

LEPTON FLAVOUR VIOLATION IN THE SIMPLEST LITTLE HIGGS MODEL

Andrea Lami Director: Jorge Portoles Tae 2013 Benasque

WHY THE LFV? ElectroWeak Symmetry Breaking and Higgs mass

WHY THE LFV? ElectroWeak Symmetry Breaking and Higgs mass Neutrinos have a masses

WHY THE LFV? ElectroWeak Symmetry Breaking and Higgs mass Neutrinos have a masses The Leptonic channels are cleaner than Quarks channels

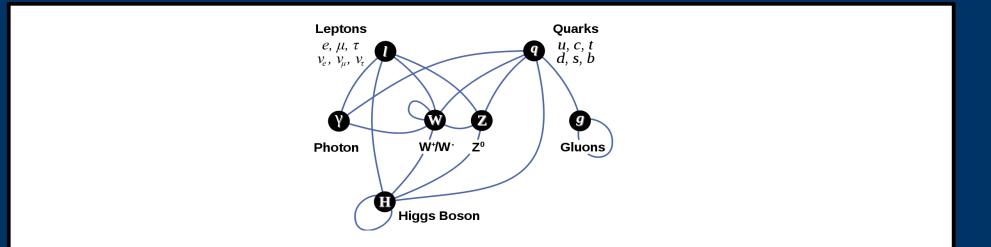
$\tau \longrightarrow \mu + Hadrons$

WHY THE LFV?

- ElectroWeak Symmetry Breaking and Higgs mass
 - Neutrinos have a masses
 - The Leptonic channels are cleaner than Quarks channels

WHICH MODEL?

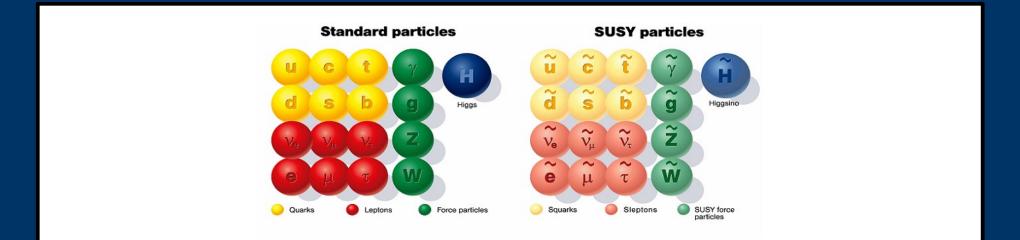
We have to search beyond the Standard Model



WHICH MODEL?

We have to search beyond the Standard Model

The choices



WHICH MODEL?

 We have to search beyond the Standard Model

The choices

Composite Higgs

arXiv:1003.3251v J.R. Espinosa et all.

 The Higgs like effective field coming out from new strong dynamic above 1 TeV (SILH)

arXiv:1003.3251v J.R. Espinosa et all.

 The Higgs like effective field coming out from new strong dynamic above 1 TeV (SILH)

A small part of the coupling is Weak

arXiv:1003.3251v J.R. Espinosa et all.

 The Higgs like effective field coming out from new strong dynamic above 1 TeV (SILH)

A small part of the coupling is Weak

 It has recently been obtained SILH with pseudoscalar Higgs

arXiv:1003.3251v J.R. Espinosa et all.

Little Higgs Theories:

Model	Global group	Gauge group	Туре	Comments
Minimal moose [7]	SU(3) ⁸ /SU(3) ⁴	$SU(3) \times SU(2) \times U(1)$	t.s.	can contain extra light
				triplet and singlet scalars
Minimal moose	$SO(5)^{8}/SO(5)^{4}$	$SO(5) \times SU(2) \times U(1)$	t.s.	less constrained from electroweak
with $SU(2)_C$ [8]				precision tests (EWPT)
Moose with	$SO(5)^{10}/SO(5)^5$	$(SU(2) \times U(1))^3$	t.s.	very few constraints from EWPT, larg
T-parity [9]				spectrum, complicated plaquettes
Littlest Higgs [6]	SU(5)/SO(5)	$(SU(2) \times U(1))^2$	p.g.g	Minimal field content
SU(6)/Sp(6) model	SU(6)/Sp(6)	$(SU(2)\times U(1))^2$	p.g.g	Small field content, contains a
[10]				heavy vector-like quark doublet
Littlest Higgs	SO(9)/	$SU(2)^3 \times U(1)$	p.g.g.	less constraints from EWPT
with $SU(2)_{C}$ [11]	$(SO(5) \times SO(4))$			
Littlest Higgs	SU(5)/SO(5)	$(SU(2) \times U(1))^2$	p.g.g	Minimal field content,
with T-parity [12]				very few constraints from EWPT
SU(3) simple group	$(SU(3) \times U(1))^{2/2}$	$SU(3) \times U(1)$	s.g.g.	no large quartic
[13, 14]	$(SU(2) \times U(1))^2$			
SU(4) simple group	$(SU(4) \times U(1))^{4/2}$	$SU(4) \times U(1)$	s.g.g.	Two Higgs doublets, large quartic
[13]	$(SU(3) \times U(1))^4$			
SU(9)/SU(8)	SU(9)/SU(8)	SU(3)×U(1)	s.g.g.	Two Higgs doublets, large quartic
simple group [15]				

arXiv: 1101.2936 Àguila et all.

 Solve the little hierarchy problem without the T-parity

arXiv: 1101.2936 Àguila et all.

 Solve the little hierarchy problem without the T-parity

E.W. Sector is in a group SU(3)xU(1)

arXiv: 1101.2936 Àguila et all.

 Solve the little hierarchy problem without the T-parity

E.W. Sector is in a group SU(3)xU(1)

 LHT and SLH are equivalent but the last have new sources of LFV

arXiv: 1101.2936 Àguila et all.

Every lepton family consists of an SU(3) left-handed triplet and 2 right-handed singlets

$$L_m^T = (\nu_L, \ell_L, \mathrm{i}N_L)_m, \quad \ell_{Rm}, \quad N_{Rm}$$

arXiv: 1101.2936 Àguila et all.

For the quarks we have 2 embedding

$$L_m^T = (\nu_L, \ell_L, \mathrm{i}N_L)_m, \quad \ell_{Rm}, \quad N_{Rm}$$

 $Q_m^T = (u_L, d_L, iU_L)_m, \quad u_{Rm}, \quad d_{Rm}, \quad U_{Rm}$

arXiv: 1101.2936 Àguila et all.

For the quarks we have 2 embedding

$$L_m^T = (\nu_L, \ell_L, iN_L)_m, \quad \ell_{Rm}, \quad N_{Rm}$$
$$Q_1^T = (d_L, -u_L, iD_L), \quad d_R, \quad u_R, \quad D_R$$
$$Q_2^T = (s_L, -c_L, iS_L), \quad s_R, \quad c_R, \quad S_R$$
$$Q_3^T = (t_L, b_L, iT_L), \quad t_R, \quad b_R, \quad T_R$$

arXiv: 1101.2936 Àguila et all.

For the quarks we have 2 embedding

	Universal embedding (U)											
Fermion	$Q_{1,2}$	Q_3	u_{Rm}, U_{Rm}	d_{Rm}	L_m	N_{Rm}	e_{Rm}					
Q_x charge	1/3	1/3	2/3	-1/3	-1/3	0	-1					
SU(3) rep.	3	3	1	1	3	1	1					
Anomaly-free embedding (AF)												
Fermion	$Q_{1,2}$	Q_3	u_{Rm}, T_{Rm}	d_{Rm}, D_{Rm}, S_{Rm}	L_m	N_{Rm}	e_{Rm}					
Q_x charge	0	1/3	2/3	-1/3	-1/3	0	-1					
SU(3) rep.	$\bar{3}$	3	1	1	3	1	1					

arXiv: 1101.2936 Àguila et all.

