WIMP dark matter as radiative neutrino mass messenger

Joaquim Palacio 04/09/13

TAE - 2013

MultiDark

Multimessenger Approach for Dark Matter Detection

WIMP dark matter as radiative neutrino mass messenger

Joaquim Palacio 04/09/13

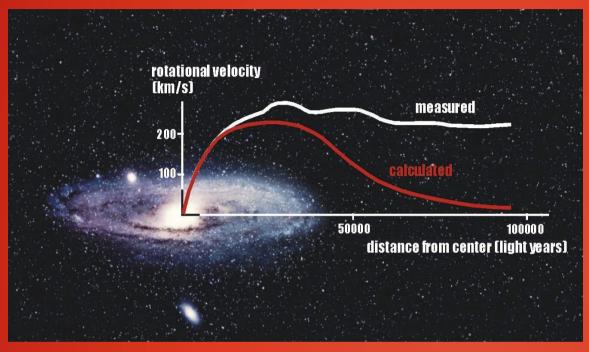
TAE - 2013

M. Hirsch, R.A. Lineros, S. Morisi, J. Palacio, N. Rojas, J.W.F. Valle. arXiv:1307.8134

Multimessenger Approach for Dark Matter Detection

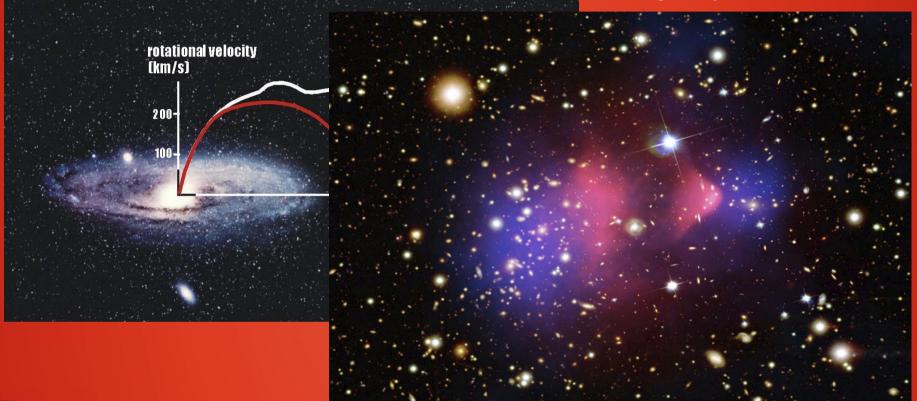
Outline

Dark Matter Evidences WIMP candidate (Radiative) Neutrino Mass Models Dark Matter & Neutrino Masses The Model Particle content Study of the Model **Detection prospects** Conclusions

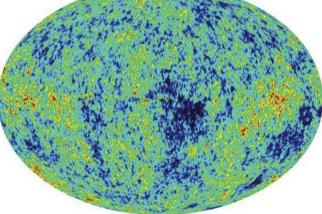


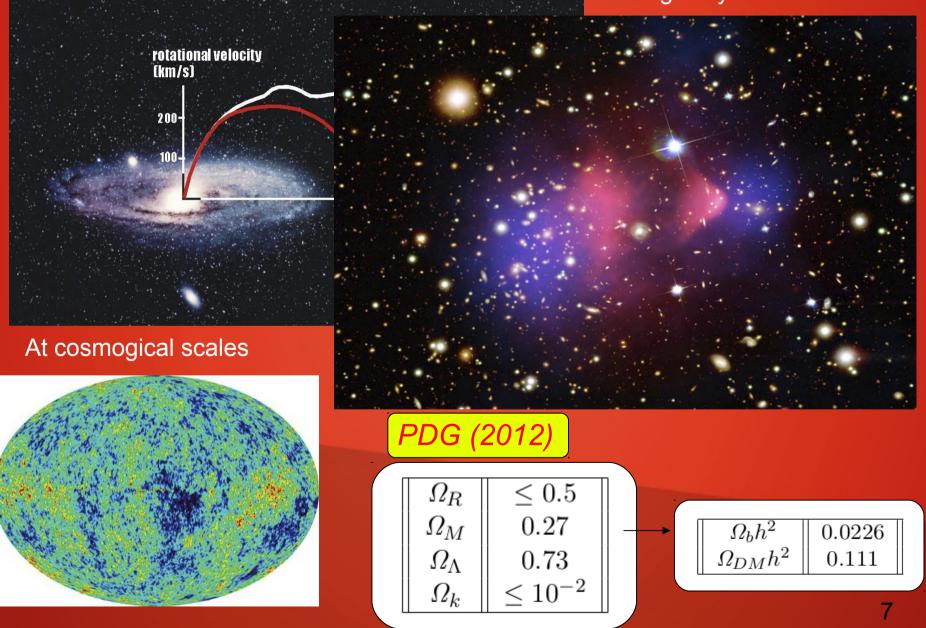
At galactic scales

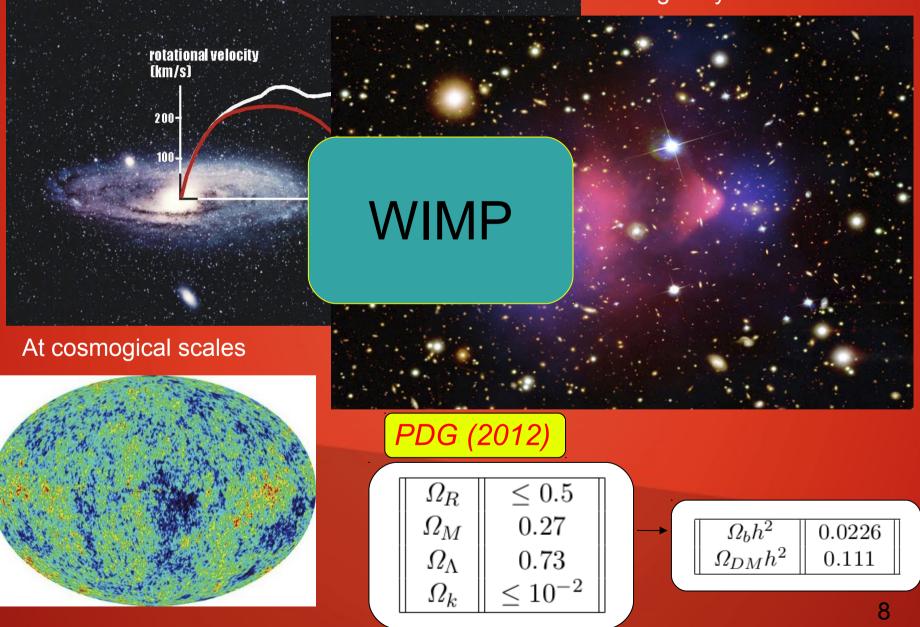
At galaxy cluster scales











WIMP candidate & Freeze Out

Try to solve the Boltzmann equation

$$\hat{L}[f] = \hat{C}[f]$$

Considering a FRW metric

$$\frac{dn}{dt} + 3\text{Hn} = -(n^2 - n_{eq}^2) < \sigma_A v >$$

3

Approximations:

-All species BUT ONE are in equilibrium

-Boltzmann distribution

-CP conservation

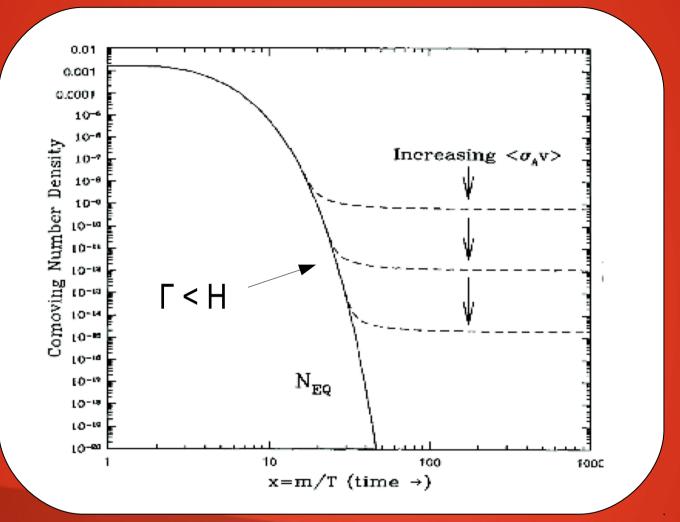
-Isoentropic expansion
$$\rightarrow Sa^{2} = Cte$$

