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Plan of the course

• First hour: anomalies

• Second hour: phenomenological applications

Classical and quantum symmetries. Anomalies

The axial anomaly: a case study.

Gauge anomalies and their cancellation.

The phenomenology of the axial anomaly. 

Nonperturbative physics from anomalies.

Anomaly cancellation and model building.
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• Afternoon session: tutorials (see exercise sheet)
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Anomalies: what they are and why 
we should care about them

Part I
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Classical and Quantum Symmetries

Classically, continuous symmetries are associated with conserved quantities via 
Noether’s theorem. Given a theory with action     invariant under global 
transformations     

Emmy Noether
(1882-1935)

We use “Noether’s trick”: let us make the parameters ξi depend on the position x.  If these 
functions decrease fast enough at infinity, the variation of the action now reads 

Chapter 2
The Axial Anomaly

2.1 Classical and Quantum Symmetries

In the quantum theory, the counterpart of the classical conservation equations are
the Ward identities satisfied by the time-ordered correlations functions of the fields.
Their derivation for a general theory is straightforward in the function integral for-
malism. If a classical theory characterized by the action S !i is invariant under
global infinitesimal transformations with parameters "i

#"!i x
j
" jFi j !k , (2.1)

the conserved currents jµi x can be obtained using Noether’s trick. Assuming that
the parameter "i depends on the coordinates, we find

S !i #"!i S !i
i

d4x µ"i x jµi x . (2.2)

This identity is very useful to obtain the Ward identities in the quantum theory.
A general correlation function for a string of operators is given by

$ T O1 x1 . . .On xn $
1
Z i

D!i O1 x1 . . .On xn eiS !i , (2.3)

where the operators Oa x depend of the fields and Z is the vacuum-to-vacuum
amplitude. Next, we carry out a change of variables in the functional integral

!i x !i x #"!i x , (2.4)

where we assume " to depend on xµ . Since the operators depend on the fields, they
also change to
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22

(0.254)

S !i
i

d4x"i x µ jµi x (0.255)

If all fields are on-shell, the action is invariant under any variation of the fields, hence

22

(0.254)

S !i
i

d4x"i x µ jµi x (0.255)

d4x"i x µ j
µ
i x 0 (0.256)

µ jµi x 0 (0.257)

22

(0.254)

S !i
i

d4x"i x µ jµi x (0.255)

d4x"i x µ j
µ
i x 0 (0.256)

µ jµi x 0 (0.257)
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Let’s move to the quantum theory. Consider the correlation function of a number of 
operators
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and carry out a change of variables in the path integral in the right-hand side

22

(0.254)

S !i
i

d4x"i x µ jµi x (0.255)

d4x"i x µ j
µ
i x 0 (0.256)

µ jµi x 0 (0.257)

!i x !i x !i x
j
" j x Fi j !k (0.258)

while the first-order variation of the operators            are
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(0.254)

S !i
i

d4x"i x µ jµi x (0.255)

d4x"i x µ j
µ
i x 0 (0.256)
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j
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(0.254)
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j
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The variation of the action is given by

22

(0.254)

S !i "#!i S !i
i

d4x#i x µ jµi x (0.255)
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20 2 The Axial Anomaly

Oa x Oa x !"Oa x , (2.5)

where !"Oa x is linear in " . This change of variables, of course, does not affect the
value of the integral in (2.3). Plugging Eqs. (2.2) and (2.5) in (2.3), and expanding
to linear order in the variations, we arrive at the Ward identity

i
h̄

d4x" j x
x
µ # T jµj x O1 x1 . . .On xn #

n

a 1
# T O1 x1 . . .!"Oa xa . . .On xn # , (2.6)

where we have restored momentarily the powers of h̄. In particular, taking Oa 1,
the quantum version of the classical conservation equation is obtained

d4x"i x µ jµi x 0. (2.7)

Our derivation of the Ward identity relies on a very important assumption. We
have assumed that the integration measure is invariant under the change (2.4), i.e.
that the functional Jacobian trivial. If this is not the case, we say that the symmetry
is anomalous. More precisely, if

i
D$i 1

k
d4x"k x Jk x

i
D$i, (2.8)

Eq. (2.7) is modified to the anomalous Ward identity

d4x"k x µ jµk x ih̄ d4x"k x Jk x . (2.9)

This way of computing the anomaly, called the Fujikawa method [5], reduces the
problem to that of evaluating a Jacobian for the functional measure. The restored
power of h̄ indicates how the breakdown of the conservation of the quantum current
is a purely quantum effect. More details about this method will be given in Section
2.6, where it will be used to compute the axial anomaly.
After this general discussion we particularize our analysis to quantum electrody-

namics (QED), with action

SQED d4x
1
4
Fµ%Fµ% & i m & e&A& . (2.10)

The theory is invariant under local phase transformation of the fermion field

& x ei' x & x , ' x R. (2.11)

accompanied by a gauge transformation
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Let us assume, besides, that the integration measure is invariant under these variations
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i
D!i

i
D!i (0.261)

Collecting the first-order variation of the path integral and setting it to zero (it is just a change 
of variables!), 

Particularizing this identity to the case                   we find 
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we arrive at the Ward identity (for the time being, we have restored ħ)
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1
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D!i O1 x1 . . .On xn eiS !i
#

0 (0.263)

The Noether current is conserved quantum mechanically!
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We can relax the condition of invariance of the measure and assume that there is a nontrivial 
Jacobian

20 2 The Axial Anomaly
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accompanied by a gauge transformation

This introduces an extra term in the Ward identity
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$ T O1 x1 . . .On xn $
k

d4x#k x Jk x (0.264)

that spoils the quantum mechanical conservation of the Noether currents
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After this general discussion we particularize our analysis to quantum electrody-

namics (QED), with action

SQED d4x
1
4
Fµ%Fµ% & i m & e&A& . (2.10)

The theory is invariant under local phase transformation of the fermion field

& x ei' x & x , ' x R. (2.11)

accompanied by a gauge transformation
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Whenever this happens, we say that the symmetry in question is anomalous or that the 
theory has an anomaly.
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We can relax the condition of invariance of the measure and assume that there is a nontrivial 
Jacobian

20 2 The Axial Anomaly

Oa x Oa x !"Oa x , (2.5)

where !"Oa x is linear in " . This change of variables, of course, does not affect the
value of the integral in (2.3). Plugging Eqs. (2.2) and (2.5) in (2.3), and expanding
to linear order in the variations, we arrive at the Ward identity

i
h̄

d4x" j x
x
µ # T jµj x O1 x1 . . .On xn #

n

a 1
# T O1 x1 . . .!"Oa xa . . .On xn # , (2.6)

where we have restored momentarily the powers of h̄. In particular, taking Oa 1,
the quantum version of the classical conservation equation is obtained

d4x"i x µ jµi x 0. (2.7)

Our derivation of the Ward identity relies on a very important assumption. We
have assumed that the integration measure is invariant under the change (2.4), i.e.
that the functional Jacobian trivial. If this is not the case, we say that the symmetry
is anomalous. More precisely, if

i
D$i 1

k
d4x"k x Jk x

i
D$i, (2.8)

Eq. (2.7) is modified to the anomalous Ward identity

d4x"k x µ jµk x ih̄ d4x"k x Jk x . (2.9)

This way of computing the anomaly, called the Fujikawa method [5], reduces the
problem to that of evaluating a Jacobian for the functional measure. The restored
power of h̄ indicates how the breakdown of the conservation of the quantum current
is a purely quantum effect. More details about this method will be given in Section
2.6, where it will be used to compute the axial anomaly.
After this general discussion we particularize our analysis to quantum electrody-

namics (QED), with action

SQED d4x
1
4
Fµ%Fµ% & i m & e&A& . (2.10)

The theory is invariant under local phase transformation of the fermion field

& x ei' x & x , ' x R. (2.11)

accompanied by a gauge transformation

This introduces an extra term in the Ward identity

20 2 The Axial Anomaly

Oa x Oa x !"Oa x , (2.5)

where !"Oa x is linear in " . This change of variables, of course, does not affect the
value of the integral in (2.3). Plugging Eqs. (2.2) and (2.5) in (2.3), and expanding
to linear order in the variations, we arrive at the Ward identity

i
h̄

d4x" j x
x
µ # T jµj x O1 x1 . . .On xn #

n

a 1
# T O1 x1 . . .!"Oa xa . . .On xn # , (2.6)

where we have restored momentarily the powers of h̄. In particular, taking Oa 1,
the quantum version of the classical conservation equation is obtained

d4x"i x µ jµi x 0. (2.7)

Our derivation of the Ward identity relies on a very important assumption. We
have assumed that the integration measure is invariant under the change (2.4), i.e.
that the functional Jacobian trivial. If this is not the case, we say that the symmetry
is anomalous. More precisely, if

i
D$i 1

k
d4x"k x Jk x

i
D$i, (2.8)

Eq. (2.7) is modified to the anomalous Ward identity

d4x"k x µ jµk x ih̄ d4x"k x Jk x . (2.9)

This way of computing the anomaly, called the Fujikawa method [5], reduces the
problem to that of evaluating a Jacobian for the functional measure. The restored
power of h̄ indicates how the breakdown of the conservation of the quantum current
is a purely quantum effect. More details about this method will be given in Section
2.6, where it will be used to compute the axial anomaly.
After this general discussion we particularize our analysis to quantum electrody-

namics (QED), with action

SQED d4x
1
4
Fµ%Fµ% & i m & e&A& . (2.10)

The theory is invariant under local phase transformation of the fermion field

& x ei' x & x , ' x R. (2.11)

accompanied by a gauge transformation

20 2 The Axial Anomaly

Oa x Oa x !"Oa x , (2.5)

where !"Oa x is linear in " . This change of variables, of course, does not affect the
value of the integral in (2.3). Plugging Eqs. (2.2) and (2.5) in (2.3), and expanding
to linear order in the variations, we arrive at the Ward identity

i
h̄

d4x" j x
x
µ # T jµj x O1 x1 . . .On xn #

n

a 1
# T O1 x1 . . .!"Oa xa . . .On xn # , (2.6)

where we have restored momentarily the powers of h̄. In particular, taking Oa 1,
the quantum version of the classical conservation equation is obtained

d4x"i x µ jµi x 0. (2.7)

Our derivation of the Ward identity relies on a very important assumption. We
have assumed that the integration measure is invariant under the change (2.4), i.e.
that the functional Jacobian trivial. If this is not the case, we say that the symmetry
is anomalous. More precisely, if

i
D$i 1

k
d4x"k x Jk x

i
D$i, (2.8)

Eq. (2.7) is modified to the anomalous Ward identity

d4x"k x µ jµk x ih̄ d4x"k x Jk x . (2.9)

This way of computing the anomaly, called the Fujikawa method [5], reduces the
problem to that of evaluating a Jacobian for the functional measure. The restored
power of h̄ indicates how the breakdown of the conservation of the quantum current
is a purely quantum effect. More details about this method will be given in Section
2.6, where it will be used to compute the axial anomaly.
After this general discussion we particularize our analysis to quantum electrody-

namics (QED), with action

SQED d4x
1
4
Fµ%Fµ% & i m & e&A& . (2.10)

The theory is invariant under local phase transformation of the fermion field

& x ei' x & x , ' x R. (2.11)

accompanied by a gauge transformation

22

(0.254)

S !i "#!i S !i
i

d4x#i x µ jµi x (0.255)

d4x#i x µ j
µ
i x 0 (0.256)

µ jµi x 0 (0.257)

!i x !i x !i x
j
# j x Fi j !k (0.258)

Oa x (0.259)

Oa x Oa x Oa x "#Oa x (0.260)

i
D!i

i
D!i (0.261)

Oa x 1 (0.262)

1
Z i

D!i O1 x1 . . .On xn eiS !i
#

0 (0.263)

$ T O1 x1 . . .On xn $
k

d4x#k x Jk x (0.264)

that spoils the quantum mechanical conservation of the Noether currents

20 2 The Axial Anomaly

Oa x Oa x !"Oa x , (2.5)

where !"Oa x is linear in " . This change of variables, of course, does not affect the
value of the integral in (2.3). Plugging Eqs. (2.2) and (2.5) in (2.3), and expanding
to linear order in the variations, we arrive at the Ward identity

i
h̄

d4x" j x
x
µ # T jµj x O1 x1 . . .On xn #

n

a 1
# T O1 x1 . . .!"Oa xa . . .On xn # , (2.6)

where we have restored momentarily the powers of h̄. In particular, taking Oa 1,
the quantum version of the classical conservation equation is obtained

d4x"i x µ jµi x 0. (2.7)

Our derivation of the Ward identity relies on a very important assumption. We
have assumed that the integration measure is invariant under the change (2.4), i.e.
that the functional Jacobian trivial. If this is not the case, we say that the symmetry
is anomalous. More precisely, if

i
D$i 1

k
d4x"k x Jk x

i
D$i, (2.8)

Eq. (2.7) is modified to the anomalous Ward identity

d4x"k x µ jµk x ih̄ d4x"k x Jk x . (2.9)

This way of computing the anomaly, called the Fujikawa method [5], reduces the
problem to that of evaluating a Jacobian for the functional measure. The restored
power of h̄ indicates how the breakdown of the conservation of the quantum current
is a purely quantum effect. More details about this method will be given in Section
2.6, where it will be used to compute the axial anomaly.
After this general discussion we particularize our analysis to quantum electrody-

namics (QED), with action

SQED d4x
1
4
Fµ%Fµ% & i m & e&A& . (2.10)

The theory is invariant under local phase transformation of the fermion field

& x ei' x & x , ' x R. (2.11)

accompanied by a gauge transformation

23

µ jµk x ih̄Jk x (0.265)

Whenever this happens, we say that the symmetry in question is anomalous or that the 
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An anomaly is the quantum breakdown of a classical symmetry.

Anomalies can be of two very different types:

When they affect a nonfundamental symmetries, e.g.

Scale invariance

Global symmetries

These anomalies are at the origin of very interesting physical phenomena:

When they affect local (gauge) symmetries

Gauge anomalies

Gravitational anomalies

These are very dangerous anomalies that have to be cancelled somehow, otherwise the 
whole theory becomes inconsistent.

asymptotic freedom,                   ,...
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theory. This happens even in the case of theories without dimensionful couplings.
These theories are scale invariant at the classical level because the action does not
contain dimensionful parameters. In this case the running of the coupling constants
can be seen as resulting from a quantum breaking of classical scale invariance:
different energy scales in the theory are distinguished by different values of the
coupling constants. We say that classical scale invariance is an anomalous symmetry
(see Chap. 9). A heuristic way to understand how the conformal anomaly comes
about is to notice that the regularization of an otherwise scale invariant field theory
requires the introduction of an energy scale (e.g. a cutoff). In general, the classical
invariance cannot be restored after renormalization.