Other basic fields and expansions

$$D_{\mu} = \partial_{\mu} - igA_{\mu}^{a}T_{a} + ig_{x}Q_{x}B_{\mu}^{x}, \qquad g_{x} = \frac{gt_{W}}{\sqrt{1 - t_{W}^{2}/3}} \qquad A^{a}T_{a} = \frac{A^{3}}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \frac{A^{8}}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} + \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & W^{+} & Y^{0} \\ W^{-} & 0 & X^{-} \\ Y^{0^{\dagger}} & X^{+} & 0 \end{pmatrix}$$

$$\Phi_{1} = \exp\left(\frac{i\Theta'}{f}\right) \exp\left(\frac{it_{\beta}\Theta}{f}\right) \begin{pmatrix} 0 \\ 0 \\ fc_{\beta} \end{pmatrix} \qquad \qquad \Theta = \begin{pmatrix} 0 & 0 & h^{0} \\ 0 & 0 & h^{-} \\ h^{0^{\dagger}} & h^{+} & 0 \end{pmatrix}$$

$$\Phi_{2} = \exp\left(\frac{i\Theta'}{f}\right) \exp\left(-\frac{i\Theta}{t_{\beta}f}\right) \begin{pmatrix} 0 \\ 0 \\ fs_{\beta} \end{pmatrix} \qquad \qquad h^{0} = (v + H)/\sqrt{2} - i\chi \text{ and } h^{\pm} = -\phi^{\pm}.$$

arXiv: 1101.2936 Àguila et all.

Scalar Lagrangian and physical states

$$\mathcal{L}_{\Phi} = |D_{\mu}\Phi_{1}|^{2} + |D_{\mu}\Phi_{2}|^{2} \qquad \qquad X^{\pm} \to X^{\pm} \pm \frac{\mathrm{i}v^{3}}{3\sqrt{2}f^{3}} \left(\frac{c_{\beta}^{3}}{s_{\beta}} - \frac{s_{\beta}^{3}}{c_{\beta}}\right) X^{\pm}$$
$$\phi^{\pm} \to \chi^{\pm} \pm \frac{\mathrm{i}v^{3}}{3\sqrt{2}f^{3}} \left(\frac{c_{\beta}^{3}}{s_{\beta}} - \frac{s_{\beta}^{3}}{c_{\beta}}\right) W^{\pm}$$
$$\phi^{\pm} \to \mp \mathrm{i} \left(1 + \frac{v^{2}}{12f^{2}} \left(\frac{c_{\beta}^{4}}{s_{\beta}^{2}} + \frac{s_{\beta}^{4}}{c_{\beta}^{2}}\right)\right) \phi^{\pm}$$

arXiv: 1101.2936 Àguila et all.

Scalar Lagrangian and physical states

$$\mathcal{L}_{\Phi} = |D_{\mu}\Phi_1|^2 + |D_{\mu}\Phi_2|^2$$

$$\begin{pmatrix} A^{3} \\ A^{8} \\ B_{x} \end{pmatrix} = \begin{pmatrix} 0 & c_{W} & -s_{W} \\ \frac{1}{\sqrt{3}}\sqrt{3-t_{W}^{2}} & \frac{s_{W}^{2}}{\sqrt{3}c_{W}} & \frac{s_{W}}{\sqrt{3}} \\ -\frac{t_{W}}{\sqrt{3}} & \frac{s_{W}}{\sqrt{3}}\sqrt{3-t_{W}^{2}} & \frac{c_{W}}{\sqrt{3}}\sqrt{3-t_{W}^{2}} \end{pmatrix} \begin{pmatrix} Z' \\ Z \\ A \end{pmatrix}$$

$$\begin{aligned} Z' \to Z' + \delta_{Z}Z, \\ Z \to Z - \delta_{Z}Z', \\ \delta_{Z} = -\frac{(1-t_{W}^{2})\sqrt{3-t_{W}^{2}}}{8c_{W}} \frac{v^{2}}{f^{2}} \end{aligned}$$

arXiv: 1101.2936 Àguila et all.