-Small chemical potential $\rightarrow \mu << T$

$$\frac{x}{Y_{eq}}\frac{dY}{dx} = \frac{-\Gamma_A}{H} \left[\left(\frac{Y}{Y_{eq}} \right)^2 - 1 \right] \qquad \begin{array}{c} x = \frac{m}{T}; \quad Y = \frac{n}{s} \\ \Gamma_A = n_{eq} < \sigma_A v > \end{array}$$

 $\Omega_{DM} \propto m Y(\infty)_{T=0}$

WIMP candidate & Freeze Out



$$\Omega_{CDM}h^2 \approx 0.1 \frac{3 \cdot 10^{-26} cm^3 s^{-1}}{\langle \sigma v \rangle_{f.o.}}$$

FORER	0-T0R1	r o i	A-V	ALLE	
Phys.	Rev.	D	86,	073012	(2012)

parameter	best fit	1σ range	2σ range	3σ range
$\Delta m_{21}^2 \left[10^{-5} \mathrm{eV}^2 \right]$	7.62	7.43–7.81	7.27-8.01	7.12-8.20
$ \Delta m_{31}^2 [10^{-3} \text{eV}^2]$	2.55	2.46 - 2.61	2.38 - 2.68	2.31 - 2.74
$ \Delta m_{31} $ [10 eV]	2.43	2.37 - 2.50	2.29 - 2.58	2.21 - 2.64
$\sin^2 heta_{12}$	0.320	0.303-0.336	0.29–0.35	0.27-0.37
$\sin^2 heta_{23}$	$0.613 \ (0.427)^a$	0.400-0.461 & 0.573-0.635	0.38-0.66	0.36-0.68
511 023	0.600	0.569-0.626	0.39-0.65	0.37 - 0.67
$\sin^2 heta_{13}$	0.0246	0.0218 - 0.0275	0.019-0.030	0.017-0.033
511 013	0.0250	0.0223 - 0.0276	0.020-0.030	0.011 0.000
δ	0.80π	$0-2\pi$	$0-2\pi$	$0 - 2\pi$
v	-0.03π	0 2/1	0 21	0 2/

Effective dim 5 operator: Weinberg Operator

$$(\mathcal{O}_{ij}) = \frac{1}{\Lambda} L_{iL}^c \quad \widetilde{\phi}^* \widetilde{\phi}^\dagger L_{jL}$$

where $L_i = (\nu_e, e), (\nu_\mu, \mu), (\nu_\tau, \tau);$

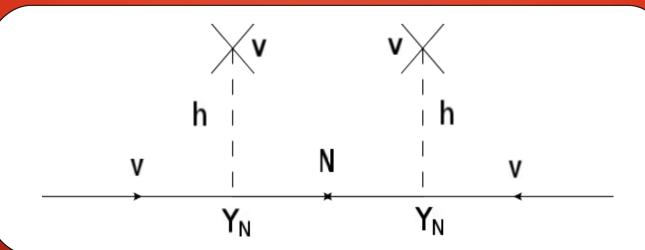
Effective dim 5 operator: Weinberg Operator

$$(\mathcal{O}_{ij}) = \frac{1}{\Lambda} L_{iL}^c \quad \widetilde{\phi}^* \widetilde{\phi}^\dagger L_{jL}$$

where $L_i = (\nu_e, e), (\nu_\mu, \mu), (\nu_\tau, \tau);$

	Field	Spin	SU(2)	Y
Type 1	Ν	1/2	1	0
Type 2	Δ	0	3	-2
Type 3	Σ	1/2	3	0

	Field	Spin	<u>SU(2)</u>	V	
Type 1	Ν	1/2	1	0	
Type 2	Δ	0	3	-2	
Type 3	Σ	1/2	3	0	

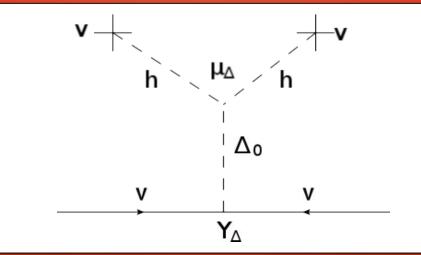


Effective dim 5 operator: Weinberg Operator

$$(\mathcal{O}_{ij}) = \frac{1}{\Lambda} L_{iL}^c \quad \widetilde{\phi}^* \widetilde{\phi}^\dagger L_{jL}$$

where $L_i = (\nu_e, e), (\nu_\mu, \mu), (\nu_\tau, \tau);$

	Field	Spin	SU(2)	Y	
Type 1	N	1/2	1	0	
Type 2	Δ	0	3	-2	
Type 3	Σ	1/2	3	0	

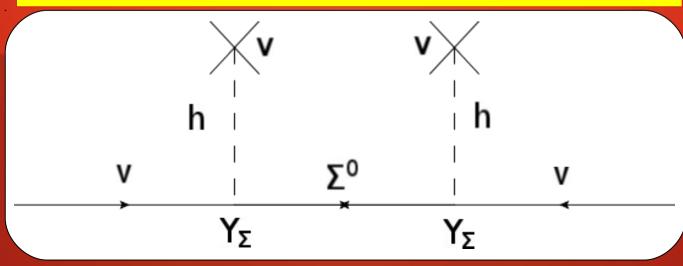


Effective dim 5 operator: Weinberg Operator

$$(\mathcal{O}_{ij}) = \frac{1}{\Lambda} L_{iL}^c \quad \widetilde{\phi}^* \widetilde{\phi}^\dagger L_{jL}$$

where $L_i = (\nu_e, e), (\nu_\mu, \mu), (\nu_\tau, \tau);$

	Field	Spin	SU(2)	Y	
Type 1	Ν	1/2	1	0	
Type 2	Δ	0	3	-2	
Type 3	Σ	1/2	3	0	



Effective dim 5 operator: Weinberg Operator

$$(\mathcal{O}_{ij}) = \frac{1}{\Lambda} L_{iL}^c \quad \widetilde{\phi}^* \widetilde{\phi}^\dagger L_{jL}$$

where $L_i = (\nu_e, e), (\nu_\mu, \mu), (\nu_\tau, \tau);$

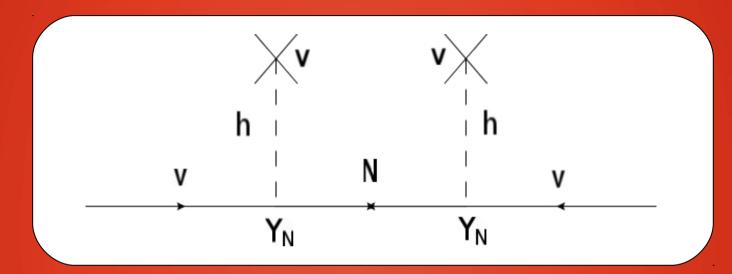
1

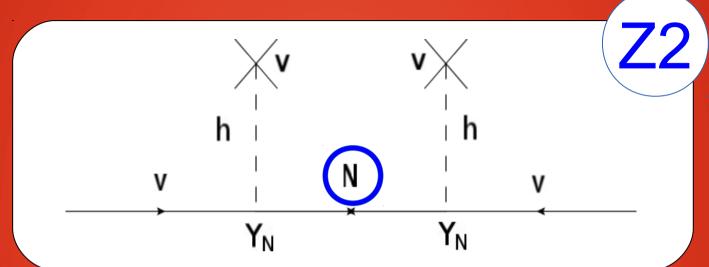
Extending the SM, 3 possible tree level Seesaw realizations,

	Field	Spin	SU(2)	Y
Type 1	Ν	1/2	1	0
Type 2	Δ	0	3	-2
Type 3	Σ	1/2	3	0

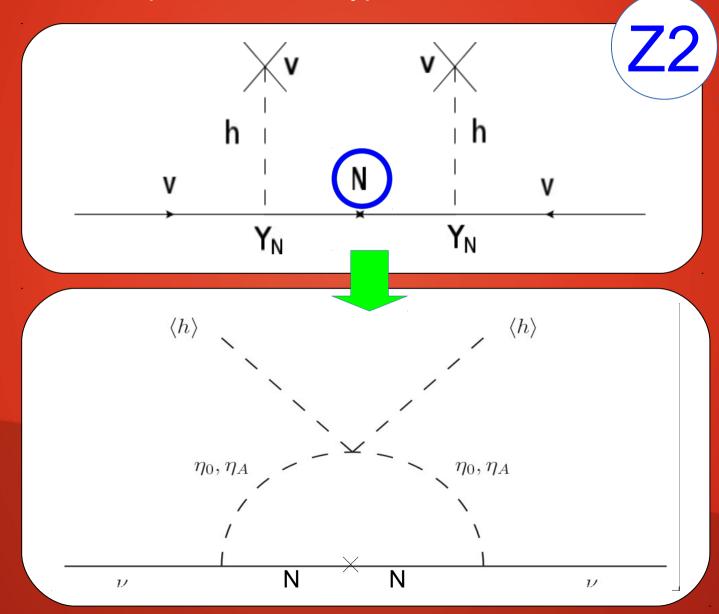
It was then realised that based on the same matter content, neutrino masses could arise at loop level, providing an interesting link between Dark Matter and Neutrino masses generating mechanism.