Scale invariance is not completely lost in quantum field theory, however. It is
recovered at the fixed points of the beta function where, by definition, the coupling
does not run. We consider a scale invariant classical field theory whose field φ(x)

transform under coordinate rescalings as

xµ −→ x ′µ = λxµ, φ(x) −→ φ′(x) = λ−∆φ(λ−1x), (8.27)

where ∆ is called the canonical scaling dimension of the field. An example of such
a theory is a massless φ4 theory in four dimensions

L = 1
2
∂µφ∂µφ − g

4!φ
4, (8.28)

where the scalar field has canonical scaling dimension ∆ = 1. The Lagrangian
density transforms as

L −→ λ−4L [φ] (8.29)
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(with Δ = 1)

This invariance is broken by quantum corrections. Regularization and renormalization 
requires the introduction of an energy scale that breaks scale invariance

23

µ jµk x ih̄Jk x (0.265)

S d4x
1
2 µ! µ!

g
4!
!4 (0.266)

" g
3g2

16#2
(0.267)

23

µ jµk x ih̄Jk x (0.265)

S d4x
1
2 µ! µ!

g
4!
!4 (0.266)

" g
3g2

16#2
(0.267)

g µ
g µ0

1 3
16#3 g µ0 log µ

µ0

(0.268)

so physics at different scales “does not look the same”.

In QCD this quantum breaking of scale invariance is responsible for the most interesting 
features of the theory, such as asymptotic freedom and confinement. 

Let us consider a massless ϕ4 theory which is invariant under scale transformations 

First example: Scale invariance

This is reflected in the running of the coupling constant. At one loop:
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Second example: The axial anomaly

Let us focus on QED:

20 2 The Axial Anomaly

Oa x Oa x !"Oa x , (2.5)

where !"Oa x is linear in " . This change of variables, of course, does not affect the
value of the integral in (2.3). Plugging Eqs. (2.2) and (2.5) in (2.3), and expanding
to linear order in the variations, we arrive at the Ward identity

i
 h

d4x" j x
x
µ # T jµj x O1 x1 . . .On xn #

n

a 1
# T O1 x1 . . .!"Oa xa . . .On xn # , (2.6)

where we have restored momentarily the powers of  h. In particular, taking Oa 1,
the quantum version of the classical conservation equation is obtained

d4x"i x µ jµi x 0. (2.7)

Our derivation of the Ward identity relies on a very important assumption. We
have assumed that the integration measure is invariant under the change (2.4), i.e.
that the functional Jacobian trivial. If this is not the case, we say that the symmetry
is anomalous. More precisely, if

i
D$i 1

k
d4x"k x Jk x

i
D$i, (2.8)

Eq. (2.7) is modified to the anomalous Ward identity

d4x"k x µ jµk x i h d4x"k x Jk x . (2.9)

This way of computing the anomaly, called the Fujikawa method [5], reduces the
problem to that of evaluating a Jacobian for the functional measure. The restored
power of  h indicates how the breakdown of the conservation of the quantum current
is a purely quantum effect. More details about this method will be given in Section
2.6, where it will be used to compute the axial anomaly.

After this general discussion we particularize our analysis to quantum electrody-
namics (QED), with action

SQED d4x
1
4
Fµ%Fµ% & i m & e&A& . (2.10)

The theory is invariant under local phase transformation of the fermion field

& x ei' x & x , ' x R. (2.11)

accompanied by a gauge transformation

The theory has a U(1) gauge symmetry
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2.1 Classical and Quantum Symmetries 21

Aµ x Aµ x µ! x . (2.12)

If the fermion is massless, m 0, the theory has an additional global symmetry
consisting on chiral phase transformations

" x ei#$5" x , # R. (2.13)

Applying Noether’s theorem, the massless theory has two conserved currents. One
is the vector current associated with phase transformations (2.11) with constant !

JµV "$µ" µJµV 0. (2.14)

This is the electromagnetic current coupling to the gauge field Aµ . Its conservation
is crucial for the gauge invariance of the theory. The second conserved current is the
one associated with axial-vector transformations (2.13)

JµA "$µ$5" µJ
µ
A 0. (2.15)

Unlike the vector current, this does not couple to any gauge field.
In QED, a simple way to derive the Ward identities associated with the vector

(gauge) transformations is to notice that they reflect the invariance of physical am-
plitudes with respect to gauge transformations in the external photons. Generically,
the amplitude in momentum space with n incoming and m outgoing photons has the
structure1

A p1, . . . , pn;q1, . . . ,qm %µ1 p1 . . .%µn pn %&1 q1 . . .%&n qm

' µ1...µn&1...&m p1, . . . , pn;q1, . . . ,qm , (2.16)

where all external momenta are taken on shell, p2i q2i 0. Under a gauge transfor-
mation, the polarization vectors transform by a term proportional to the momentum

%µ p %µ p ( pµ. (2.17)

The invariance of the amplitude with respect to these gauge transformations means
that (2.16) has to vanish when any of the polarization vector %µ p is replaced by
the momentum pµ . Symbolically

pµi'
...µi...&1...&m pk;q! 0 q&i'

µ1...µm...&i... pk;q! . (2.18)

If gauge invariance is preserved in the quantum theory, these identities should be
preserved order by order in perturbation theory, i.e. once all diagrams contributing
to a given order have been summed.

1 The amplitude may have also have fermions in the external states, that we omit here to keep
things simple.
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with a conserved vector current
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If the fermion is massless, m 0, the theory has an additional global symmetry
consisting on chiral phase transformations

" x ei#$5" x , # R. (2.13)

Applying Noether’s theorem, the massless theory has two conserved currents. One
is the vector current associated with phase transformations (2.11) with constant !

JµV "$µ" µJµV 0. (2.14)

This is the electromagnetic current coupling to the gauge field Aµ . Its conservation
is crucial for the gauge invariance of the theory. The second conserved current is the
one associated with axial-vector transformations (2.13)

JµA "$µ$5" µJ
µ
A 0. (2.15)

Unlike the vector current, this does not couple to any gauge field.
In QED, a simple way to derive the Ward identities associated with the vector

(gauge) transformations is to notice that they reflect the invariance of physical am-
plitudes with respect to gauge transformations in the external photons. Generically,
the amplitude in momentum space with n incoming and m outgoing photons has the
structure1

A p1, . . . , pn;q1, . . . ,qm %µ1 p1 . . .%µn pn %&1 q1 . . .%&n qm

' µ1...µn&1...&m p1, . . . , pn;q1, . . . ,qm , (2.16)

where all external momenta are taken on shell, p2i q2i 0. Under a gauge transfor-
mation, the polarization vectors transform by a term proportional to the momentum

%µ p %µ p ( pµ. (2.17)

The invariance of the amplitude with respect to these gauge transformations means
that (2.16) has to vanish when any of the polarization vector %µ p is replaced by
the momentum pµ . Symbolically

pµi'
...µi...&1...&m pk;q! 0 q&i'

µ1...µm...&i... pk;q! . (2.18)

If gauge invariance is preserved in the quantum theory, these identities should be
preserved order by order in perturbation theory, i.e. once all diagrams contributing
to a given order have been summed.

1 The amplitude may have also have fermions in the external states, that we omit here to keep
things simple.

This invariance is crucial for the internal consistency of the theory (e.g. unitarity).
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In addition, the massless theory has a global axial-vector symmetry
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JµA "$µ$5" µJ
µ
A 0. (2.15)

Unlike the vector current, this does not couple to any gauge field.
In QED, a simple way to derive the Ward identities associated with the vector

(gauge) transformations is to notice that they reflect the invariance of physical am-
plitudes with respect to gauge transformations in the external photons. Generically,
the amplitude in momentum space with n incoming and m outgoing photons has the
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%µ p %µ p ( pµ. (2.17)
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If gauge invariance is preserved in the quantum theory, these identities should be
preserved order by order in perturbation theory, i.e. once all diagrams contributing
to a given order have been summed.

1 The amplitude may have also have fermions in the external states, that we omit here to keep
things simple.
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is crucial for the gauge invariance of the theory. The second conserved current is the
one associated with axial-vector transformations (2.13)

JµA "$µ$5" µJ
µ
A 0. (2.15)
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that (2.16) has to vanish when any of the polarization vector %µ p is replaced by
the momentum pµ . Symbolically

pµi'
...µi...&1...&m pk;q! 0 q&i'

µ1...µm...&i... pk;q! . (2.18)
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things simple.

In the quantum theory, both the axial and the vector-axial current are composite 
operators that need to be defined. 

The question is whether these operators can be defined to satisfy the quantum 
conservation equations

23

µ jµk x i hJk x (0.265)

S d4x
1
2 µ! µ!

g
4!
!4 (0.266)

" g
3g2

16#2 (0.267)

g µ
g µ0

1 3
16#3 g µ0 log µ

µ0

(0.268)

µ JµV x ? 0 (0.269)

23

µ jµk x i hJk x (0.265)

S d4x
1
2 µ! µ!

g
4!
!4 (0.266)

" g
3g2

16#2 (0.267)

g µ
g µ0

1 3
16#3 g µ0 log µ

µ0

(0.268)

µ JµV x ? 0 (0.269)

µ JµA x ? 0 (0.270)



M.Á. Vázquez-Mozo                                        Introduction to anomalies and their phenomenological applications                                            Taller de Altas Energías 2013

To analyze this problem, we look at a massless Dirac fermion coupled to an classical 
external U(1) gauge field

The expectation value of the axial current in this background is given by

22 2 The Axial Anomaly

2.2 Quantum Breakdown of the Vector-Axial Symmetry

We study now the quantum conservation of the vector-axial current (2.15) in a theory
of massless fermion interacting with an external classical gauge field Aµ through
an interaction term

Sint e d4xJµV x Aµ x . (2.19)

The expectation value of the axial-vector current in the background of the gauge
field is given, in the functional integral language, by

JµA x A

D!D! JµA x ei d
4x i! ! eJµVAµ

D!D! ei d
4x i! ! eJµVAµ

. (2.20)

The right-hand side can be computed in powers of the electric charge e. Notice
that in this expansion, each of the terms contain only functional integrals where
the integration measures are those of a free massless Dirac field. Thus, they can
be interpreted as the expectation value of time-ordered products of operators in the
vacuum of the free theory 0 . In our case, to second order in e we have

JµA x A ie d4y 0 T JµA x J"V y 0 A" y (2.21)

e2

2
d4y1d4y2 0 T JµA x J"V y1 J

#
V y2 0 A" y1 A# y2 . . .

Since the correlation functions are defined in the free vacuum, they can be computed
usingWick theorem. The first term vanishes after computing the trace over the Dirac
matrices. Then, the leading contribution to the vacuum expectation value of the
axial-vector current is

JµA x A (2.22)

e2

2
d4y1d4y2 0 T JµA 0 J

"
V y1 x J#V y2 x 0 A" y1 A# y2 ,

where we have applied the invariance under spacetime translations of the vacuum
state.
The Wick contractions required to compute the previous correlation function can

be summarized in terms of Feynman diagrams. For computational purposes, it is
convenient to work in momentum space

(remember that                  )
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U(1)V : u ei!u , (9.2)

whereas in the second, the axial U(1), the signs of the phases are different for the
two chiralities

U(1)A : u e i!u . (9.3)

Using Noether’s theorem, there are two conserved currents, a vector current

JµV "#µ" u $ µu u $ µu µJµV 0 (9.4)

and an axial vector current

JµA "#µ#5" u $ µu u $ µu µJ
µ
A 0. (9.5)

The theory described by the Lagrangian (9.1) can be coupled to the electromag-
netic field. The resulting classical theory is still invariant under the vector and axial
U(1) symmetries (9.2) and (9.3). Surprisingly, upon quantization it turns out that the
conservation of the axial vector current (9.5) is spoiled by quantum effects

µJµA h̄E B. (9.6)

To understand more clearly how this result comes about we study first a simple
model in two dimensions that captures the relevant physics involved in the four-
dimensional case [2]. We work in a two-dimensional Minkowski space with coor-
dinates x0,x1 t,x and where the spatial direction is compactified to a circle
S1 with length L. In this setup we consider a fermion coupled to a classical electro-
magnetic field. Notice that in our two-dimensional world the field strengthFµ% has
only one independent component that corresponds to the electric field, F01 E
(in two dimensions there are no magnetic fields!).
To write the Lagrangian for the spinor field we need to find a representation of

the algebra of #-matrices

#µ ,#% 2&µ% with &
1 0
0 1 . (9.7)

In two dimensions the dimension of the representation of the #-matrices is 2. In fact,
remembering the anticommutation relation of the Pauli matrices $i,$ j 2'i j is
not very difficult to come up with the following representation

#0 $1
0 1
1 0 , #1 i$2

0 1
1 0 . (9.8)

This is a chiral representation since the matrix #5 is diagonal1

1 In any even number of dimensions #5 is defined to satisfy the conditions #5 2 1 and #5,#µ

0.
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This correlation function can be computed in perturbation theory
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of massless fermion interacting with an external classical gauge field Aµ through
an interaction term
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The right-hand side can be computed in powers of the electric charge e. Notice
that in this expansion, each of the terms contain only functional integrals where
the integration measures are those of a free massless Dirac field. Thus, they can
be interpreted as the expectation value of time-ordered products of operators in the
vacuum of the free theory 0 . In our case, to second order in e we have
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usingWick theorem. The first term vanishes after computing the trace over the Dirac
matrices. Then, the leading contribution to the vacuum expectation value of the
axial-vector current is
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where we have applied the invariance under spacetime translations of the vacuum
state.
The Wick contractions required to compute the previous correlation function can

be summarized in terms of Feynman diagrams. For computational purposes, it is
convenient to work in momentum space
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To analyze this problem, we look at a massless Dirac fermion coupled to an classical 
external U(1) gauge field

The expectation value of the axial current in this background is given by
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whereas in the second, the axial U(1), the signs of the phases are different for the
two chiralities
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Using Noether’s theorem, there are two conserved currents, a vector current

JµV "#µ" u $ µu u $ µu µJµV 0 (9.4)

and an axial vector current
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µ
A 0. (9.5)

