.
- 3. Repeat from step 1 until no particles are left.

Where does this migration comes from?

- Right-handed electron beam:
 - The W is emitted into the flight direction of the top togheter with a soft *b*
- In the case is the W is easily combine to good b to reconstruct the top

- Left-handed electron beam:
 - The W is emitted almost at rest togheter with a hard *b*
- In the case it is harder to combine the W and the good b to reconstruct the top

Observables SM values

- **■** Total cross section (σ)
- The Forward-Backward Asymmetry (A_{FB})
- The slope of the distribution of the helicity angle (λ_{hel})

But actually there are 6 independent observables
$$\sigma(+) \quad A_{FB}(+) \quad \lambda_{hel}(+) \quad (+ = e_R^-)$$

$$\sigma(-) \quad A_{FB}(-) \quad \lambda_{hel}(-) \quad (- = e_L^-)$$

■ The expected values in the Standard Model are:

Observables	$e_L^*e_R^*$	e-Re+L
σ(fb)	1564	724
\mathbf{A}_{FB}	0.38	0.47
$\mathbf{F}_{\mathbf{R}}$	0.25	0.76

where $\mathbf{F}_{\mathbf{R}}$ is the fraction of right-handed tops