As an example, Radiative Type 1

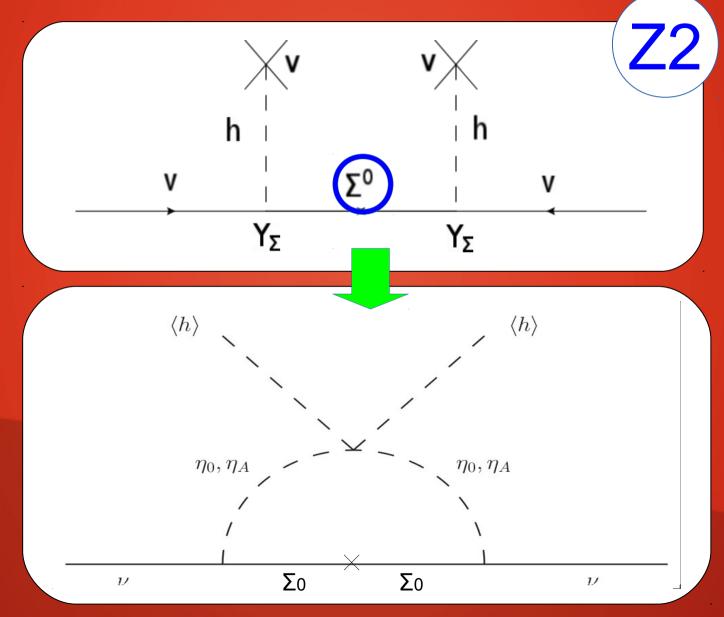




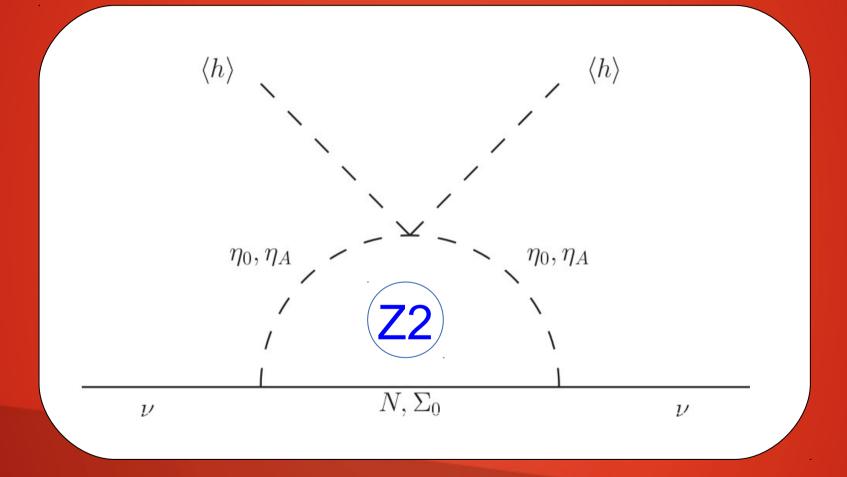
As an example, Radiative Type 1

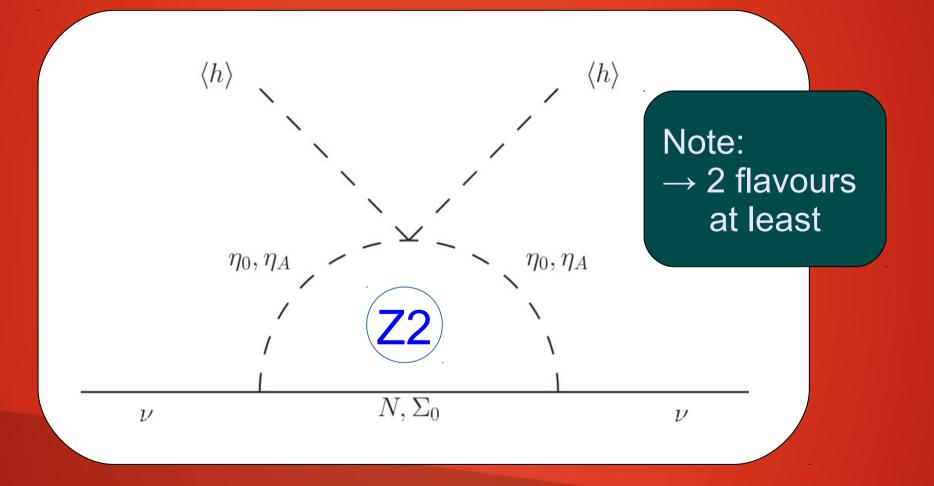


20

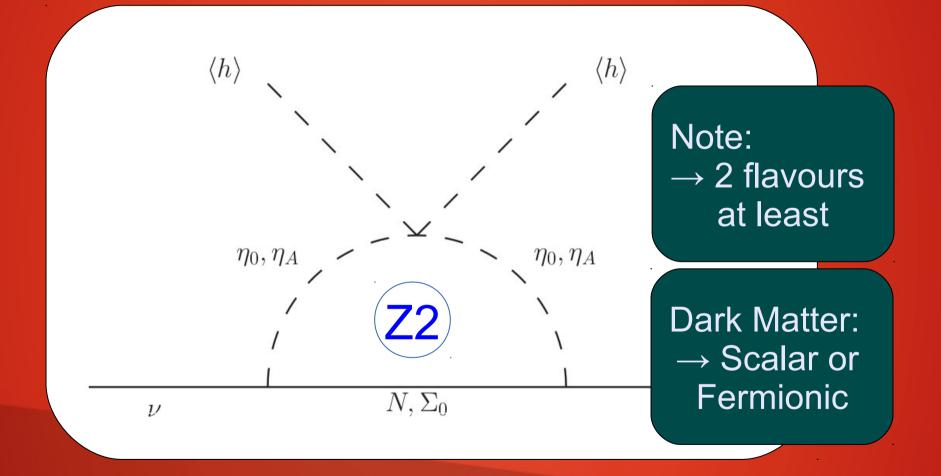


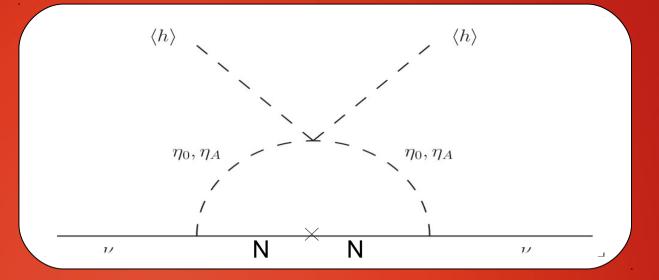
21





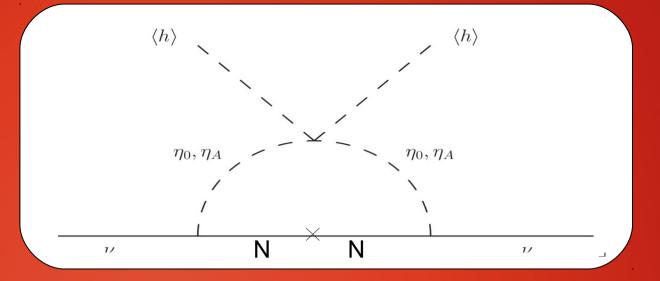
23





Scalar DM

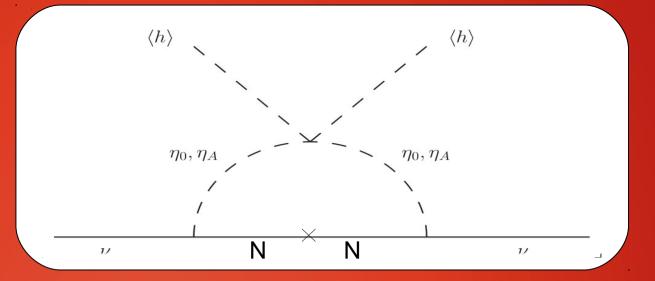
The phenomenology is very close to the inert doublet DM model. But the relation with neutrinos is not very strong.