The theory described by the Lagrangian (9.1) can be coupled to the electromag-
netic field. The resulting classical theory is still invariant under the vector and axial
U(1) symmetries (9.2) and (9.3). Surprisingly, upon quantization it turns out that the
conservation of the axial vector current (9.5) is spoiled by quantum effects

µJµA h̄E B. (9.6)

To understand more clearly how this result comes about we study first a simple
model in two dimensions that captures the relevant physics involved in the four-
dimensional case [2]. We work in a two-dimensional Minkowski space with coor-
dinates x0,x1 t,x and where the spatial direction is compactified to a circle
S1 with length L. In this setup we consider a fermion coupled to a classical electro-
magnetic field. Notice that in our two-dimensional world the field strengthFµ% has
only one independent component that corresponds to the electric field, F01 E
(in two dimensions there are no magnetic fields!).
To write the Lagrangian for the spinor field we need to find a representation of

the algebra of #-matrices

#µ ,#% 2&µ% with &
1 0
0 1 . (9.7)

In two dimensions the dimension of the representation of the #-matrices is 2. In fact,
remembering the anticommutation relation of the Pauli matrices $i,$ j 2'i j is
not very difficult to come up with the following representation

#0 $1
0 1
1 0 , #1 i$2

0 1
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This is a chiral representation since the matrix #5 is diagonal1

1 In any even number of dimensions #5 is defined to satisfy the conditions #5 2 1 and #5,#µ
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This correlation function can be computed in perturbation theory
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where we have applied the invariance under spacetime translations of the vacuum
state.
The Wick contractions required to compute the previous correlation function can

be summarized in terms of Feynman diagrams. For computational purposes, it is
convenient to work in momentum space
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µJµA x A ie d2y µCµ! y A! x y , (9.30)

where

Cµ! x 0 T JµA x J!V 0 0
JµA J!V

(9.31)

In this correlation function the state 0 represents the Fock space vacuum of the free
fermion theory. Therefore it can be evaluated using Wick’s theorem. The Feynman
diagram summarizes the Wick contractions required to compute the timer-ordered
correlation function of the two currents

Cµ! x 0 "#µ#5" x "#!" 0 0 . (9.32)

We have concluded that the axial anomaly is controlled by the quantity µCµ! x .
In computing the anomaly we have to impose the conservation of the vector current.
This is crucial, since the gauge invariance of the theory depends upon it2. Doing this
one arrives at the result

µJ
µ
A A

eh̄
2$

%!&F!& , (9.33)

with %01 %10 1 and Fµ! is the field strength of the external gauge field. It is
immediate to check that the diagramatic calculation renders the same result (9.27)
obtained in the previous section using a more heuristic argumentation.
The calculation of the axial anomaly can be also carried out in four dimensions

along the same lines. Again, we have to compute the vacuum expectation value
of the axial vector current coupled to an external classical gauge field Aµ . Now,
however, the first nonvanishing contribution comes from the term quadratic in the
external gauge field, namely

µJµ A
e2

2
d4y1d4y2

x
µ Cµ!& x,y A! x y1 y2 A& x y2 , (9.34)

where now

Cµ!& x,y 0 T JµA x J!V y J&V 0 0 . (9.35)

This correlation function can be computed diagrammatically as

2 In fact there is a tension between the conservation of the vector an axial vector currents. The
calculation of the diagram shown in eq. (9.31) can be carried out imposing the conservation of
the axial vector current, which results in an anomaly for the vector current. Since this would be
disastrous for the consistency of the theory we choose the other alternative.

We are faced with the calculation of the following free-field correlation function

Which, applying Wick’s theorem gives14

Cµ!" x,y 0 #$µ$5# x #$!# y #$"# 0 0 0 #$µ$5# x #$!# y #$"# 0 0

These contractions are codified in the celebrated triangle diagram:
9.3 Chiral Symmetry in QCD 183

Cµ!" x,y
JµA J!V

J"V

symmetric

(9.36)

This is the celebrated triangle diagram. The subscript indicates that, in fact, Cµ!"

is given by two triangle diagrams with the two photon external legs interchanged.
This is the result of Bose symmetry and can be explicitly checked by performing
the Wick contractions in the correlation function (9.35).
The evaluation of the integral in the right-hand side of (9.34) is complicated by

the presence of divergences that have to be regularized. As in the two-dimensional
case the conservation of the vector currents has to be imposed. The calculation gives
the following anomaly for the axial vector current [3]

µJ
µ
A A

e2

16#2
$µ!"%Fµ!F"% . (9.37)

This result has very important consequences in the physics of strong interactions as
we will see in the next section.
Here we have paid attention to the axial anomaly in two and four dimensions.

Chiral fermions exists in all even-dimensional space-times and, as a matter of fact,
the axial vector current has an anomaly in all even-dimensional space-times. More
precisely, if the dimension of the space-time is d 2k, with k 1,2, . . ., the anomaly
is given by a one-loop diagram with one axial current and k vector currents, i.e.
a k 1 -gon. For example, in 10 dimensions the axial anomaly comes from the
following hexagon diagram

As in the four-dimensional case, Bose symmetry and the conservation of all vector
currents has to be imposed.

9.3 Chiral Symmetry in QCD

Our knowledge of the physics of strong interactions is based on the theory of Quan-
tum Chromodynamics (QCD) introduced in section 5.3 (see also [5] for reviews).
Here we will consider a slightly more general version with an arbitrary number of

The sought conservation equation is then
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It is convenient to work in momentum space
2.2 Quantum Breakdown of the Vector-Axial Symmetry 23

e2 0 T JµA 0 J
!
V x1 J

"
V x2 0

d4p
2# 4

d4q
2# 4 i$

µ!" p,q eip x1 iq x2 (2.23)

The quantum conservation equation takes the form

µ JµA x A
i
2

d4y1d4y2A ! y1 A " y2 (2.24)

d4p
2# 4

d4q
2# 4 p q µi$µ!" p,q eip y1 x iq y2 x .

To find whether the axial symmetry in massless QED is affected by a quantum
anomaly, we have to compute p q µ$µ!" p,q . The function i$ p,q is given by
the two momentum space Feynman diagrams

i$µ!" p,q

q"

p!

p q µ

q"

p!

p q µ (2.25)

whose contributions can be found using the Feynman rules of QED

i$µ!" p,q e2
d4!
2# 4 Tr

i
! p i%

&µ&5
i

! q i%
&!

i
! i%

&"

p q
! "

. (2.26)

These integrals are linearly divergent and therefore ambiguous. To see this am-
biguity, we look at a the simple integral

I a dx f x a . (2.27)

If the integral converges, it is easy to prove that the result is independent of a. When
it does not, it needs to be regularized. However, its derivative

I a dx f x a f f . (2.28)

is finite, even when the integral I a diverges logarithmic or linearly. In the first case,
f x tends to zero when x and we find that I a 0 and the integral (2.27) is
independent of a. If the integral is linearly divergent, the function f x approaches

2.2 Quantum Breakdown of the Vector-Axial Symmetry 23

e2 0 T JµA 0 J
!
V x1 J

"
V x2 0

d4p
2# 4

d4q
2# 4 i$

µ!" p,q eip x1 iq x2 (2.23)

The quantum conservation equation takes the form

µ JµA x A
i
2

d4y1d4y2A ! y1 A " y2 (2.24)

d4p
2# 4

d4q
2# 4 p q µi$µ!" p,q eip y1 x iq y2 x .

To find whether the axial symmetry in massless QED is affected by a quantum
anomaly, we have to compute p q µ$µ!" p,q . The function i$ p,q is given by
the two momentum space Feynman diagrams

i$µ!" p,q

q"

p!

p q µ

q"

p!

p q µ (2.25)

whose contributions can be found using the Feynman rules of QED

i$µ!" p,q e2
d4!
2# 4 Tr

i
! p i%

&µ&5
i

! q i%
&!

i
! i%

&"

p q
! "

. (2.26)

These integrals are linearly divergent and therefore ambiguous. To see this am-
biguity, we look at a the simple integral

I a dx f x a . (2.27)

If the integral converges, it is easy to prove that the result is independent of a. When
it does not, it needs to be regularized. However, its derivative

I a dx f x a f f . (2.28)

is finite, even when the integral I a diverges logarithmic or linearly. In the first case,
f x tends to zero when x and we find that I a 0 and the integral (2.27) is
independent of a. If the integral is linearly divergent, the function f x approaches

where

2.2 Quantum Breakdown of the Vector-Axial Symmetry 23

e2 0 T JµA 0 J
!
V x1 J

"
V x2 0

d4p
2# 4

d4q
2# 4 i$

µ!" p,q eip x1 iq x2 (2.23)

The quantum conservation equation takes the form

µ JµA x A
i
2

d4y1d4y2A ! y1 A " y2 (2.24)

d4p
2# 4

d4q
2# 4 p q µi$µ!" p,q eip y1 x iq y2 x .

To find whether the axial symmetry in massless QED is affected by a quantum
anomaly, we have to compute p q µ$µ!" p,q . The function i$ p,q is given by
the two momentum space Feynman diagrams

i$µ!" p,q

q"

p!

p q µ

q"

p!

p q µ (2.25)

whose contributions can be found using the Feynman rules of QED

i$µ!" p,q e2
d4!
2# 4 Tr

i
! p i%

&µ&5
i

! q i%
&!

i
! i%

&"

p q
! "

. (2.26)

These integrals are linearly divergent and therefore ambiguous. To see this am-
biguity, we look at a the simple integral

I a dx f x a . (2.27)

If the integral converges, it is easy to prove that the result is independent of a. When
it does not, it needs to be regularized. However, its derivative

I a dx f x a f f . (2.28)

is finite, even when the integral I a diverges logarithmic or linearly. In the first case,
f x tends to zero when x and we find that I a 0 and the integral (2.27) is
independent of a. If the integral is linearly divergent, the function f x approaches

Applying the Feynman rules of QED, we have 

2.2 Quantum Breakdown of the Vector-Axial Symmetry 23

e2 0 T JµA 0 J
!
V x1 J

"
V x2 0

d4p
2# 4

d4q
2# 4 i$

µ!" p,q eip x1 iq x2 (2.23)

The quantum conservation equation takes the form

µ JµA x A
i
2

d4y1d4y2A ! y1 A " y2 (2.24)

d4p
2# 4

d4q
2# 4 p q µi$µ!" p,q eip y1 x iq y2 x .

To find whether the axial symmetry in massless QED is affected by a quantum
anomaly, we have to compute p q µ$µ!" p,q . The function i$ p,q is given by
the two momentum space Feynman diagrams

i$µ!" p,q

q"

p!

p q µ

q"

p!

p q µ (2.25)

whose contributions can be found using the Feynman rules of QED

i$µ!" p,q e2
d4!
2# 4 Tr

i
! p i%

&µ&5
i

! q i%
&!

i
! i%

&"

p q
! "

. (2.26)

These integrals are linearly divergent and therefore ambiguous. To see this am-
biguity, we look at a the simple integral

I a dx f x a . (2.27)

If the integral converges, it is easy to prove that the result is independent of a. When
it does not, it needs to be regularized. However, its derivative

I a dx f x a f f . (2.28)

is finite, even when the integral I a diverges logarithmic or linearly. In the first case,
f x tends to zero when x and we find that I a 0 and the integral (2.27) is
independent of a. If the integral is linearly divergent, the function f x approaches

2.2 Quantum Breakdown of the Vector-Axial Symmetry 23

e2 0 T JµA 0 J
!
V x1 J

"
V x2 0

d4p
2# 4

d4q
2# 4 i$

µ!" p,q eip x1 iq x2 (2.23)

The quantum conservation equation takes the form

µ JµA x A
i
2

d4y1d4y2A ! y1 A " y2 (2.24)

d4p
2# 4

d4q
2# 4 p q µi$µ!" p,q eip y1 x iq y2 x .

To find whether the axial symmetry in massless QED is affected by a quantum
anomaly, we have to compute p q µ$µ!" p,q . The function i$ p,q is given by
the two momentum space Feynman diagrams

i$µ!" p,q

q"

p!

p q µ

q"

p!

p q µ (2.25)

whose contributions can be found using the Feynman rules of QED

i$µ!" p,q e2
d4!
2# 4 Tr

i
! p i%

&µ&5
i

! q i%
&!

i
! i%

&"

p q
! "

. (2.26)

These integrals are linearly divergent and therefore ambiguous. To see this am-
biguity, we look at a the simple integral

I a dx f x a . (2.27)

If the integral converges, it is easy to prove that the result is independent of a. When
it does not, it needs to be regularized. However, its derivative

I a dx f x a f f . (2.28)

is finite, even when the integral I a diverges logarithmic or linearly. In the first case,
f x tends to zero when x and we find that I a 0 and the integral (2.27) is
independent of a. If the integral is linearly divergent, the function f x approaches

and the anomaly equation to be computed is

23

µ jµk x ih̄Jk x (0.265)

S d4x
1
2 µ! µ!

g
4!
!4 (0.266)

" g
3g2

16#2
(0.267)

g µ
g µ0

1 3
16#3 g µ0 log µ

µ0

(0.268)

µ JµV x ? 0 (0.269)

µ JµA x ? 0 (0.270)

S d4x i$ $ eJµV A µ (0.271)

0 (0.272)

µ JµA x A
e2

2
d4y1d4y2

x
µ Cµ%& x,y A x y1 y2 A& x y2

p q µ i' µ(" p,q ? (0.273)



M.Á. Vázquez-Mozo                                        Introduction to anomalies and their phenomenological applications                                            Taller de Altas Energías 2013

However, the relevant Feynman integrals are linearly divergent.

Why is this a problem? Let us look at the simple one-dimensional integral
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Hence, if the integral is linearly divergent the result of the integration depends on a shift in 
the integration variable!

The same happens for multidimensional integrals.
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Thus, the triangle diagram is ambiguous because its contribution depends on how we label 
the loop momentum!

24 2 The Axial Anomaly

constant values as x and generically

I a f f 0. (2.29)

Integrating this equation we find

I a I 0 a f f , (2.30)

where I 0 contains all the divergences of the original integral. This shows that the
finite part of the linearly divergent integral (2.27) depends on a.
A similar result holds for multidimensional linearly divergent integrals. This dis-

cussion is very relevant for the calculation of the diagrams in (2.25) because it im-
plies that the value of the finite part of the integral changes under shifts of the inte-
gration variable and therefore it depends on how we label the loop momentum. For
example,

!

! p

! q

! p

!