Vector and Yukawa Lagrangians

$$\mathcal{L}_{V} = -\frac{1}{2} \operatorname{Tr} \{ \widetilde{G}_{\mu\nu} \widetilde{G}^{\mu\nu} \} - \frac{1}{4} B_{x}^{\mu\nu} B_{x\,\mu\nu} , \qquad \widetilde{G}_{\mu\nu} = \frac{\mathrm{i}}{g} [D_{\mu}, D_{\nu}]$$
$$\mathcal{L}_{Y} \supset \mathrm{i} \lambda_{N}^{m} \overline{N}_{Rm} \Phi_{2}^{\dagger} L_{m} + \frac{\mathrm{i} \lambda_{\ell}^{mn}}{\Lambda} \overline{\ell}_{Rm} \epsilon_{ijk} \Phi_{1}^{i} \Phi_{2}^{j} L_{n}^{k} + \mathrm{h.c.}$$
$$\delta_{\nu} = -\frac{v}{\sqrt{2} f t_{\beta}} \qquad \left(\begin{array}{c} \nu_{L} \\ N_{L} \end{array} \right)_{m} \rightarrow \left[\left(\begin{array}{c} 1 - \frac{\delta_{\nu}^{2}}{2} & -\delta_{\nu} \\ \delta_{\nu} & 1 - \frac{\delta_{\nu}^{2}}{2} \end{array} \right) \left(\begin{array}{c} V_{\ell} \nu_{L} \\ N_{L} \end{array} \right) \right]_{m} \qquad \ell_{Lm} \rightarrow \left(V_{\ell} \ell_{L} \right)_{m} = V_{\ell}^{mi} \ell_{Li}$$

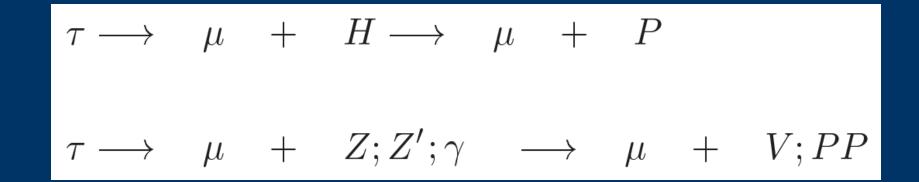
arXiv: 1101.2936 Àguila et all.

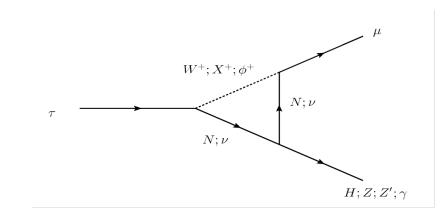
Fermion Lagrangian

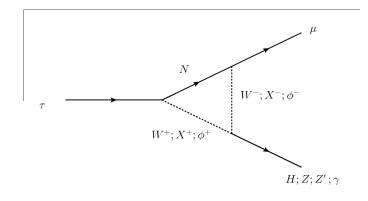
$$\mathcal{L}_F = \bar{\psi}_m \mathbf{i} \mathcal{D} \psi_m, \qquad \psi_m = \{L_m, \ell_{Rm}, N_{Rm}\}$$

Finally we can write the Feynman rules for the channels of our interest

OUR WORK







CONCLUSIONS

-All the amplitudes are finite UV

CONCLUSIONS

-All the amplitudes are finite UV

•We are calculating the amplitudes of LFV with the SLH model and after we'll study the hadronization with the chiral symmetry

CONCLUSIONS

-All the amplitudes are finite UV

•We are calculating the amplitudes of LFV with the SLH model and after we'll study the hadronization with the chiral symmetry

Then the parameters obtained should be compared with the results of treelevel hadronic processes

Muchas Gracias!