Scalar DM

The phenomenology is very close to the inert doublet DM model. But the relation with neutrinos is not very strong.

Fermion DM Tightly related to neutrino masses.



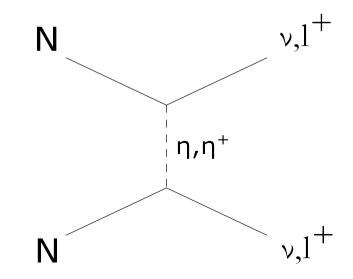
Scalar DM

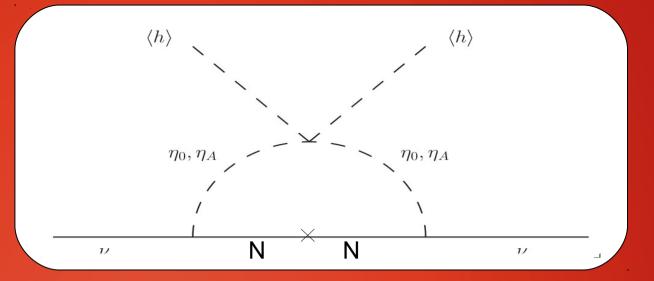
The phenomenology is very close to the inert doublet DM model. But the relation with neutrinos is not very strong.

Fermion DM

Tightly related to neutrino masses.

Relic density / Indirect searches



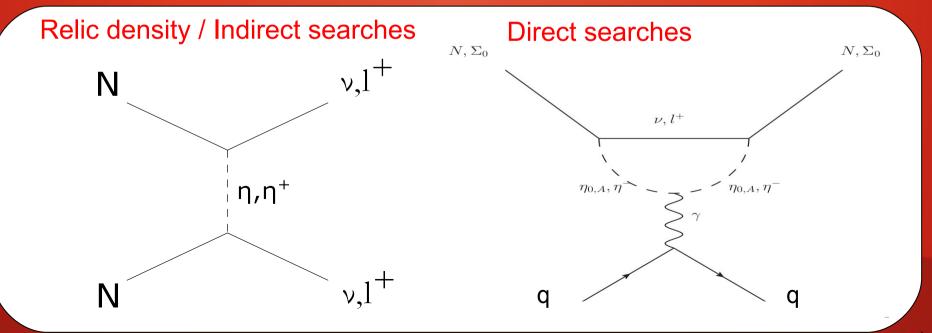


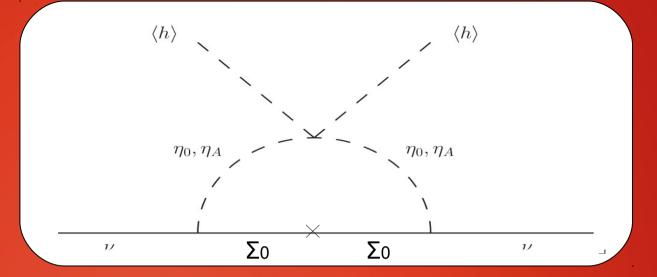
Scalar DM

The phenomenology is very close to the inert doublet DM model. But the relation with neutrinos is not very strong.

Fermion DM

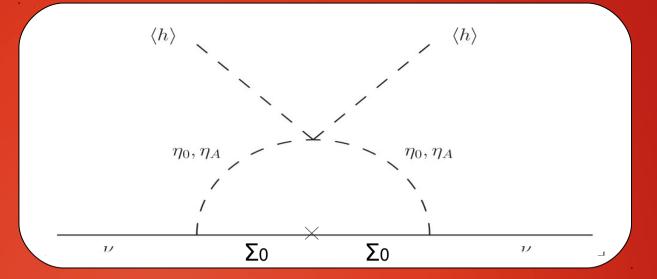
Tightly related to neutrino masses.





Scalar DM

Again the relations between DM and neutrinos is not very strong.

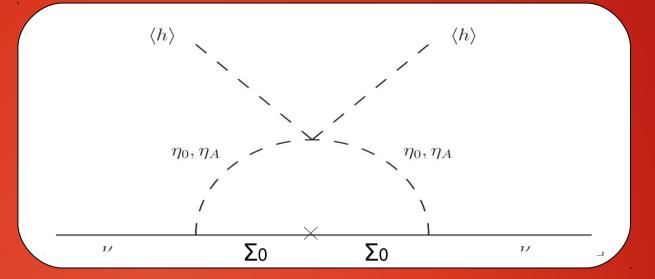


Scalar DM

Again the relations between DM and neutrinos is not very strong.

Fermion DM

Tightly related to neutrino masses and a richer phenomenology. Th DM mass appears at \sim 2.7 TeV.



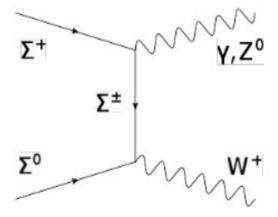
Scalar DM

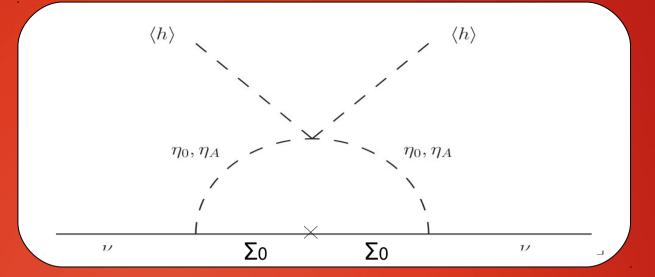
Again the relations between DM and neutrinos is not very strong.

Fermion DM

Tightly related to neutrino masses and a richer phenomenology. Th DM mass appears at \sim 2.7 TeV.

Relic density



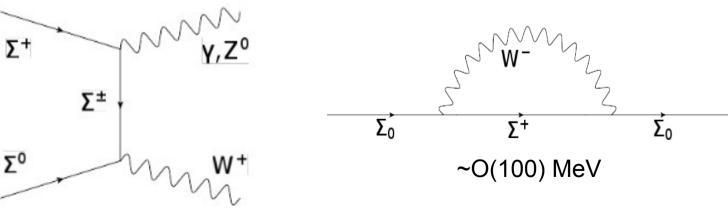


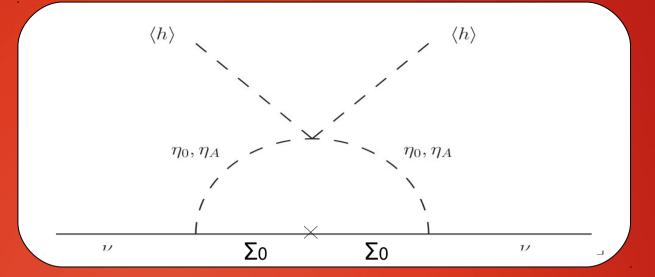
Scalar DM

Again the relations between DM and neutrinos is not very strong.

Fermion DM

Tightly related to neutrino masses and a richer phenomenology. Th DM mass appears at \sim 2.7 TeV.





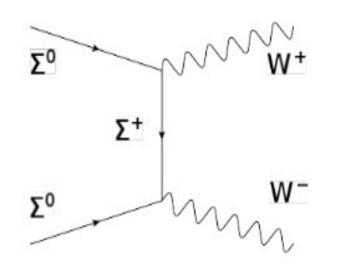
Scalar DM

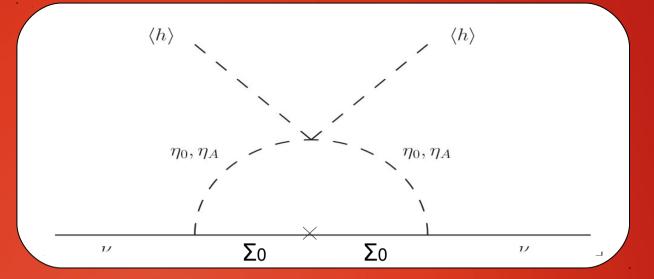
Again the relations between DM and neutrinos is not very strong.

Fermion DM

Tightly related to neutrino masses and a richer phenomenology. Th DM mass appears at \sim 2.7 TeV.

->Collider signals





Scalar DM

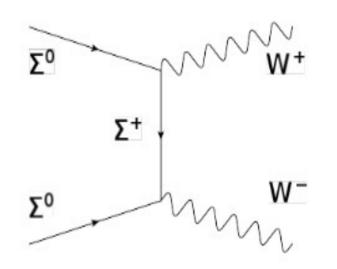
Again the relations between DM and neutrinos is not very strong.