! p q

(2.31)

We will see shortly that this ambiguity is fixed once the conservation of the vector
current is imposed.
There are a number of properties of the function !µ"# p,q that can be deduced

from general considerations. Due to the presence of the axial-vector current in the
correlation function, it should contain a Levi-Civita tensor. Poincaré invariance leads
to the following structure in terms of eight monomials

i!µ"# p,q f1$µ"#% p% f2$µ"#%q% f3$µ"%& p# p%q&

f4$µ"%&q# p%q& f5$µ#%& p" p%q& (2.32)

f6$µ#%&q" p%q& f7$"#%& pµ p%q& f8$"#%&qµ p%q& ,

where fi fi p,q are functions of the momenta p and q. Moreover, Bose symmetry
of the two vector currents imposes the condition

i!µ"# p,q i!µ#" q, p , (2.33)

so the coefficients in (2.33) satisfy the relations

f1 p,q f2 q, p , f3 p,q f6 q, p ,

f4 p,q f5 q, p , f7 p,q f8 q, p . (2.34)

In addition, the function !µ"# p,q in (2.25) has dimension of energy. Dimensional
analysis shows that f1 and f2 are dimensionless, whereas f3- f8 have dimensions of
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From Lorentz invariance, the most general form of              is (the Levi-Civita tensor is 
due to γ5 )
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A bit of dimensional analysis:

Dimensions = (energy)0

Dimensions = (energy)-2

Thus, only f1(p,q) and f2(p,q) are (logarithmically) divergent and their values depend on the 
regularization scheme used.

Is there a wise way of fixing these regularization ambiguities?

The remaining integrals f3(p,q) to f8(p,q) are convergent and free of ambiguities.
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So far we have ignored the issue of gauge invariance. The relevant gauge Ward identities 
reads

24 2 The Axial Anomaly

constant values as x and generically

I a f f 0. (2.29)

Integrating this equation we find

I a I 0 a f f , (2.30)

where I 0 contains all the divergences of the original integral. This shows that the
finite part of the linearly divergent integral (2.27) depends on a.
A similar result holds for multidimensional linearly divergent integrals. This dis-

cussion is very relevant for the calculation of the diagrams in (2.25) because it im-
plies that the value of the finite part of the integral changes under shifts of the inte-
gration variable and therefore it depends on how we label the loop momentum. For
example,

!

! p

! q

! p

!

! p q

(2.31)

We will see shortly that this ambiguity is fixed once the conservation of the vector
current is imposed.
There are a number of properties of the function !µ"# p,q that can be deduced

from general considerations. Due to the presence of the axial-vector current in the
correlation function, it should contain a Levi-Civita tensor. Poincaré invariance leads
to the following structure in terms of eight monomials

i!µ"# p,q f1$µ"#% p% f2$µ"#%q% f3$µ"%& p# p%q&

f4$µ"%&q# p%q& f5$µ#%& p" p%q& (2.32)

f6$µ#%&q" p%q& f7$"#%& pµ p%q& f8$"#%&qµ p%q& ,

where fi fi p,q are functions of the momenta p and q. Moreover, Bose symmetry
of the two vector currents imposes the condition

i!µ"# p,q i!µ#" q, p , (2.33)

so the coefficients in (2.33) satisfy the relations

f1 p,q f2 q, p , f3 p,q f6 q, p ,

f4 p,q f5 q, p , f7 p,q f8 q, p . (2.34)

In addition, the function !µ"# p,q in (2.25) has dimension of energy. Dimensional
analysis shows that f1 and f2 are dimensionless, whereas f3- f8 have dimensions of
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These conditions impose further constraints on the functions fi(p,q)
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(energy) 2. These latter functions, therefore, are expressed in terms of convergent
integrals that are unambiguous. As a consequence, all ambiguities of the linearly
divergent integrals (2.25) have to be contained in the coefficients f1 and f2.
To take care of this, we notice that

p! i"µ!# p,q f2 p2 f5 p q f6 $µ#!%q! p% ,

q# i"µ!# p,q f1 q2 f4 p q f3 $µ!#%q# p% , (2.35)

p q µ i"µ!# p,q f1 f2 p2 f7 p q f7 f8 q2 f8 $!#%&q% p& ,

This shows that the ambiguities in f1 and f2 can be fixed by demanding the conser-
vation of the vector current is imposed, i.e. when the Ward identities

p! i"µ!# p,q 0 q# i"µ!# p,q . (2.36)

are satisfied. Once this is done, i"µ!# p,q is written only in terms of the coeffi-
cients f3- f8, that are convergent and unambiguous. Thus, the anomaly is given by
the following combination of finite integrals

p q µ i"µ!# p,q p2 f5 f7 q2 f4 f8

p q f3 f6 f7 f8 $!#%&q% p& . (2.37)

The functions f3, f4, and f7 can be evaluated using the Feynman rules of QED.
Introducing Feynman parameters, the result is [1]

f3 p,q
ie2

'2

1

0
dx

1 x

0
dy

xy
x 1 x p2 y 1 y q2 2xyp q

,

f4 p,q
ie2

'2

1

0
dx

1 x

0
dy

y 1 y
x 1 x p2 y 1 y q2 2xyp q

, (2.38)

f7 p,q 0.

whereas the remaining functions are obtained by applying Eq. (2.34).
We substitute these integrals in the expression (2.37). Since they are convergent

for generic values of p and q, and their integration domain is symmetric under the
interchange of x and y (see Fig. 2.1), we can combine the integrands to find that the
resulting numerator cancels the denominator giving the result 12 after the integra-
tion over the Feynman parameters. This leads to the Adler-Bell-Jackiw anomaly in
momentum space [1, 2]

p q µ i"µ!# p,q
ie2

2'2
$!#%&q% p& . (2.39)
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Hence, gauge invariance completely fixes the ambiguities and the anomaly is 
completely determined by finite integrals
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Now we only have to evaluate the integrals
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to find the result
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Back in position space, we arrive at the famous Adler-Bell-Jackiw anomaly

Steven Adler
(b. 1939)

John S. Bell
(1928-1990)

Roman Jackiw
(b. 1939)Jack Steinberger

(b. 1921)
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Steven Adler
(b. 1939)

William A. Bardeen
(b. 1941)

2.3 Nonrenormalization Theorems 27

As a matter of fact, there is also the possibility of defining the theory in such a way
that neither the vector, nor the axial-vector current are conserved. However, unlike
the axial-vector, the vector current couples to a gauge field and its nonconservation
leads to disastrous results for the theory. That is why the axial anomaly is forced
upon us by the consistency of QED at the quantum level.

2.3 Nonrenormalization Theorems

A very interesting feature of the axial anomaly obtained in the previous section is
that it does not receive corrections due to higher loop diagrams. This result, known
as the Adler-Bardeen theorem, was proved in [3]. Although the full proof of this
result is quite involved, the gist of the argument can be easily grasped.
Pertubatively, the origin of the anomaly lies in the ambiguity associated with the

linearly divergent integral associated with the triangle diagram. At two loops, cor-
rections to this result are obtained by inserting photon propagators in the diagram,
for example

. . . (2.44)

The contribution of each of the diagrams contains five fermion propagators. This
eliminates the ambiguous linearly divergent integral appearing at one loop diagram,
rendering the integration convergent. We have still to integrate over the photon loop
momentum. However, this remaining integration can be regularized in a way that do
not interfere with chiral symmetry: for example, a gauge-invariant term

!S
1
"2

d4xFµ# Fµ# (2.45)

can be added to the QED action, leading to a photon propagatorwith a leading large-
momentum behavior of the form"2p 4. The result is that the two-loop diagrams do
not contribute to the divergence of the axial-vector current and therefore the anomaly
does not receive corrections to this order2. This argument at two loops carries over
to higher loop-diagrams resulting in that the perturbative contribution to the axial
anomaly is exhausted by the one-loop result.
A much simpler proof of the Adler-Bardeen theorem can be constructed using

the renormalization group equations [4].
Here comes the discussion of Zee’s proof.

2 Notice that adding the term (2.45) to the action does not modify the one-loop result for the
anomaly, since the triangle diagram does not contain any photon propagator.

Is the one-loop result enough? We can ask about the contribution of higher loop 
diagrams to the anomaly, e.g.

These diagrams contain five fermion propagator. The integration over the “triangle 
momentum” has the structure
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and it is unambiguous. The integration over the photon momentum can 
be regularized in a gauge-invariant way, for example adding the term
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Hence, higher-loop triangles do not contribute to the anomaly. 

This is known as the Adler-Bardeen theorem (the rigorous proof is more 
involved that this back-of-the-envelope argument)
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Our derivation stresses the fact that, once Lorentz invariance, Bose symmetry and 
gauge invariance are imposed, the anomaly is determined only by finite integrals

There is a tension between global chiral transformations and gauge invariance. In order to 
fix the ambiguities we cound have chosen to impose the axial Ward identity
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resulting numerator cancels the denominator giving the result 12 after the integra-
tion over the Feynman parameters. This leads to the Adler-Bell-Jackiw anomaly in
momentum space [1, 2]
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26 2 The Axial Anomaly
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Fig. 2.1 Domain of integration over Feynman parameters in Eq. (2.38).

To find the anomaly in position space, we only have to use Eq. (2.24). After a couple
of integrations by parts, we find

µ jµA x A
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In our discussion of the axial anomaly we have set the electron mass to zero
from the beginning. As an exercise, the reader is encouraged to repeat the analysis
assuming a finite mass m for the electron. In this case, Eq. (2.39) gets modified to
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"$%'(q' p( 2mi&$% p,q , (2.41)

where i&$% p,q is the contribution of the two triangle diagrams in Eq. (2.25) with
the axial-vector vertex )5)µ replaced by 2m)5.
The calculation we have presented highlights the fact that the axial anomaly in

QED is the result of Bose symmetry and both Lorentz and gauge invariance. In
addition, it is determined by ultraviolet finite integrals. All ambiguities associated
with the linearly divergent integral has been fixed by requiring that the quantum the-
ory satisfies the vector Ward identity at one loop. This can be achieved by using a
regularization method preserving gauge invariance, such as Pauli-Villars or dimen-
sional regularization. As we have seen, the anomaly is independent of the particular
method used as far as it preserves the vector Ward identity.
We could have proceeded in a different way and decided to fix the ambiguities

by imposing the axial-vector Ward identity instead,

p q µ i&µ$% p,q 0. (2.42)

A calculation shows that this implies the quantum nonconservation of the vector
current,
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This leads however to a violation of the gauge Ward identities

The true meaning of the anomaly is that there exists no regularization scheme leading 
to the simultaneous conservation of both the vector and the axial current.

The result

with
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is exact to all orders in perturbation theory.
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The anomaly cannot be “renormalized away”, i.e. removed by adding a local counterterm.

To summarize...
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The anomaly is not the result of a poor choice of regulator. It reflects a fundamental 
incompatibility between the conservation of the vector and the axial currents.

As a matter of fact, the anomaly admits a topological interpretation:

2.6 Fujikawa’s Method and the Atiyah-Singer Index Theorem 39

!5"n x and with opposite eigenvalue. Indeed, if iD "n x #n"n x we have

iD !5"n x !5 iD "n x #n!5"n x . (2.111)

If #n 0, this means that "n x and !5"n x have different eigenvalues and are
therefore orthogonal

d4x"n x !5"n x 0 #n 0 . (2.112)

This result shows how the eigenfunctions corresponding to nonzero eigenvalues do
not contribute to the right-hand side of Eq. (2.110) in the limit $ 0. When the
cutoff is removed, the only contribution comes from the zero modes of the Dirac
operator

d4x µ JµA x A 2i
zero modes

d4x"n x !5"n x . (2.113)

Now, these zero modes can be classified into positive [!5"n x "n x ] and nega-
tive [!5"n x "n x ] helicity. The last equation means that the integrated axial
anomaly is given by 2i times the difference between the number of positive and
negative helicity zero modes of iD . Defining

D iD
1 !5
2

(2.114)

we rewrite Eq. (2.113) as

d4x µ JµA x A 2i dimkerD dimkerD . (2.115)

As explained in Chapter 10, the term inside the brackets in the right-hand side of
this equation is the index of the positive helicity Dirac operator D .
With this calculation, we have reduced the computation of the axial anomaly to

finding the index of a certain operator. The advantage of this formulation is that
we can invoke the Atiyah-Singer index theorem (see Chapter 10) to compute the
right-hand side of Eq. (2.115) as

IndexD ch F vol
1

32%2
d4x&µ'(#Fµ'F(# . (2.116)

This reproduces the axial anomaly (2.94) in Euclidean space.

where                                 . Here
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# of positive-chirality zero modes of the Dirac operator

# of negative-chirality zero modes of the Dirac operator

The difference between these two integers defines the index of the operator D+. Its value is 
given in terms of the Chern character ch(F) by the celebrated Atiyah-Singer index 
theorem
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where

Beware! this gives the axial anomaly in Euclidean space (thus the extra i)
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UV or IR?

The axial anomaly can also be seen as the consequence of the existence of a zero-
momentum pole in the three-current correlation function

whose residue gives the anomaly.

It is instructive to look at the imaginary part of the triangle diagram, where the anomaly 
appears as a delta function at zero momentum

2.2 Quantum Breakdown of the Vector-Axial Symmetry 23

e2 0 T JµA 0 J
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V x1 J
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V x2 0

d4p
2# 4

d4q
2# 4 i$

µ!" p,q eip x1 iq x2 (2.23)

The quantum conservation equation takes the form
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i
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d4y1d4y2A ! y1 A " y2 (2.24)

d4p
2# 4

d4q
2# 4 p q µi$µ!" p,q eip y1 x iq y2 x .

To find whether the axial symmetry in massless QED is affected by a quantum
anomaly, we have to compute p q µ$µ!" p,q . The function i$ p,q is given by
the two momentum space Feynman diagrams
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p q µ (2.25)

whose contributions can be found using the Feynman rules of QED
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These integrals are linearly divergent and therefore ambiguous. To see this am-
biguity, we look at a the simple integral

I a dx f x a . (2.27)

If the integral converges, it is easy to prove that the result is independent of a. When
it does not, it needs to be regularized. However, its derivative

I a dx f x a f f . (2.28)

is finite, even when the integral I a diverges logarithmic or linearly. In the first case,
f x tends to zero when x and we find that I a 0 and the integral (2.27) is
independent of a. If the integral is linearly divergent, the function f x approaches
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Whereas the real part of the amplitude depends on possible subtractions, the imaginary part 
is unambiguous. Remember that in our previous calculation, the anomaly was given by 
unambiguous integrals (once we imposed Lorentz invariance, Bose symmetry, and vector 
current conservation).