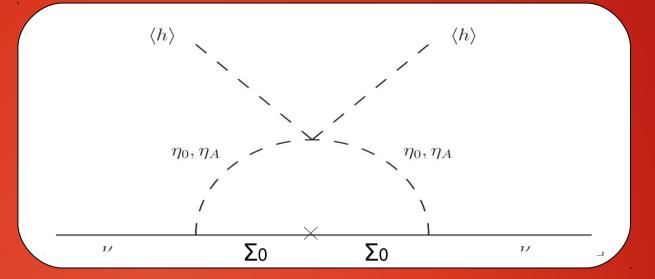
Fermion DM

Tightly related to neutrino masses and a richer phenomenology. Th DM mass appears at \sim 2.7 TeV.

->Collider signals

->Indirect searches signlas





Scalar DM

Again the relations between DM and neutrinos is not very strong.

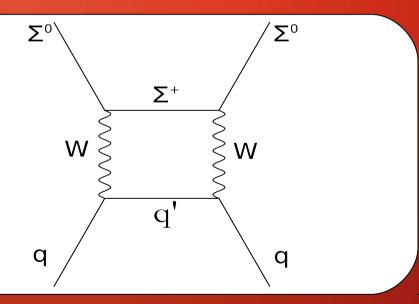
Fermion DM

Tightly related to neutrino masses and a richer phenomenology. Th DM mass appears at \sim 2.7 TeV.

->Collider signals

->Indirect searches signlas

->Direct detection signals



The Model

We would like to join de advantatges of both scenario: ->Light DM for the singlet ->Rich phenomenology

We would like to join de advantatges of both scenario:

->Light DM for the singlet

->Rich phenomenology

This could be achieved by breaking the mass degeneracy of the triplet component.

We considered a mixture scenario

	Standard Model			Fermions		Scalars	
Fields	L	e	ϕ	Σ	Ν	η	Ω
SU(2)	2	1	2	3	1	2	3
Y	-1	-2	1	0	0	1	0
Z_2	+	+	+	-	_	_	+

$$\begin{split} V &= -m_1^2 \phi^{\dagger} \phi + m_2^2 \eta^{\dagger} \eta + \frac{\lambda_1}{2} \left(\phi^{\dagger} \phi \right)^2 + \frac{\lambda_2}{2} \left(\eta^{\dagger} \eta \right)^2 + \lambda_3 \left(\phi^{\dagger} \phi \right) \left(\eta^{\dagger} \eta \right) \\ &+ \lambda_4 \left(\phi^{\dagger} \eta \right) \left(\eta^{\dagger} \phi \right) + \frac{\lambda_5}{2} \left(\phi^{\dagger} \eta \right)^2 + h.c. - \frac{M_{\Omega}^2}{4} Tr \left(\Omega^{\dagger} \Omega \right) + \left(\mu_1 \phi^{\dagger} \Omega \phi + h.c. \right) \\ &+ \lambda_1^{\Omega} \phi^{\dagger} \phi Tr \left(\Omega^{\dagger} \Omega \right) + \lambda_2^{\Omega} \left(Tr (\Omega^{\dagger} \Omega) \right)^2 + \lambda_3^{\Omega} Tr (\left(\Omega^{\dagger} \Omega \right)^2) + \lambda_4^{\Omega} \left(\phi^{\dagger} \Omega \right) \left(\Omega^{\dagger} \phi \right) \\ &+ \left(\mu_2 \eta^{\dagger} \Omega \eta + h.c. \right) + \lambda_1^{\eta} \eta^{\dagger} \eta Tr \left(\Omega^{\dagger} \Omega \right) + \lambda_4^{\eta} \left(\eta^{\dagger} \Omega \right) \left(\Omega^{\dagger} \eta \right) . \end{split}$$

$$\phi = \begin{pmatrix} \varphi^{+} \\ (h+v_{h}+i\varphi)/\sqrt{2} \end{pmatrix}$$

$$\eta = \begin{pmatrix} \eta^{+} \\ (\eta_{0}+i\eta_{A})/\sqrt{2} \end{pmatrix}$$

$$\Omega = \begin{pmatrix} (\Omega_{0}+v_{\Omega}) & \sqrt{2}\Omega^{+} \\ \sqrt{2}\Omega^{-} & -(\Omega_{0}+v_{\Omega}) \end{pmatrix}$$

$$\mathcal{L} = -Y_{\alpha\beta} \overline{L}_{\alpha} e_{\beta} \phi - Y_{\Sigma_{\alpha}} \overline{L}_{\alpha}^{c} '\Sigma^{\dagger} \tilde{\eta} - \frac{1}{4} M_{\Sigma} \operatorname{Tr} \left[\overline{\Sigma}^{c} \Sigma \right] + -Y_{\Omega} \operatorname{Tr} \left[\overline{\Sigma} \Omega \right] N - Y_{N_{\alpha}} \overline{L}_{\alpha} \tilde{\eta} N - \frac{1}{2} M_{N} \overline{N^{c}} N + h.c.$$

where $\alpha, \beta = 1, 2, 3;$

$$\begin{aligned} \mathcal{L} &= -Y_{\alpha\beta} \,\overline{L}_{\alpha} e_{\beta} \phi - Y_{\Sigma_{\alpha}} \overline{L}_{\alpha}^{\ \mathsf{c}} \ '\Sigma^{\dagger} \tilde{\eta} - \left(\frac{1}{4} M_{\Sigma} \mathrm{Tr} \left[\overline{\Sigma}^{c} \Sigma\right]\right) + \\ &- Y_{\Omega} \mathrm{Tr} \left[\overline{\Sigma} \Omega\right] N - Y_{N_{\alpha}} \overline{L}_{\alpha} \tilde{\eta} N - \frac{1}{2} M_{N} N^{c} N + h.c. \\ & \text{where } \alpha, \beta = 1, 2, 3; \end{aligned}$$

 $\mathcal{L} = -Y_{\alpha\beta}\overline{L}_{\alpha}e_{\beta}\phi - Y_{\Sigma_{\alpha}}\overline{L}_{\alpha}^{\ c} \ '\Sigma^{\dagger}\tilde{\eta} - \left(\frac{1}{4}M_{\Sigma}\mathrm{Tr}\left[\overline{\Sigma}^{c}\Sigma\right]\right) + -Y_{\Omega}\mathrm{Tr}\left[\overline{\Sigma}\Omega\right]N - Y_{N_{\alpha}}\overline{L}_{\alpha}\tilde{\eta}N - \frac{1}{2}M_{N}\overline{N}^{c}N + h.c.$ where $\alpha, \beta = 1, 2, 3;$

$$\mathcal{L} = -Y_{\alpha\beta}\overline{L}_{\alpha}e_{\beta}\phi - Y_{\Sigma_{\alpha}}\overline{L}_{\alpha}^{c} \Sigma^{\dagger}\tilde{\eta} - \left(\frac{1}{4}M_{\Sigma}\mathrm{Tr}\left[\overline{\Sigma}^{c}\Sigma\right]\right) + -Y_{\Omega}\mathrm{Tr}\left[\overline{\Sigma}\Omega\right]N - Y_{N_{\alpha}}\overline{L}_{\alpha}\tilde{\eta}N - \frac{1}{2}M_{N}\overline{N}^{c}N + h.c.$$

where $\alpha, \beta = 1, 2, 3;$

$$M_{\chi} = \begin{pmatrix} M_{\Sigma} & 2Y_{\Omega}v_{\Omega} \\ 2Y_{\Omega}v_{\Omega} & M_{N} \end{pmatrix}$$

$$\mathcal{L} = -Y_{\alpha\beta} \overline{L}_{\alpha} e_{\beta} \phi - Y_{\Sigma_{\alpha}} \overline{L}_{\alpha}^{c} \Sigma^{\dagger} \tilde{\eta} - \left(\frac{1}{4} M_{\Sigma} \operatorname{Tr} \left[\overline{\Sigma}^{c} \Sigma\right]\right) + Y_{\Omega} \operatorname{Tr} \left[\overline{\Sigma}\Omega\right] N - Y_{N_{\alpha}} \overline{L}_{\alpha} \tilde{\eta} N - \frac{1}{2} M_{N} \overline{N}^{c} N + h.c.$$

where $\alpha, \beta = 1, 2, 3;$

$$M_{\chi} = \begin{pmatrix} M_{\Sigma} & 2Y_{\Omega}v_{\Omega} \\ 2Y_{\Omega}v_{\Omega} & M_{N} \end{pmatrix}$$