Usually, the anomaly is presented as resulting from the UV behavior of the theory. The need 
to regularize the theory clashes with the invariance under chiral transformations and the 
conservation of the axial current remains broken after the UV cutoff is removed. 
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This delta function (or the pole in the full amplitude) can be regularized by giving a mass to 
the fermion. Applying unitarity
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The two on-shell processes on the right-hand side are forbidden for massless fermions due 
to axial charge conservation. Hence, naively we would expect
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Thus, the anomaly is signaled by a discontinuity in the imaginary part of the amplitude at 
zero fermion mass. This is the infrared face of the axial anomaly.

However, the actual calculation gives
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Third example: The gauge anomaly

The axial anomaly was not dangerous because the global axial current does not couple to a 
gauge field. In a chiral gauge theory (e.g. a V-A theory), the axial current does couple to a 
gauge fields and its not conservation leads to a breaking of gauge invariance. 

Nonchiral theories, however, are save. If the left- and right-handed fermions transform in the 
same representation, a Dirac mass term can be constructed and the theory can be regulated 
using Pauli-Villars fields, which preserves gauge invariance.

This is potentially disastrous because the anomaly spoils unitarity (and renormalizability)

We look at a theory of a chiral fermion coupled to an external nonabelian gauge field
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The relevant quantity to compute is

and in perturbation theory the relevant term is the three-current correlation function
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This three-current correlations function is proportional to the group-theoretic factor
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Thus, the condition for the cancellation of the gauge anomaly reads

In a theory with N+ positive chirality fermions and N- negative chirality fermions, the 
anomaly cancellation condition takes the form
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For an arbitrary representation R, we can define the invariant A(R) by 

where dabc is independent of R and A(R) = 1 for the fundamental representation.

Representations for which A(R) = 0  are safe because chiral fermions transforming under them 
do not give rise to gauge anomalies. This is the case, for example, when (S unitary)
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If the generators are taken Hermitian, we have
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(pseudoreal representation)

and for real or pseudoreal representations

so we conclude that A(R) = 0.
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Thus, real and pseudoreal representations are safe. This includes all representations of the 
groups

In conclusion, anomalies can only appear when chiral fermions transform in complex 
representations, for which there is no unitary equivalence between the representation and its 
complex conjugate. This is the case, for example, of SU(N) with N ≥ 3. 

SU(2),  SO(2N+1),  SO(4N),  Sp(2N),  G2,  F4,  E7,  E8

In addition, the adjoint representation of any group is real and therefore safe.

Thus, if the representation is complex we have to explicitly check whether A(R) = 0 or not.

If the gauge group is a direct product, G1 ⊗ ... ⊗ Gn, there might be mixed gauge anomalies 
associated with triangles with “different group factors” at each vertex

more on this later.
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Gravity can also contribute to the gauge anomaly...

If the gauge theory is coupled to gravity, there is a new interaction term in the action coupling 
the graviton field hμν to the energy-momentum tensor of the gauge theory
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Expanding in powers of the gravitational coupling, this extra term gives an additional 
contribution to the anomaly given by the triangle anomaly with two energy-momentum 
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Anomalies and pion decay

The axial anomaly has very important consequences for the physics of strong interactions, 
and in particular for the pion decay.
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mediated by the N2c 1 gauge bosons, the gluons AA

µ , with A 1, . . . ,N2c 1. Let us
recall that in the real world Nc 3 and Nf 6, corresponding to the six quarks: up
(u), down (d), charm (c), strange (s), top (t) and bottom (b).
For reasons that will be clear later we work in the limit of vanishing quark

masses3, mf 0. In this case the QCD Lagrangian is given by

LQCD
1
4
FA
µ!FAµ!

Nf

f 1
iQ f

LDQ
f
L iQf

RDQ
f
R , (9.38)

where the subscripts L and R indicate respectively left and right-handed spinors,

Qf
L,R

1
2
1 "5 Qf , (9.39)

and the field strength FA
µ! and covariant derivative Dµ are respectively defined in

Eqs. (4.52) and (4.46). Apart from the gauge symmetry, this Lagrangian is also
invariant under a global U(Nf )L U(Nf )R acting on the flavor indices and defined by

U(Nf )L :
Qf
L

Nf

f 1
UL f f Q

f
L

Qf
R Qf

R

U(Nf )R :

Qf
L Qf

L

Qr
R

Nf

f 1
UR f f Q

f
R

(9.40)

with UL,UR U Nf . Since U(N)=U(1) SU(N) this global symmetry group can
be written as SU(Nf )L SU(Nf )R U(1)L U(1)R. The abelian subgroup U(1)L
U(1)R can be now decomposed into their vector U(1)B and axial U(1)A subgroups
defined by the transformations

U(1)B :
Qf
L ei#Qf

L

Qf
R ei#Qf

R

U(1)A :
Qf
L ei#Qf

L

Qf
R e i#Qf

R

According to Noether’s theorem, associated with these two abelian symmetries we
have two conserved currents:

JµV

Nf

f 1
Qf
"µQf , JµA

Nf

f 1
Qf
"µ"5Qf . (9.41)

The conserved charge associated with the vector current JµV is the baryon number
counting the number of quarks minus the number of antiquarks.

3 In the real world this makes sense only for the up and down, and perhaps the strange quarks.

The action is invariant under the                        symmetry

184 9 Anomalies

colors and flavors: a nonabelian gauge theory with gauge group SU(Nc) coupled to a
number Nf of quarks. These are spin- 12 particles Q

f
i labelled by the color and flavor

quantum numbers i 1, . . . ,Nc and f 1, . . . ,Nf . The interaction between them is
mediated by the N2c 1 gauge bosons, the gluons AA

µ , with A 1, . . . ,N2c 1. Let us
recall that in the real world Nc 3 and Nf 6, corresponding to the six quarks: up
(u), down (d), charm (c), strange (s), top (t) and bottom (b).
For reasons that will be clear later we work in the limit of vanishing quark

masses3, mf 0. In this case the QCD Lagrangian is given by

LQCD
1
4
FA
µ!FAµ!

Nf

f 1
iQ f

LDQ
f
L iQf

RDQ
f
R , (9.38)

where the subscripts L and R indicate respectively left and right-handed spinors,

Qf
L,R

1
2
1 "5 Qf , (9.39)

and the field strength FA
µ! and covariant derivative Dµ are respectively defined in

Eqs. (4.52) and (4.46). Apart from the gauge symmetry, this Lagrangian is also
invariant under a global U(Nf )L U(Nf )R acting on the flavor indices and defined by

U(Nf )L :
Qf
L

Nf

f 1
UL f f Q

f
L

Qf
R Qf

R

U(Nf )R :

Qf
L Qf

L

Qr
R

Nf

f 1
UR f f Q

f
R

(9.40)

with UL,UR U Nf . Since U(N)=U(1) SU(N) this global symmetry group can
be written as SU(Nf )L SU(Nf )R U(1)L U(1)R. The abelian subgroup U(1)L
U(1)R can be now decomposed into their vector U(1)B and axial U(1)A subgroups
defined by the transformations

U(1)B :
Qf
L ei#Qf

L

Qf
R ei#Qf

R

U(1)A :
Qf
L ei#Qf

L

Qf
R e i#Qf

R

According to Noether’s theorem, associated with these two abelian symmetries we
have two conserved currents:

JµV

Nf

f 1
Qf
"µQf , JµA

Nf

f 1
Qf
"µ"5Qf . (9.41)

The conserved charge associated with the vector current JµV is the baryon number
counting the number of quarks minus the number of antiquarks.

3 In the real world this makes sense only for the up and down, and perhaps the strange quarks.

184 9 Anomalies

colors and flavors: a nonabelian gauge theory with gauge group SU(Nc) coupled to a
number Nf of quarks. These are spin- 12 particles Q

f
i labelled by the color and flavor

quantum numbers i 1, . . . ,Nc and f 1, . . . ,Nf . The interaction between them is
mediated by the N2c 1 gauge bosons, the gluons AA

µ , with A 1, . . . ,N2c 1. Let us
recall that in the real world Nc 3 and Nf 6, corresponding to the six quarks: up
(u), down (d), charm (c), strange (s), top (t) and bottom (b).
For reasons that will be clear later we work in the limit of vanishing quark

masses3, mf 0. In this case the QCD Lagrangian is given by

LQCD
1
4
FA
µ!FAµ!

Nf

f 1
iQ f

LDQ
f
L iQf

RDQ
f
R , (9.38)

where the subscripts L and R indicate respectively left and right-handed spinors,

Qf
L,R

1
2
1 "5 Qf , (9.39)

and the field strength FA
µ! and covariant derivative Dµ are respectively defined in

Eqs. (4.52) and (4.46). Apart from the gauge symmetry, this Lagrangian is also
invariant under a global U(Nf )L U(Nf )R acting on the flavor indices and defined by

U(Nf )L :
Qf
L

Nf

f 1
UL f f Q

f
L

Qf
R Qf

R

U(Nf )R :

Qf
L Qf

L

Qr
R

Nf

f 1
UR f f Q

f
R

(9.40)

with UL,UR U Nf . Since U(N)=U(1) SU(N) this global symmetry group can
be written as SU(Nf )L SU(Nf )R U(1)L U(1)R. The abelian subgroup U(1)L
U(1)R can be now decomposed into their vector U(1)B and axial U(1)A subgroups
defined by the transformations

U(1)B :
Qf
L ei#Qf

L

Qf
R ei#Qf

R

U(1)A :
Qf
L ei#Qf

L

Qf
R e i#Qf

R

According to Noether’s theorem, associated with these two abelian symmetries we
have two conserved currents:

JµV

Nf

f 1
Qf
"µQf , JµA

Nf

f 1
Qf
"µ"5Qf . (9.41)

The conserved charge associated with the vector current JµV is the baryon number
counting the number of quarks minus the number of antiquarks.

3 In the real world this makes sense only for the up and down, and perhaps the strange quarks.

184 9 Anomalies

colors and flavors: a nonabelian gauge theory with gauge group SU(Nc) coupled to a
number Nf of quarks. These are spin- 12 particles Q

f
i labelled by the color and flavor

quantum numbers i 1, . . . ,Nc and f 1, . . . ,Nf . The interaction between them is
mediated by the N2c 1 gauge bosons, the gluons AA

µ , with A 1, . . . ,N2c 1. Let us
recall that in the real world Nc 3 and Nf 6, corresponding to the six quarks: up
(u), down (d), charm (c), strange (s), top (t) and bottom (b).
For reasons that will be clear later we work in the limit of vanishing quark

masses3, mf 0. In this case the QCD Lagrangian is given by

LQCD
1
4
FA
µ!FAµ!

Nf

f 1
iQ f

LDQ
f
L iQf

RDQ
f
R , (9.38)

where the subscripts L and R indicate respectively left and right-handed spinors,

Qf
L,R

1
2
1 "5 Qf , (9.39)

and the field strength FA
µ! and covariant derivative Dµ are respectively defined in

Eqs. (4.52) and (4.46). Apart from the gauge symmetry, this Lagrangian is also
invariant under a global U(Nf )L U(Nf )R acting on the flavor indices and defined by

U(Nf )L :
Qf
L

Nf

f 1
UL f f Q

f
L

Qf
R Qf

R

U(Nf )R :

Qf
L Qf

L

Qr
R

Nf

f 1
UR f f Q

f
R

(9.40)

with UL,UR U Nf . Since U(N)=U(1) SU(N) this global symmetry group can
be written as SU(Nf )L SU(Nf )R U(1)L U(1)R. The abelian subgroup U(1)L
U(1)R can be now decomposed into their vector U(1)B and axial U(1)A subgroups
defined by the transformations

U(1)B :
Qf
L ei#Qf

L

Qf
R ei#Qf

R

U(1)A :
Qf
L ei#Qf

L

Qf
R e i#Qf

R

According to Noether’s theorem, associated with these two abelian symmetries we
have two conserved currents:

JµV

Nf

f 1
Qf
"µQf , JµA

Nf

f 1
Qf
"µ"5Qf . (9.41)

The conserved charge associated with the vector current JµV is the baryon number
counting the number of quarks minus the number of antiquarks.

3 In the real world this makes sense only for the up and down, and perhaps the strange quarks.

184 9 Anomalies

colors and flavors: a nonabelian gauge theory with gauge group SU(Nc) coupled to a
number Nf of quarks. These are spin- 12 particles Q

f
i labelled by the color and flavor

quantum numbers i 1, . . . ,Nc and f 1, . . . ,Nf . The interaction between them is
mediated by the N2c 1 gauge bosons, the gluons AA

µ , with A 1, . . . ,N2c 1. Let us
recall that in the real world Nc 3 and Nf 6, corresponding to the six quarks: up
(u), down (d), charm (c), strange (s), top (t) and bottom (b).
For reasons that will be clear later we work in the limit of vanishing quark

masses3, mf 0. In this case the QCD Lagrangian is given by

LQCD
1
4
FA
µ!FAµ!

Nf

f 1
iQ f

LDQ
f
L iQf

RDQ
f
R , (9.38)

where the subscripts L and R indicate respectively left and right-handed spinors,

Qf
L,R

1
2
1 "5 Qf , (9.39)

and the field strength FA
µ! and covariant derivative Dµ are respectively defined in

Eqs. (4.52) and (4.46). Apart from the gauge symmetry, this Lagrangian is also
invariant under a global U(Nf )L U(Nf )R acting on the flavor indices and defined by

U(Nf )L :
Qf
L

Nf

f 1
UL f f Q

f
L

Qf
R Qf

R

U(Nf )R :

Qf
L Qf

L

Qr
R

Nf

f 1
UR f f Q

f
R

(9.40)

with UL,UR U Nf . Since U(N)=U(1) SU(N) this global symmetry group can
be written as SU(Nf )L SU(Nf )R U(1)L U(1)R. The abelian subgroup U(1)L
U(1)R can be now decomposed into their vector U(1)B and axial U(1)A subgroups
defined by the transformations

U(1)B :
Qf
L ei#Qf

L

Qf
R ei#Qf

R

U(1)A :
Qf
L ei#Qf

L

Qf
R e i#Qf

R

According to Noether’s theorem, associated with these two abelian symmetries we
have two conserved currents:

JµV

Nf

f 1
Qf
"µQf , JµA

Nf

f 1
Qf
"µ"5Qf . (9.41)

The conserved charge associated with the vector current JµV is the baryon number
counting the number of quarks minus the number of antiquarks.