$$M_{\chi 1} = \sin (\theta_f)^2 M_N + \cos (\theta_f)^2 M_\Sigma - 2v_\Omega Y_\Omega \cos (\theta_f) \sin (\theta_f)$$

$$M_{\chi 2} = \cos (\theta_f)^2 M_N + \sin (\theta_f)^2 M_\Sigma + 2v_\Omega Y_\Omega \cos (\theta_f) \sin (\theta_f)$$

where $\tan (2\theta_f) = \frac{-4Y_\omega v_\Omega}{M_\Sigma - M_N}$

$$\mathcal{L} = -Y_{\alpha\beta}\overline{L}_{\alpha}e_{\beta}\phi - Y_{\Sigma_{\alpha}}\overline{L}_{\alpha}^{c} '\Sigma^{\dagger}\tilde{\eta} - \frac{1}{4}M_{\Sigma}\mathrm{Tr}\left[\overline{\Sigma}^{c}\Sigma\right] + -Y_{\Omega}\mathrm{Tr}\left[\overline{\Sigma}\Omega\right]N - Y_{N_{\alpha}}\overline{L}_{\alpha}\tilde{\eta}N - \frac{1}{2}M_{N}\overline{N^{c}N} + h.c.$$

where $\alpha, \beta = 1, 2, 3;$

$$M_{\chi} = \begin{pmatrix} M_{\Sigma} & 2Y_{\Omega}v_{\Omega} \\ 2Y_{\Omega}v_{\Omega} & M_{N} \end{pmatrix}$$

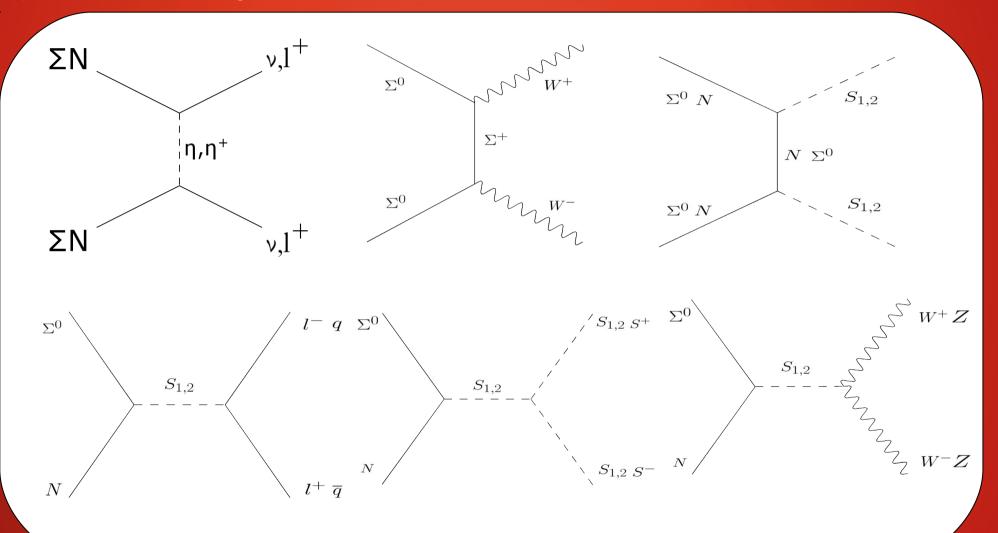
$$M_{\chi 1} = \sin (\theta_f)^2 M_N + \cos (\theta_f)^2 M_\Sigma - 2v_\Omega Y_\Omega \cos (\theta_f) \sin (\theta_f)$$

$$M_{\chi 2} = \cos (\theta_f)^2 M_N + \sin (\theta_f)^2 M_\Sigma + 2v_\Omega Y_\Omega \cos (\theta_f) \sin (\theta_f)$$

where $\tan (2\theta_f) = \frac{-4Y_\omega v_\Omega}{M_\Sigma - M_N}$

The Model M. Hirsch, R.A. Lineros, S. Morisi, J. Palacio, N. Rojas, J.W.F. Valle. arXiv:1307.8134

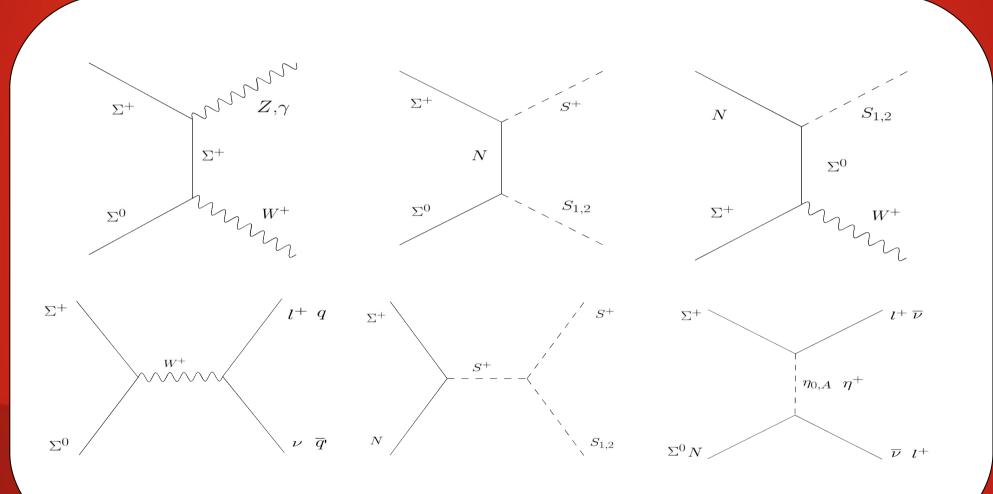
(Co-)Annihilation diagrams



We recover the two extreme regimes.

The Model M. Hirsch, R.A. Lineros, S. Morisi, J. Palacio, N. Rojas, J.W.F. Valle. arXiv:1307.8134

Charged co-Annihilation diagrams



We ALSO recover the two extreme regimes.

The Scan

We used micrOMEGAs to do a parameter scan G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov, arXiv:1305.0237 [hep-ph]

The Scan

We used micrOMEGAs to do a parameter scan G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov, arXiv:1305.0237 [hep-ph]

Constraints: Ω is an triplet of SU(2)

The Scan

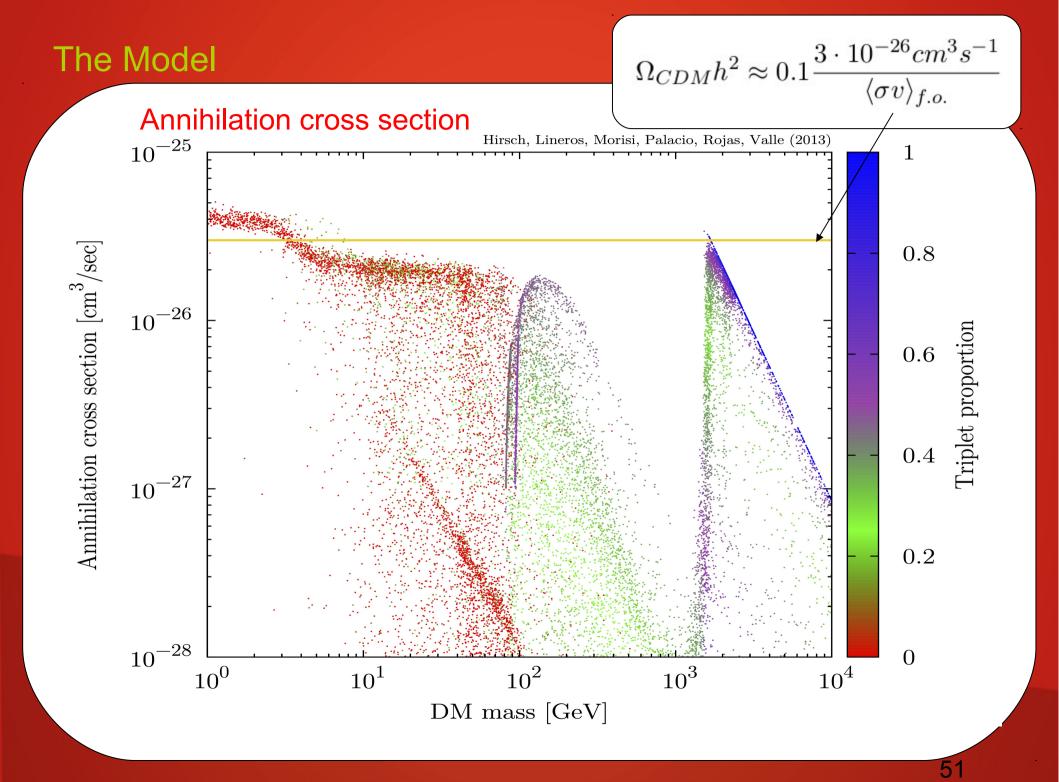
We used micrOMEGAs to do a parameter scan G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov, arXiv:1305.0237 [hep-ph]