3 In the real world this makes sense only for the up and down, and perhaps the strange quarks.

Since                            the symmetry group can be written as

184 9 Anomalies

colors and flavors: a nonabelian gauge theory with gauge group SU(Nc) coupled to a
number Nf of quarks. These are spin- 12 particles Q

f
i labelled by the color and flavor

quantum numbers i 1, . . . ,Nc and f 1, . . . ,Nf . The interaction between them is
mediated by the N2c 1 gauge bosons, the gluons AA

µ , with A 1, . . . ,N2c 1. Let us
recall that in the real world Nc 3 and Nf 6, corresponding to the six quarks: up
(u), down (d), charm (c), strange (s), top (t) and bottom (b).
For reasons that will be clear later we work in the limit of vanishing quark

masses3, mf 0. In this case the QCD Lagrangian is given by

LQCD
1
4
FA
µ!FAµ!

Nf

f 1
iQ f

LDQ
f
L iQf

RDQ
f
R , (9.38)

where the subscripts L and R indicate respectively left and right-handed spinors,

Qf
L,R

1
2
1 "5 Qf , (9.39)

and the field strength FA
µ! and covariant derivative Dµ are respectively defined in

Eqs. (4.52) and (4.46). Apart from the gauge symmetry, this Lagrangian is also
invariant under a global U(Nf )L U(Nf )R acting on the flavor indices and defined by

U(Nf )L :
Qf
L

Nf

f 1
UL f f Q

f
L

Qf
R Qf

R

U(Nf )R :

Qf
L Qf

L

Qr
R

Nf

f 1
UR f f Q

f
R

(9.40)

with UL,UR U Nf . Since U(N)=U(1) SU(N) this global symmetry group can
be written as SU(Nf )L SU(Nf )R U(1)L U(1)R. The abelian subgroup U(1)L
U(1)R can be now decomposed into their vector U(1)B and axial U(1)A subgroups
defined by the transformations

U(1)B :
Qf
L ei#Qf

L

Qf
R ei#Qf

R

U(1)A :
Qf
L ei#Qf

L

Qf
R e i#Qf

R

According to Noether’s theorem, associated with these two abelian symmetries we
have two conserved currents:

JµV

Nf

f 1
Qf
"µQf , JµA

Nf

f 1
Qf
"µ"5Qf . (9.41)

The conserved charge associated with the vector current JµV is the baryon number
counting the number of quarks minus the number of antiquarks.

3 In the real world this makes sense only for the up and down, and perhaps the strange quarks.

184 9 Anomalies

colors and flavors: a nonabelian gauge theory with gauge group SU(Nc) coupled to a
number Nf of quarks. These are spin- 12 particles Q

f
i labelled by the color and flavor

quantum numbers i 1, . . . ,Nc and f 1, . . . ,Nf . The interaction between them is
mediated by the N2c 1 gauge bosons, the gluons AA

µ , with A 1, . . . ,N2c 1. Let us
recall that in the real world Nc 3 and Nf 6, corresponding to the six quarks: up
(u), down (d), charm (c), strange (s), top (t) and bottom (b).
For reasons that will be clear later we work in the limit of vanishing quark

masses3, mf 0. In this case the QCD Lagrangian is given by

LQCD
1
4
FA
µ!FAµ!

Nf

f 1
iQ f

LDQ
f
L iQf

RDQ
f
R , (9.38)

where the subscripts L and R indicate respectively left and right-handed spinors,

Qf
L,R

1
2
1 "5 Qf , (9.39)

and the field strength FA
µ! and covariant derivative Dµ are respectively defined in

Eqs. (4.52) and (4.46). Apart from the gauge symmetry, this Lagrangian is also
invariant under a global U(Nf )L U(Nf )R acting on the flavor indices and defined by

U(Nf )L :
Qf
L

Nf

f 1
UL f f Q

f
L

Qf
R Qf

R

U(Nf )R :

Qf
L Qf

L

Qr
R

Nf

f 1
UR f f Q

f
R

(9.40)

with UL,UR U Nf . Since U(N)=U(1) SU(N) this global symmetry group can
be written as SU(Nf )L SU(Nf )R U(1)L U(1)R. The abelian subgroup U(1)L
U(1)R can be now decomposed into their vector U(1)B and axial U(1)A subgroups
defined by the transformations

U(1)B :
Qf
L ei#Qf

L

Qf
R ei#Qf

R

U(1)A :
Qf
L ei#Qf

L

Qf
R e i#Qf

R

According to Noether’s theorem, associated with these two abelian symmetries we
have two conserved currents:

JµV

Nf

f 1
Qf
"µQf , JµA

Nf

f 1
Qf
"µ"5Qf . (9.41)

The conserved charge associated with the vector current JµV is the baryon number
counting the number of quarks minus the number of antiquarks.

3 In the real world this makes sense only for the up and down, and perhaps the strange quarks.

M.Á. Vázquez-Mozo                                        Introduction to anomalies and their phenomenological applications                                            Taller de Altas Energías 2013

Let us begin by studying the global symmetries of QCD in the chiral limit



The left-right global transformations can be now decomposed into vector and vector-axial 
parts
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The nonabelian part of the global symmetry group SU(Nf )L SU(Nf )R can also
be decomposed into its vector and axial subgroups, SU(Nf )V SU(Nf )A, defined
by the following transformations of the quarks fields

SU(Nf )V :

Qf
L

Nf

f 1
Uf f Q

f
L

Qf
R

Nf

f 1
Uf f Q

f
R

SU(Nf )A :

Qf
L

Nf

f 1
Uf f Q

f
L

Qf
R

Nf

f 1
U 1
f f Q

f
R

(9.42)

whereU is a SU(Nf ) matrix. Again, the application of Noether’s theorem shows the
existence of the following nonabelian conserved charges

JI µV

Nf

f , f 1
Qf
!µ T I f f Q f ,

JI µA

Nf

f , f 1

Qf
!µ!5 T I f f Q f . (9.43)

To summarize, we have shown that the initial flavor chiral symmetry of the QCD
Lagrangian (9.38) can be decomposed into its chiral and vector subgroups according
to

U(Nf )L U(Nf )R SU(Nf )V SU(Nf )A U(1)B U(1)A. (9.44)

Up to now we have worked with the classical Lagrangian. The question to address
next is which part of the classical global symmetry is preserved in the quantum
theory.
As argued in section 9.1, the conservation of the axial vector currents JµA and J

Aµ
A

can in principle be spoiled by an anomaly. In the case of the abelian axial current JµA
the relevant quantity to compute is the correlation function

Cµ"# x,x 0 T JµA x jA"gauge x jB#gauge 0 0

Nf

f 1 JµA
Qf

g

Qf

gQf

symmetric

(9.45)

Here jAµgauge is the nonabelian conserved current coupling to the gluon field

j Aµgauge
Nf

f 1
Qf

!µ$AQf , (9.46)

with

184 9 Anomalies

colors and flavors: a nonabelian gauge theory with gauge group SU(Nc) coupled to a
number Nf of quarks. These are spin- 12 particles Q

f
i labelled by the color and flavor

quantum numbers i 1, . . . ,Nc and f 1, . . . ,Nf . The interaction between them is
mediated by the N2c 1 gauge bosons, the gluons AA

µ , with A 1, . . . ,N2c 1. Let us
recall that in the real world Nc 3 and Nf 6, corresponding to the six quarks: up
(u), down (d), charm (c), strange (s), top (t) and bottom (b).
For reasons that will be clear later we work in the limit of vanishing quark

masses3, mf 0. In this case the QCD Lagrangian is given by

LQCD
1
4
FA
µ!FAµ!

Nf

f 1
iQ f

LDQ
f
L iQf

RDQ
f
R , (9.38)

where the subscripts L and R indicate respectively left and right-handed spinors,

Qf
L,R

1
2
1 "5 Qf , (9.39)

and the field strength FA
µ! and covariant derivative Dµ are respectively defined in

Eqs. (4.52) and (4.46). Apart from the gauge symmetry, this Lagrangian is also
invariant under a global U(Nf )L U(Nf )R acting on the flavor indices and defined by

U(Nf )L :
Qf
L

Nf

f 1
UL f f Q

f
L

Qf
R Qf

R

U(Nf )R :

Qf
L Qf

L

Qr
R

Nf

f 1
UR f f Q

f
R

(9.40)

with UL,UR U Nf . Since U(N)=U(1) SU(N) this global symmetry group can
be written as SU(Nf )L SU(Nf )R U(1)L U(1)R. The abelian subgroup U(1)L
U(1)R can be now decomposed into their vector U(1)B and axial U(1)A subgroups
defined by the transformations

U(1)B :
Qf
L ei#Qf

L

Qf
R ei#Qf

R

U(1)A :
Qf
L ei#Qf

L

Qf
R e i#Qf

R

According to Noether’s theorem, associated with these two abelian symmetries we
have two conserved currents:

JµV

Nf

f 1
Qf
"µQf , JµA

Nf

f 1
Qf
"µ"5Qf . (9.41)

The conserved charge associated with the vector current JµV is the baryon number
counting the number of quarks minus the number of antiquarks.

3 In the real world this makes sense only for the up and down, and perhaps the strange quarks.

184 9 Anomalies

colors and flavors: a nonabelian gauge theory with gauge group SU(Nc) coupled to a
number Nf of quarks. These are spin- 12 particles Q

f
i labelled by the color and flavor

quantum numbers i 1, . . . ,Nc and f 1, . . . ,Nf . The interaction between them is
mediated by the N2c 1 gauge bosons, the gluons AA

µ , with A 1, . . . ,N2c 1. Let us
recall that in the real world Nc 3 and Nf 6, corresponding to the six quarks: up
(u), down (d), charm (c), strange (s), top (t) and bottom (b).
For reasons that will be clear later we work in the limit of vanishing quark

masses3, mf 0. In this case the QCD Lagrangian is given by

LQCD
1
4
FA
µ!FAµ!

Nf

f 1
iQ f

LDQ
f
L iQf

RDQ
f
R , (9.38)

where the subscripts L and R indicate respectively left and right-handed spinors,

Qf
L,R

1
2
1 "5 Qf , (9.39)

and the field strength FA
µ! and covariant derivative Dµ are respectively defined in

Eqs. (4.52) and (4.46). Apart from the gauge symmetry, this Lagrangian is also
invariant under a global U(Nf )L U(Nf )R acting on the flavor indices and defined by

U(Nf )L :
Qf
L

Nf

f 1
UL f f Q

f
L

Qf
R Qf

R

U(Nf )R :

Qf
L Qf

L

Qr
R

Nf

f 1
UR f f Q

f
R

(9.40)

with UL,UR U Nf . Since U(N)=U(1) SU(N) this global symmetry group can
be written as SU(Nf )L SU(Nf )R U(1)L U(1)R. The abelian subgroup U(1)L
U(1)R can be now decomposed into their vector U(1)B and axial U(1)A subgroups
defined by the transformations

U(1)B :
Qf
L ei#Qf

L

Qf
R ei#Qf

R

U(1)A :
Qf
L ei#Qf

L

Qf
R e i#Qf

R

According to Noether’s theorem, associated with these two abelian symmetries we
have two conserved currents:

JµV

Nf

f 1
Qf
"µQf , JµA

Nf

f 1
Qf
"µ"5Qf . (9.41)

The conserved charge associated with the vector current JµV is the baryon number
counting the number of quarks minus the number of antiquarks.

3 In the real world this makes sense only for the up and down, and perhaps the strange quarks.
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The nonabelian part of the global symmetry group SU(Nf )L SU(Nf )R can also
be decomposed into its vector and axial subgroups, SU(Nf )V SU(Nf )A, defined
by the following transformations of the quarks fields

SU(Nf )V :

Qf
L

Nf

f 1
Uf f Q

f
L

Qf
R

Nf

f 1
Uf f Q

f
R

SU(Nf )A :

Qf
L

Nf

f 1
Uf f Q

f
L

Qf
R

Nf

f 1
U 1
f f Q

f
R

(9.42)

whereU is a SU(Nf ) matrix. Again, the application of Noether’s theorem shows the
existence of the following nonabelian conserved charges
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Nf
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Qf
!µ T I f f Q f ,

JI µA
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f , f 1

Qf
!µ!5 T I f f Q f . (9.43)

To summarize, we have shown that the initial flavor chiral symmetry of the QCD
Lagrangian (9.38) can be decomposed into its chiral and vector subgroups according
to

U(Nf )L U(Nf )R SU(Nf )V SU(Nf )A U(1)B U(1)A. (9.44)

Up to now we have worked with the classical Lagrangian. The question to address
next is which part of the classical global symmetry is preserved in the quantum
theory.
As argued in section 9.1, the conservation of the axial vector currents JµA and J

Aµ
A

can in principle be spoiled by an anomaly. In the case of the abelian axial current JµA
the relevant quantity to compute is the correlation function

Cµ"# x,x 0 T JµA x jA"gauge x jB#gauge 0 0

Nf

f 1 JµA
Qf

g

Qf

gQf

symmetric

(9.45)

Here jAµgauge is the nonabelian conserved current coupling to the gluon field

j Aµgauge
Nf

f 1
Qf

!µ$AQf , (9.46)
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The associated classically conserved currents are
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colors and flavors: a nonabelian gauge theory with gauge group SU(Nc) coupled to a
number Nf of quarks. These are spin- 12 particles Q

f
i labelled by the color and flavor

quantum numbers i 1, . . . ,Nc and f 1, . . . ,Nf . The interaction between them is
mediated by the N2c 1 gauge bosons, the gluons AA

µ , with A 1, . . . ,N2c 1. Let us
recall that in the real world Nc 3 and Nf 6, corresponding to the six quarks: up
(u), down (d), charm (c), strange (s), top (t) and bottom (b).
For reasons that will be clear later we work in the limit of vanishing quark

masses3, mf 0. In this case the QCD Lagrangian is given by

LQCD
1
4
FA
µ!FAµ!

Nf

f 1
iQ f

LDQ
f
L iQf

RDQ
f
R , (9.38)

where the subscripts L and R indicate respectively left and right-handed spinors,

Qf
L,R

1
2
1 "5 Qf , (9.39)

and the field strength FA
µ! and covariant derivative Dµ are respectively defined in

Eqs. (4.52) and (4.46). Apart from the gauge symmetry, this Lagrangian is also
invariant under a global U(Nf )L U(Nf )R acting on the flavor indices and defined by
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f
R

(9.40)

with UL,UR U Nf . Since U(N)=U(1) SU(N) this global symmetry group can
be written as SU(Nf )L SU(Nf )R U(1)L U(1)R. The abelian subgroup U(1)L
U(1)R can be now decomposed into their vector U(1)B and axial U(1)A subgroups
defined by the transformations
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The conserved charge associated with the vector current JµV is the baryon number
counting the number of quarks minus the number of antiquarks.

3 In the real world this makes sense only for the up and down, and perhaps the strange quarks.
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The nonabelian part of the global symmetry group SU(Nf )L SU(Nf )R can also
be decomposed into its vector and axial subgroups, SU(Nf )V SU(Nf )A, defined
by the following transformations of the quarks fields
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whereU is a SU(Nf ) matrix. Again, the application of Noether’s theorem shows the
existence of the following nonabelian conserved charges

JI µV

Nf

f , f 1
Qf
!µ T I f f Q f ,

JI µA

Nf

f , f 1

Qf
!µ!5 T I f f Q f . (9.43)

To summarize, we have shown that the initial flavor chiral symmetry of the QCD
Lagrangian (9.38) can be decomposed into its chiral and vector subgroups according
to

U(Nf )L U(Nf )R SU(Nf )V SU(Nf )A U(1)B U(1)A. (9.44)

Up to now we have worked with the classical Lagrangian. The question to address
next is which part of the classical global symmetry is preserved in the quantum
theory.
As argued in section 9.1, the conservation of the axial vector currents JµA and J

Aµ
A

can in principle be spoiled by an anomaly. In the case of the abelian axial current JµA
the relevant quantity to compute is the correlation function

Cµ"# x,x 0 T JµA x jA"gauge x jB#gauge 0 0

Nf

f 1 JµA
Qf

g

Qf

gQf

symmetric

(9.45)

Here jAµgauge is the nonabelian conserved current coupling to the gluon field

j Aµgauge
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f 1
Qf

!µ$AQf , (9.46)
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whereU is a SU(Nf ) matrix. Again, the application of Noether’s theorem shows the
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Here jAµgauge is the nonabelian conserved current coupling to the gluon field
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Axial currents are potentially anomalous. To settle the question we compute the 
correlation function of one axial current and two gauge currents. 
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Tr *A,*B 0 (0.180)

so the anomaly does not cancel. An explicit calculation gives
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For the abelian current we have:

The diagram contains two SU(Nc) generators at the gauge current vertices, so the group 
theoretical factor multiplying this diagram is

33

qL
YqL 3 2

1
6

1 (0.367)

qL

Y 3qL
qR

Y 3qR
3
4

(0.368)

lim
m 0

(0.369)

e2

2!
" p q 2 (0.370)

T I (0.371)

µJµA
g2Nf
32!2

#µ$%&Faµ$Fa%& (0.372)



We study next the SU(Nf )A current. Looking at the group theory factor, we find
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where, to avoid confusion with the generators of the global symmetry we have de-
noted by !a the generators of the gauge group SU(Nc). The anomaly can be read now
from x

µ Cµ"# x,x . If we impose Bose symmetry with respect to the interchange
of the two outgoing gluons and the conservation of the vector currents, we find that
the axial abelian global current has an anomaly given by4

µJµA
g2Nf

32$2
%µ"#&FA

µ"F
Aµ" . (9.47)

In the case of the nonabelian axial global symmetry SU(Nf )A the calculation of
the anomaly is made as above. The result, however, is quite different since in this
case we conclude that the nonabelian axial vector current JAµA is not anomalous.
This can be easily seen by noticing that associated with the axial vector current
vertex we have a generator T I of SU(Nf ), whereas for the two gluon vertices we
have the generators !A of the gauge group SU(Nc). Therefore, the triangle diagram
is proportional to the group-theory factor

JIµA
Qf

g

Qf

gQf

symmetric

TrTI Tr !A,!B 0 (9.48)

vanishing because the generators of SU(Nf ) are traceless.
From here we would conclude that the nonabelian axial symmetry SU(Nf )A is

nonanomalous. However this is not the whole story since quarks are charged par-
ticles that also couple to photons. Hence there is a second potential source of an
anomaly coming from the the one-loop triangle diagram coupling J I µA to two pho-
tons

0 T J I µA x j"em x j#em 0 0
Nf

f 1 JIµA
Qf

'

Qf

'Qf

symmetric

(9.49)

where jµem is the electromagnetic current

jµem
Nf

f 1
q f Q

f
'µQf , (9.50)

with q f the electric charge of the f -th quark flavor. A calculation of the diagram in
(9.49) shows the existence of the Adler-Bell-Jackiw anomaly given by

4 The normalization of the generators T I of the global SU(Nf ) is given by Tr T IT J 1
2 (

IJ .

since
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This however is not enough to conclude that SU(Nf )A is anomaly free. Quarks also couple to 
the electromagnetic field, so there is second contribution to the anomaly 
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case we conclude that the nonabelian axial vector current JAµA is not anomalous.
This can be easily seen by noticing that associated with the axial vector current
vertex we have a generator T I of SU(Nf ), whereas for the two gluon vertices we
have the generators !A of the gauge group SU(Nc). Therefore, the triangle diagram
is proportional to the group-theory factor

JIµA
Qf

g

Qf

gQf

symmetric

TrTI Tr !A,!B 0 (9.48)

vanishing because the generators of SU(Nf ) are traceless.
From here we would conclude that the nonabelian axial symmetry SU(Nf )A is

nonanomalous. However this is not the whole story since quarks are charged par-
ticles that also couple to photons. Hence there is a second potential source of an
anomaly coming from the the one-loop triangle diagram coupling J I µA to two pho-
tons

0 T J I µA x j"em x j#em 0 0
Nf

f 1 JIµA
Qf

'

Qf

'Qf

symmetric

(9.49)

where jµem is the electromagnetic current

jµem
Nf

f 1
q f Q

f
'µQf , (9.50)

with q f the electric charge of the f -th quark flavor. A calculation of the diagram in
(9.49) shows the existence of the Adler-Bell-Jackiw anomaly given by

4 The normalization of the generators T I of the global SU(Nf ) is given by Tr T IT J 1
2 (

IJ .
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µJ I µA
Nc
16!2

Nf

f 1
T I f f q2f "µ#$%Fµ#F$% , (9.51)

where Fµ# is the field strength of the electromagnetic field coupling to the quarks.
The only chance for the anomaly to cancel is that the factor between brackets in this
equation be identically zero.
Before proceeding let us summarize the results found so far. Due to the presence

of anomalies the axial part of the global chiral symmetry, SU(Nf )A and U(1)A are
not realized quantum mechanically in general. We found that U(1)A is always af-
fected by an anomaly. However, the right-hand side of the anomaly equation (9.47)
is a total derivative, thus the anomalous character of JµA does not explain the ab-
sence of U(1)A multiplets in the hadron spectrum, since a new current can be con-
structed which is conserved. In addition, the nonexistence of candidates for a Gold-
stone boson associated with the right quantum numbers indicates that U(1)A is not
spontaneously broken either, so it has to be explicitly broken somehow. This is the
so-called U(1)-problem solved by ’t Hooft [6], who showed how the contribution in-
stantons describing quantum transitions between vacua with topologically nontrivial
gauge field configurations results in an explicit breaking of this symmetry.
Due to the dynamics of the SU(Nc) gauge theory the axial nonabelian symmetry

is spontaneously broken due to the presence at low energies of a vacuum expectation
value for the fermion bilinear QfQf

0 QfQf 0 0 (no summation in f !). (9.52)

This nonvanishing vacuum expectation value for the quark bilinear breaks chiral
invariance spontaneously to the vector subgroup SU(Nf )V, so the only subgroup of
the original global symmetry that is realized by the full theory at low energy is

U(Nf )L U(Nf )R SU(Nf )V U(1)B. (9.53)

Associated with this breaking, Nambu-Goldstone bosons should appear with the
quantum numbers of the broken nonabelian currents. For example, in the case
of QCD the Nambu-Goldstone bosons associated with the spontaneous symmetry
breaking induced by the vacuum expectation values uu , dd and ud du
have been identified as the pions !0, ! . These bosons are not exactly massless due
to the nonvanishing mass of the u and d quarks. Since the global chiral symmetry is
already slightly broken by mass terms in the Lagrangian, the associated Goldstone
bosons also have masses although they are very light compared to the masses of
other hadrons.
In order to have a better physical understanding of the role of anomalies in the

physics of the strong interactions we particularize our analysis to the case of real
QCD. Since the u and d quarks are much lighter than the other four flavors, QCD at
low energies can be well described by including only these two flavors and ignoring
heavier quarks. In this approximation, from our previous discussion we know that
the low energy global symmetry of the theory is SU(2)V U(1)B, where now the
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where     are the generators of SU(Nf )A.
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We particularize the result to the case of QCD (Nc = 3) with the two light flavors u and d (Nf = 2).  
Taking into account that
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vector group SU(2)V is the well-known isospin symmetry. The axial U(1)A current
is anomalous due to Eq. (9.47) with Nf 2. In the case of the nonabelian axial
symmetry SU(2)A, taking into account that qu 2

3e and qd
1
3e and that the three

generators of SU(2) can be written in terms of the Pauli matrices as TK 1
2!K we

find

f u,d
T 1 f f q2f

f u,d
T 2 f f q2f 0,

f u,d
T 3 f f q2f

e2

6
. (9.54)

Therefore J3µA is anomalous.
The anomaly in the axial vector current J3µA has important physical consequence.

As we learned in chapter 5 the flavor wave function of the neutral pion "0 is given
by

"0
1
2

ūu d̄d . (9.55)

The isospin quantum numbers of "0 are those of J3µA . In fact, the correspondence
goes even further. The divergence of the axial vector current µJ3µA has precisely the
same quantum numbers as the pion. This means that, properly normalized, it can be
identified as the operator creating a pion "0 out of the vacuum

"0 µJ3µA 0 . (9.56)

This leads to the physical interpretation of the triangle diagram (9.49) with J3µA as
the one loop contribution to the decay of a neutral pion into two photons

"0 2# . (9.57)

This is an interesting piece of physics. In 1967 Sutherland and Veltman [7] pre-
sented a calculation, using current algebra techniques, according to which the decay
of the pion into two photons should be suppressed. This however contradicted the
experimental evidence showing the existence of such a decay. The way out to this
paradox, as pointed out in [3], is the axial anomaly. What happens is that the cur-
rent algebra analysis overlooks the ambiguities associated with the regularization
of divergences in quantum field theory. A QED evaluation of the triangle diagram
leads to a divergent integral that has to be regularized. It is in this process that the
Adler-Bell-Jackiw axial anomaly appears resulting in a nonvanishing value for the
"0 2# amplitude5.

5 An early computation of the triangle diagram for the electromagnetic decay of the pion was made
by Steinberger in [4].
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To summarize:

U(1)A is always anomalous.  This is not too problematic, since this axial symmetry is 
explicitly broken by instantons. This is the idea behind the famous resolution of the U(1) 
problem by ‘t Hooft.

Of SU(2)A only the third isospin component       is anomalous. This is interesting, because 
the field          has precisely the quantum numbers of the neutral pion     .

14
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In fact, we are going to see how the existence of this anomaly is the way to understand the 
electromagnetic decay of the pion, which is the dominant channel despite the 
Sutherland-Veltman suppression.



Due to the dynamics of QCD, the axial symmetry SU(2)A is spontaneously broken by quark 
condensates
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The three pions π±, π0 are the (pseudo)Goldstone bosons associated with this χSB. By the 
Goldstone theorem his means that 

Moreover, taking the divergence here we have

This means that the (canonically normalized) interpolating field for the neutral pion is 
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Using the LSZ formula, we can compute the physical amplitude for                   
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Therefore J3µA is anomalous.
The anomaly in the axial vector current J3µA has important physical consequence.
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by

"0
1
2
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The isospin quantum numbers of "0 are those of J3µA . In fact, the correspondence
goes even further. The divergence of the axial vector current µJ3µA has precisely the
same quantum numbers as the pion. This means that, properly normalized, it can be
identified as the operator creating a pion "0 out of the vacuum

"0 µJ3µA 0 . (9.56)

This leads to the physical interpretation of the triangle diagram (9.49) with J3µA as
the one loop contribution to the decay of a neutral pion into two photons
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This is an interesting piece of physics. In 1967 Sutherland and Veltman [7] pre-
sented a calculation, using current algebra techniques, according to which the decay
of the pion into two photons should be suppressed. This however contradicted the
experimental evidence showing the existence of such a decay. The way out to this
paradox, as pointed out in [3], is the axial anomaly. What happens is that the cur-
rent algebra analysis overlooks the ambiguities associated with the regularization
of divergences in quantum field theory. A QED evaluation of the triangle diagram
leads to a divergent integral that has to be regularized. It is in this process that the
Adler-Bell-Jackiw axial anomaly appears resulting in a nonvanishing value for the
"0 2# amplitude5.

5 An early computation of the triangle diagram for the electromagnetic decay of the pion was made
by Steinberger in [4].

Evaluating the amplitude in the soft pion limit
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Nonperturbative physics from anomalies

In theories whose spectrum changes with the scale (such a QCD), the matching of 
anomalies between the high- and low-energy theories provide nontrivial nonperturbative 
information.

Let us take a gauge theory with massless fermions confining below certain energy scale Λ 
and with a nonanomalous global symmetry group G with generators 
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Below Λ, the theory will contain a number of composite massless fermions transforming in 
some representation of the global group G
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We gauge now the global group G by adding a new set of nonabelian gauge field             with 
the coupling
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If, however,

the “new” gauge symmetry will be anomalous. 

To prevent this, we add new fermions coupling only to Bμ that cancel this anomaly. Since we 
can take the coupling g’ as small as we like, these spectator fermions do not modify the 
dynamics of the original gauge theory! 
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This cancellation of the anomaly should work both in the unconfined and confined theories.
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Since the spectator fermions are weakly coupled to the original gauge theory, they 
have the same contribution in the UV and the IR.  Thus, we arrive at  ‘t Hooft’s 
anomaly matching condition

Gerard ‘t Hooft
(b. 1946)
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This identity is still true in the limit               in which all spectators fermions decouple. 
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To see the power of this matching condition, we look to a couple of examples:

QCD with Nf = 2: The global symmetry group is                                   
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At high energies, the fermionic spectrum is composed by the massless quarks u and d [we 
use the notation (rL,rR)B]. The anomalous triangles are
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At low energies, there are two possibilities:

The global group                                      remains unbroken and we have massless protons 
and neutrons
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The global symmetry is spontaneously broken to the diagonal group                     . protons 
and neutrons are massive and we have three Goldstone bosons contributing to the pole.
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Using the IR interpretation of the anomaly, the pole at zero momentum is associated with 
the massless composite chiral fermions (its residue matches the UV anomaly).