Constraints: Ω is an triplet of SU(2)

$$M_W = \frac{g}{2} \sqrt{v_h^2 + v_\Omega^2}. \qquad \qquad \swarrow \quad V_\Omega < 7 \text{GeV}$$

Searches of new physics:

Parameter	Range
$M_N \; (\text{GeV})$	$1 - 10^{5}$
$M_{\Sigma} ~({ m GeV})$	$100-10^5$
$m_{\eta^{\pm}} ({ m GeV})$	$100 - 10^5$
$m_{\eta^0}~({ m GeV})$	$1 - 10^{5}$
M_{\pm} (GeV)	$100-10^4$
$ \lambda_i $	$10^{-4} - 1$
$ Y_i $	$10^{-4} - 1$



$$\begin{split} V &= -m_1^2 \phi^{\dagger} \phi + m_2^2 \eta^{\dagger} \eta + \frac{\lambda_1}{2} \left(\phi^{\dagger} \phi \right)^2 + \frac{\lambda_2}{2} \left(\eta^{\dagger} \eta \right)^2 + \lambda_3 \left(\phi^{\dagger} \phi \right) \left(\eta^{\dagger} \eta \right) \\ &+ \lambda_4 \left(\phi^{\dagger} \eta \right) \left(\eta^{\dagger} \phi \right) + \frac{\lambda_5}{2} \left(\phi^{\dagger} \eta \right)^2 + h.c. - \frac{M_{\Omega}^2}{4} Tr \left(\Omega^{\dagger} \Omega \right) + \left(\mu_1 \phi^{\dagger} \Omega \phi + h.c. \right) \\ &+ \lambda_1^{\Omega} \phi^{\dagger} \phi Tr \left(\Omega^{\dagger} \Omega \right) + \lambda_2^{\Omega} \left(Tr (\Omega^{\dagger} \Omega) \right)^2 + \lambda_3^{\Omega} Tr (\left(\Omega^{\dagger} \Omega \right)^2) + \lambda_4^{\Omega} \left(\phi^{\dagger} \Omega \right) \left(\Omega^{\dagger} \phi \right) \\ &+ \left(\mu_2 \eta^{\dagger} \Omega \eta + h.c. \right) + \lambda_1^{\eta} \eta^{\dagger} \eta Tr \left(\Omega^{\dagger} \Omega \right) + \lambda_4^{\eta} \left(\eta^{\dagger} \Omega \right) \left(\Omega^{\dagger} \eta \right) \,. \end{split}$$

$$\phi = \begin{pmatrix} \varphi^+ \\ (h + v_h + i\varphi)/\sqrt{2} \end{pmatrix}$$

$$\eta = \begin{pmatrix} \eta^+ \\ (\eta_0 + i\eta_A)/\sqrt{2} \end{pmatrix}$$

$$\Omega = \begin{pmatrix} (\Omega_0 + v_\Omega) & \sqrt{2} \Omega^+ \\ \sqrt{2} \Omega^- & -(\Omega_0 + v_\Omega) \end{pmatrix}$$

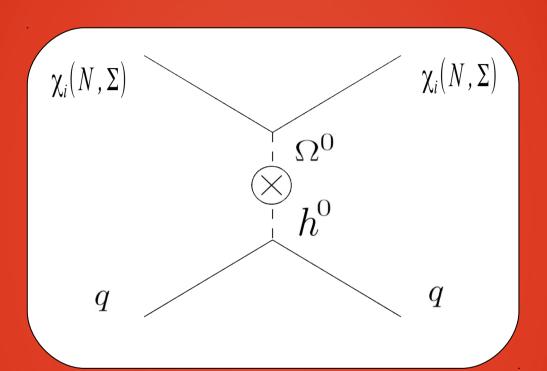
$$\begin{split} V &= -m_1^2 \phi^{\dagger} \phi + m_2^2 \eta^{\dagger} \eta + \frac{\lambda_1}{2} \left(\phi^{\dagger} \phi \right)^2 + \frac{\lambda_2}{2} \left(\eta^{\dagger} \eta \right)^2 + \lambda_3 \left(\phi^{\dagger} \phi \right) \left(\eta^{\dagger} \eta \right) \\ &+ \lambda_4 \left(\phi^{\dagger} \eta \right) \left(\eta^{\dagger} \phi \right) + \frac{\lambda_5}{2} \left(\phi^{\dagger} \eta \right)^2 + h.c. - \frac{M_{\Omega}^2}{4} Tr \left(\Omega^{\dagger} \Omega \right) + \left(\mu_1 \phi^{\dagger} \Omega \phi + h.c. \right) \\ &+ \lambda_1^{\Omega} \phi^{\dagger} \phi Tr \left(\Omega^{\dagger} \Omega \right) + \lambda_2^{\Omega} \left(Tr (\Omega^{\dagger} \Omega) \right)^2 + \lambda_3^{\Omega} Tr (\left(\Omega^{\dagger} \Omega \right)^2) + \lambda_4^{\Omega} \left(\phi^{\dagger} \Omega \right) \left(\Omega^{\dagger} \phi \right) \\ &+ \left(\mu_2 \eta^{\dagger} \Omega \eta + h.c. \right) + \lambda_1^{\eta} \eta^{\dagger} \eta Tr \left(\Omega^{\dagger} \Omega \right) + \lambda_4^{\eta} \left(\eta^{\dagger} \Omega \right) \left(\Omega^{\dagger} \eta \right) . \end{split}$$

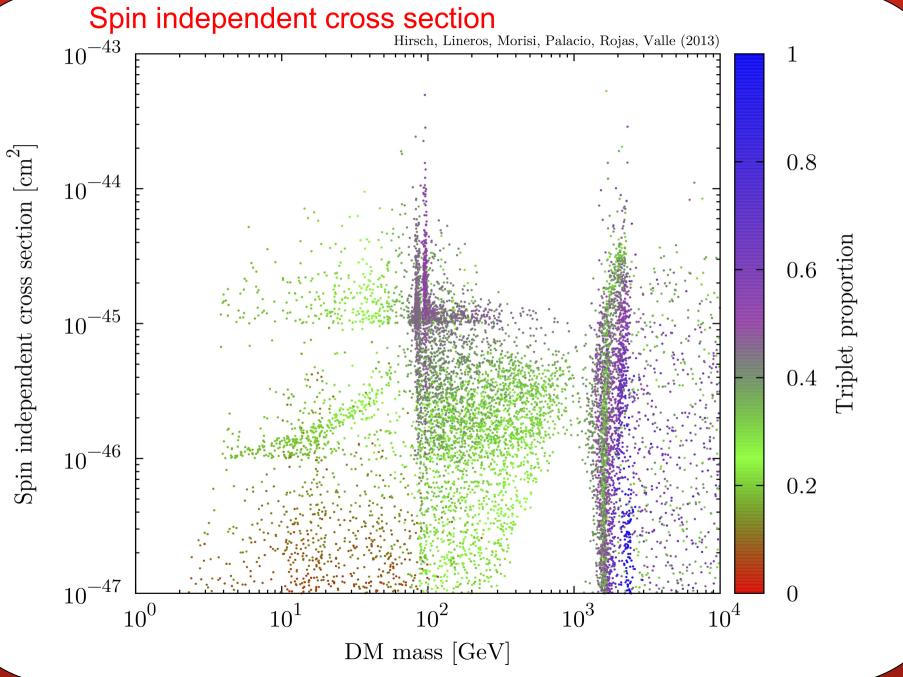
$$\phi = \begin{pmatrix} \varphi^+ \\ (h + v_h + i\varphi)/\sqrt{2} \end{pmatrix}$$

$$\eta = \begin{pmatrix} \eta^+ \\ (\eta_0 + i\eta_A)/\sqrt{2} \end{pmatrix}$$

$$\Omega = \begin{pmatrix} (\Omega_0 + v_\Omega) & \sqrt{2} \Omega^+ \\ \sqrt{2} \Omega^- & -(\Omega_0 + v_\Omega) \end{pmatrix}$$

Direct signals





55

Conclusions

Dark Matter and neutrino oscillations are the most robust evidence of physics beyond de Standard Model

We linked both phenomenas in this model: Neutrino massgenerating mechanism also stabilizes the Dark Matter.