The axial current interpolates between the vacuum and the Goldstone boson, and the IR 
pole is associated with the propagation of this massless state (equivalently, the delta function 
in the imaginary part)
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!µ "#$%&' 0 (2.122)

to write

p q#µ$%& p& #$%&' pµ p&q' #µ%&' p$ p&q' #µ$&' p% p&q' ,

p q#µ$%&q& #$%&'qµ p&q' #µ%&'q$ p&q' #µ$&'q% p&q' . (2.123)

We use these results in Eq. (2.121) to arrive at the following expression of the
physical amplitude

0 JµA 0 p,q A p q µ f3 p,q #$%&' p&q'A $ p A % q . (2.124)

In the massless fermion limit, the function f3 p,q has the value

lim
m 0

f3 p,q
ie2

2(2
1

p q 2 , (2.125)

so the final expression for the amplitude is

lim
m 0

0 JµA 0 p,q A

ie2

2(2
p q µ

p q 2 #$%&' p
&q'A $ p A % q . (2.126)

We observe the existence of a pole at momentum p q 0. This is crucial for
the axial anomaly: the contraction of (2.126) with p q µ cancels this pole and
retrieves the ABJ anomaly (2.39).
What we see here is that the axial anomaly has two faces. At the level of the

divergence of the axial-vector current it emerges from the need of fixing the ultra-
violet ambiguities associated with the triangle diagram in a way compatible with
gauge invariance. If instead of looking at the divergence of the axial-vector current
we compute the expectation value of the current itself what we find is an infrared
pole whose residue is given by the anomaly. This infrared sensitivity of the ampli-
tude 0 jµA 0 p,q A is regulated by a finite value of the fermionmass acts. Keeping
it finite, m 0, results in the pole being replaced by a resonance at low momentum.
Physically, the presence of the pole indicates the existence of an intermediate

massless state k;) created by the action of the vector-axial current on the vacuum.
Due to the presence of the #-tensor, it has to be a pseudoscalar state coupling to two
photons. Diagrammatically (k p q),

kµ

A q

A p

0 JµA 0 k;)
i
k2

k;) p,q A . (2.127)

Using the Poincaré invariance of the vacuum, the state k,) can be normalized as
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In the case of QCD with two flavors, the matching of anomalies cannot distinguish 
between massless composites and spontaneous chiral symmetry breaking.

QCD with Nf = 3: Now, the global symmetry group is SU(3)L × SU(3)R × U(1)B.

At high energies we have three massless quarks (u, d, and s). The potentially anomalous 
diagrams are now 

qL:

qR:
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At low energies there is the octet of composite fermions (p, n, Σ+, Σ−-, Σ0, Λ, Ξ0, Ξ−). If they 
are massless, their contribution to the anomaly does not match the result for the high 
energy theory. For example
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Since the anomalies do not match, the bound state fermions cannot remain massless and  
SU(3)A has to be spontaneously broken. We conclude that for Nf = 3 chiral symmetry 
breaking takes place. 

The resulting massless Goldstone bosons are responsible for the singularities at zero 
momentum.

‘t Hooft anomaly matching allows to extract a very nonperturbative piece of information 
from purely algebraic arguments. This tool is very useful in analyzing a wide class of theories.
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Constraints from anomaly cancellation

We have seen how in chiral gauge theories the absence of gauge anomalies are 
determined by the condition

190 9 Anomalies

(9.60)

where j Aµ
V and j Aµ

A are given by

j Aµ
V =

N+∑

i=1

ψ
i
+τ A

+γ µψ i
+ +

N−∑

j=1

ψ
j
−τ A

−γ µψ
j
−,

j Aµ
A =

N+∑

i=1

ψ
i
+τ A

+γ µψ i
+ −

N−∑

i=1

ψ
j
−τ A

−γ µψ
j
−. (9.61)

Luckily, we do not have to compute the whole diagram in order to find an anomaly
cancellation condition. It is enough if we calculate the overall group theoretical factor.
In the case of the diagram in Eq. (9.60) for each fermion species running in the loop
this factor is equal to

Tr
[
τ A

i,±{τ B
i,±, τC

i,±}
]
, (9.62)

where the sign ± corresponds respectively to the generators of the representations of
the gauge group for the left and right-handed fermions. Hence, the anomaly cancel-
lation condition reads

N+∑

i=1

Tr
[
τ A

i,+{τ B
i,+, τC

i,+}
]

−
N−∑

j=1

Tr
[
τ A

j,−{τ B
j,−, τC

j,−}
]

= 0. (9.63)

Knowing this we can proceed to check the anomaly cancellation in the standard
model SU(3)× SU(2)× U(1)Y . Left handed fermions (both leptons and quarks) trans-
form as doublets with respect to the SU(2) factor whereas the right-handed compo-
nents are singlets. The charge with respect to the U(1)Y part, the weak hypercharge
Y, is determined by the Gell-Mann–Nishijima formula

Q = T3 + Y, (9.64)

where Q is the electric charge of the corresponding particle and T3 is the eigenvalue
with respect to the third generator of the SU(2) group in the corresponding represen-
tation: T3 = 1

2σ3 for the doublets and T3 = 0 for the singlets. For the first family of
quarks (u, d) and leptons (e, ve) we have the following field content

quarks:
(

ui

di

)

L , 1
6

ui
R, 2

3
di

R,− 1
3

leptons:
(

ve
e

)

L ,− 1
2

eR,−1 (9.65)

This provides a nontrivial constraint on the matter content and group representations of a 
theory and it is a useful tool in model building since it selects both matter content and 
group representations.
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Here we analyze two cases:

The standard model

Minimal supersymmetric standard model
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the matter content of the theory is 
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where i = 1, 2, 3 labels the color quantum number and the subscript indicates the
value of the weak hypercharge Y. Denoting the representations of SU(3)× SU(2)
× U(1)Y by (nc, nw)Y , with nc and nw the representations of SU(3) and SU(2)
respectively and Y the hypercharge, the matter content of the standard model consists
of a three family replication of the representations

left-handed fermions: (3, 2)L
1
6

(1, 2)L
− 1

2

right-handed fermions: (3, 1)R
2
3

(3, 1)R
− 1

3
(1, 1)R

−1. (9.66)

In computing the triangle diagram we have 10 possibilities depending on which
factor of the gauge group SU(3)× SU(2)× U(1)Y appears in each vertex:

SU(3)3 SU(2)3 U(1)3

SU(3)2 SU(2) SU(2)2 U(1)

SU(3)2 U(1) SU(2) U(1)2

SU(3) SU(2)2

SU(3) SU(2) U(1)

SU(3) U(1)2

It is easy to verify that some of them do not give rise to anomalies. For example, the
anomaly for the SU(3)3 case cancels because left and right-handed quarks transform
in the same representation. In the case of SU(2)3 the cancellation happens term by
term using the Pauli matrices identity σ jσk = δ jk + iε jk$σ$ leading to

Tr
[
σi {σ j , σk}

]
= 2 (Trσi ) δ jk = 0. (9.67)

The hardest condition comes from the three U(1)’s. In this case the absence of
anomalies within a single family is guaranteed by the nontrivial identity
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(
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4

)
+

(
3
4

)
= 0. (9.68)

It is remarkable that the anomaly exactly cancels between leptons and quarks. Notice
that this result holds even if a right-handed sterile neutrino is added since such a
particle is a singlet under the whole standard model gauge group and therefore does
not contribute to the triangle diagram. We see how the matter content of the standard
model conspires to yield a consistent quantum field theory.
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The standard model: We only have to care about the chiral fermions in the standard 
model (i.e. leptons and quarks). Denoting their representations of SU(3) × SU(2) × U(1)Y by 
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Symbolically, the ten anomaly coefficients to compute are:
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Symbolically, the ten anomaly coefficients to compute are:
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Symbolically, the ten anomaly coefficients to compute are:
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Symbolically, the ten anomaly coefficients to compute are:
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Hence, all pure gauge anomalies cancel in the standard model within each family!

However, we still have to deal with mixed gauge-gravitational anomalies:
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The strongest condition comes from:
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Hence, all pure gauge anomalies cancel in the standard model within each family!

However, we still have to deal with mixed gauge-gravitational anomalies:
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quarks leptons

The strongest condition comes from:
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Hence, all pure gauge anomalies cancel in the standard model within each family!

However, we still have to deal with mixed gauge-gravitational anomalies:
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quarks leptons

The strongest condition comes from:
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Thus, all pure and mixed gauge anomalies cancel and the standard model is anomaly free!

This cancellation is very delicate and severely constraints any extension of the standard 
model. For example, the addition of a sterile right-handed neutrino is innocuous, since it 
does not contribute to the triangle:

right-handed neutrino:
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We can also add any number of extra families. An extra lepton (quark), however, makes the 
theory inconsistent, e.g.

9.4 Gauge Anomalies 191

where i = 1, 2, 3 labels the color quantum number and the subscript indicates the
value of the weak hypercharge Y. Denoting the representations of SU(3)× SU(2)
× U(1)Y by (nc, nw)Y , with nc and nw the representations of SU(3) and SU(2)
respectively and Y the hypercharge, the matter content of the standard model consists
of a three family replication of the representations

left-handed fermions: (3, 2)L
1
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− 1

2

right-handed fermions: (3, 1)R
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In computing the triangle diagram we have 10 possibilities depending on which
factor of the gauge group SU(3)× SU(2)× U(1)Y appears in each vertex:

SU(3)3 SU(2)3 U(1)3

SU(3)2 SU(2) SU(2)2 U(1)

SU(3)2 U(1) SU(2) U(1)2

SU(3) SU(2)2

SU(3) SU(2) U(1)

SU(3) U(1)2

It is easy to verify that some of them do not give rise to anomalies. For example, the
anomaly for the SU(3)3 case cancels because left and right-handed quarks transform
in the same representation. In the case of SU(2)3 the cancellation happens term by
term using the Pauli matrices identity σ jσk = δ jk + iε jk$σ$ leading to

Tr
[
σi {σ j , σk}

]
= 2 (Trσi ) δ jk = 0. (9.67)

The hardest condition comes from the three U(1)’s. In this case the absence of
anomalies within a single family is guaranteed by the nontrivial identity

∑
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It is remarkable that the anomaly exactly cancels between leptons and quarks. Notice
that this result holds even if a right-handed sterile neutrino is added since such a
particle is a singlet under the whole standard model gauge group and therefore does
not contribute to the triangle diagram. We see how the matter content of the standard
model conspires to yield a consistent quantum field theory.
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Flashback!

We have seen how quarks and leptons are needed to cancel the anomalies associated with the 
SU(2) × U(1)Y sector of the standard model. This illustrate the idea of “spectator fermions” 
introduced when talking about anomaly matching.

From the QCD point of view SU(2)×U(1)Y can be seen as a global symmetry that is gauged by 
coupling quarks to the electroweak gauge bosons. 

This theory, by itself, is anomalous:
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To cancel the anomaly, we add the spectator fermions, i.e. the standard model leptons!

These new fermions, however, do not modify the strongly coupled IR dynamics of the quarks.
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MSSM: let us consider now the minimal supersymmetric extension of the standard model. 
The spectrum now is doubled

gauge bosons (         ) gauginos (          )

quarks (           ) squarks (          )

leptons (          ) sleptons (          )

Higgs (          ) Higgsino (          )
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We have learned that all anomalies cancel in the standard model. So we only have to worry 
about the new chiral fermions:

gauginos:

Higgsino:
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since the adjoint representation is real 
there are no anomalies!

Thus, the MSSM with a single 
Higgsino is  anomalous! 
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Solving this requres the addition of a second Higgs doublet with opposite hypercharge. 
Thus, the MSSM has two Higgsinos with the same helicity
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and all anomalies cancel (remember that adding the second Higgs scalar doublet does not 
contribute to the SM anomaly!) 
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Incidentally, the second Higgsino also cancels Witten’s global anomaly (a theory with an 
odd number of SU(2) doublets is anomalous under “large” gauge transformations)

as well as the mixed gauge-gravitational anomaly
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Functional methods

Here we have studied anomalies from a diagrammatic point of view. Functional methods, 
however, offer a very powerful tool to compute anomalies in arbitrary dimensions.

Given a chiral fermion coupled to a gauge field, we define the (Euclidean) fermion 
effective action

The gauge anomaly is determined by the gauge variation of the effective action
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The real part of the effective action is always gauge invariant, so the anomaly can only occur 
in its complex part.

Some topics left out of this lectures

The anomaly is associated with the existence of a nontrivial transformation of the 
functional integration measure.
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Gravitational anomalies

When chiral fermions are coupled to gravity they may produce anomalies in the 
conservation of the energy-momentum tensor
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When can we expect to have pure gravitational anomalies? To answer the question we have 
to study two different cases:

D = 4k:

D = 4k+2:

Particles and antiparticles have opposite helicity. Since gravity does not distinguish 
between them, the gravitational coupling of the fermions “looks” vector-like

no gravitational anomalies

Now, particles and antiparticles have the same helicity. The gravitational coupling is 
chiral and anomalies might arise.

This includes two important cases: 
D = 2

D = 10 Green-Schwarz 
mechanism
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Other fields such as gravitinos and self-dual antisymmetric tensors also contribute.
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The topological theory of anomalies:

Axial, gauge, and gravitational anomalies in D dimensions can be understood in terms of 
the topology of the gauge bundle that defines the gauge theory.

 The global axial anomaly is given by the index of the Dirac operator and can be 
computed using the Atiyah-Singer index theorem.

 Gauge anomalies in 2n dimensions are related to the index of a Dirac operators 
defined in 2n+2 dimensions.

The anomaly can be computed then using the appropriate index theorem.

Global anomalies

A SU(2) chiral gauge theory can be anomalous with respect to gauge transformations not 
in the connected component of the identity. If this anomaly is not cancelled, all 
correlation functions vanish

Witten showed that the theory is anomalous if the number of SU(2) doublets is odd (not 
the case of the standard model!).



Thank you
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