The mixture scenario, Ω , gain the nice thinks of both pure Models: light DM with a rich phenomenology

The same mechanism that produces the fermion mixing also predicts a high interaction with quarks

Conclusions

Dark Matter and neutrino oscillations are the most robust evidence of physics beyond de Standard Model

We linked both phenomenas in this model: Neutrino massgenerating mechanism also stabilizes the Dark Matter.

The mixture scenario, Ω , gain the nice thinks of both pure Models: light DM with a rich phenomenology

The same mechanism that produces the fermion mixing also predicts a high interaction with quarks

Thanks

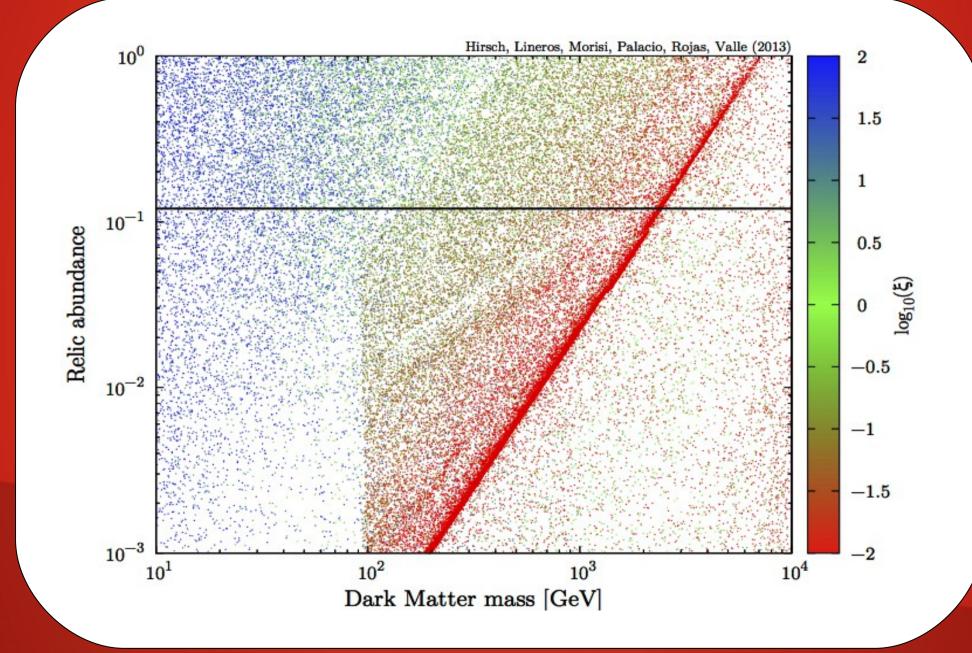
Back-up slides

Scalar sector

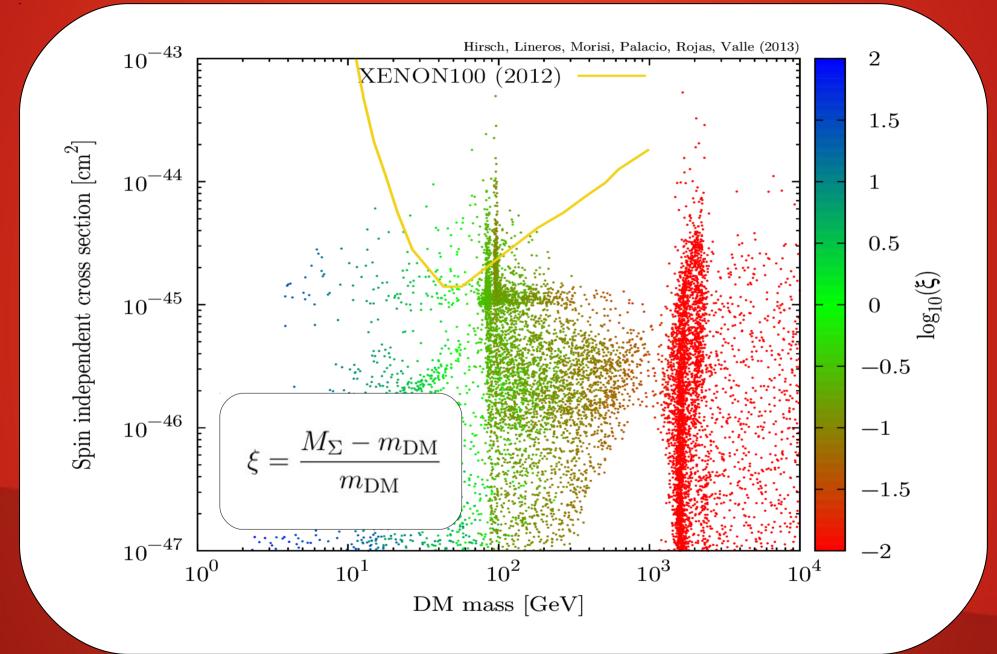
$$\mathcal{M}_{s}^{2} = \begin{pmatrix} \lambda_{1}v_{h}^{2} + \frac{t_{h}}{v_{h}} & -2\mu_{1}v_{h} + 4v_{h}v_{\Omega}\left(\lambda_{1}^{\Omega} + \frac{\lambda_{4}^{\Omega}}{2}\right) \\ -2\mu_{1}v_{h} + 4v_{h}v_{\Omega}\left(\lambda_{1}^{\Omega} + \frac{\lambda_{4}^{\Omega}}{2}\right) & \frac{\mu_{1}v_{h}^{2}}{v_{\Omega}} + 16v_{\Omega}^{2}\left(2\lambda_{2}^{\Omega} + \lambda_{3}^{\Omega}\right) + \frac{t_{\Omega}}{v_{\Omega}} \end{pmatrix}$$

$$\begin{split} M_{S1}^2 &= v_h^2 \lambda_1 \cos\left(\theta_0\right)^2 + 4v_h \left[-v_\Omega \left(2\lambda_1^\Omega + \lambda_4^\Omega\right) + \mu_1\right] \cos\left(\theta_0\right)^2 \sin\left(\theta_0\right)^2 \\ &+ \left[16v_\Omega^2 \left(2\lambda_2^\Omega + \lambda_3^\Omega\right) + \mu_1 v_h^2 / v_\Omega\right] \sin\left(\theta_0\right)^2 \\ M_{S2}^2 &= v_h^2 \lambda_1 \sin\left(\theta_0\right)^2 + 4v_h \left[v_\Omega \left(2\lambda_1^\Omega + \lambda_4^\Omega\right) - \mu_1\right] \cos\left(\theta_0\right)^2 \sin\left(\theta_0\right)^2 \\ &+ \left[16v_\Omega^2 \left(2\lambda_2^\Omega + \lambda_3^\Omega\right) + \mu_1 v_h^2 / v_\Omega\right] \cos\left(\theta_0\right)^2 \\ &\text{where } \tan\left(2\theta_0\right) = \frac{4v_h \left[v_\Omega \left(2\lambda_1^\Omega + \lambda_4^\Omega\right) - \mu_1\right]}{16v_\Omega^2 \left(2\lambda_2^\Omega + \lambda_3^\Omega\right) - v_h^2 \left(\lambda_1 - \mu_1 / v_\Omega\right)} \end{split}$$

Scan constrains



Scan constrains



Scalar sector

$$\begin{split} m_{\eta 0}^2 &= m_2^2 + \frac{1}{2} \left(\lambda_3 + \lambda_4 + \lambda_5 \right) v_h^2 + \left(2\lambda_1^{\eta} + \lambda_4^{\eta} \right) v_{\Omega}^2 - 2\mu_2 v_{\Omega} \,, \\ m_{\eta A}^2 &= m_2^2 + \frac{1}{2} \left(\lambda_3 + \lambda_4 - \lambda_5 \right) v_h^2 + \left(2\lambda_1^{\eta} + \lambda_4^{\eta} \right) v_{\Omega}^2 - 2\mu_2 v_{\Omega} \,, \\ m_{\eta \pm}^2 &= m_2^2 + \frac{1}{2} \lambda_3 v_h^2 + 2\mu_2 v_{\Omega} + \left(2\lambda_1^{\eta} + \lambda_4^{\eta} \right) v_{\Omega}^2 \,. \end{split}$$

λ5 plays an important role in v masses

-Z2