Radiative decays in LHCb

Carla Marin Benito

UNIVERSITAT DE BARCELONA

Taller de Altas Energias

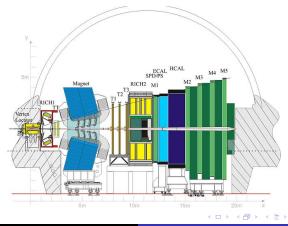
Benasque 2013

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�?

Outlook

- Radiative B decays
- LHCb experiment and detectors
- $B_s \rightarrow \phi \gamma$ and $B \rightarrow \omega \gamma$ event selection in LHCb (Master Thesis)
 - Offline selection
 - Results
 - $B_s \rightarrow \phi(K^+K^-)\gamma$: 2012 trigger and stripping validation
 - $B \rightarrow \omega (\pi^+ \pi^- \pi^0) \gamma$: 1st time in LHCb
- Multichannel fit of radiative decays (Radiative group)

Radiative B decays


- $B \to X\gamma$
- Flavour changing neutral currents (FCNC):
 - No tree-level contribution.
 - 1-loop contribution involves CKM elements.
 - 1-loop contribution sensitive to new physics.
- **Presence of photon**: clear experimental signature, but limitation from calorimeter resolution.

• History:


- 1st radiative decay observed: $B \to K^* \gamma$ by CLEO, 1993.
- World average measurements before LHC:
 - $BR(B
 ightarrow K^* \gamma) = (4.33 \pm 0.15) \cdot 10^{-5}$ (Cleo2, Belle, BaBar)
 - $BR(B_s \to \phi \gamma) = (5.7^{+2.2}_{-1.9}) \cdot 10^{-5}$ (Belle)
 - $BR(B \rightarrow \rho \gamma) = (8.6 \pm 1.5) \cdot 10^{-7}$ (Belle, BaBar)
 - $BR(B
 ightarrow \omega \gamma) = \left(4.4^{+1.8}_{-1.6}
 ight) \cdot 10^{-7}$ (Belle, BaBar)
 - $BR(\Lambda_b \to \Lambda^* \gamma)$ Not observed

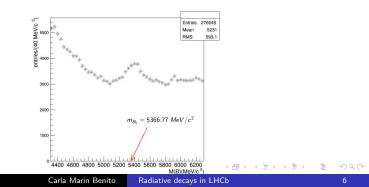
LHCb experiment and detector

- LHCb: one of the main experiments at LHC, CERN, Geneva. Dedicated to b and c physics.
- LHCb detector: single-arm spectrometer (15-300 mrad horizontal, 15-250 mrad vertical)

LHCb experiment and detector

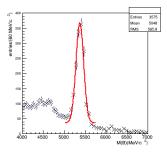
- Tracking system: VeLo, TT, magnet, T1-T3.
 - Localize interaction vertex and reconstruct tracks.
 - High momentum precision.
- Particle identification: RICH, ECAL, HCAL, M1-M5.
 - Distinguish different particle types.
 - Optimized to separate pions from kaons.
- Trigger system: custom electronics (quickest detectors).
 - Select interesting events.

Data preselection: trigger and stripping


Bunch crossing: 40 MHz, but

- only $\frac{1}{200} \ b\bar{b}$ pairs
- radiative $BR < 10^{-3}$
- limited computing resources
- \rightarrow reduce and select data.
 - Trigger system: decides which events are recorded.
 - L0: synchronous. Calorimeters and muon detectors.
 - HLT: asynchronous. All detectors.
 - HLT1: partial reconstruction for further reduction.
 - $\bullet~$ HLT2: full event reconstruction \rightarrow global event cuts.
 - Stripping: selects and classifies events from different decays
 → data already classified for offline analysis.

$B_s \rightarrow \phi \gamma$: first look with 2012 data


- Already studied with 2011 data.
- **Purpose**: validate 2012 trigger and stripping configuration \rightarrow update offline selection.
- Method: comparing signal and background properties \rightarrow linear cuts.
- **Data**: 1.75 *fb*⁻¹ from 2012 LHCb data at 8 *TeV*,

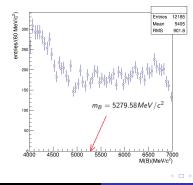
Data directly from the stripping:

$B_s \rightarrow \phi \gamma$: signal fit

After applying linear cuts:

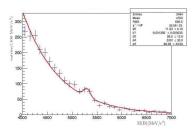
Fit:

$$f(x) = p_0 + p_1 \cdot \exp\left(-0.5\left(\frac{x - p_2}{p_3}\right)^2\right)$$


- From fit: $N_{fit} = 1200 \pm 70$
- From MC: $N_{expected} = 1500 \pm 300$
- In 2011: $N = 691 \pm 36$ (with 1.1 fb^{-1})

Compatible results

$B \rightarrow \omega \gamma$: 1st look in LHCb


- 1st time with dedicated stripping line.
- $BR(B \rightarrow \omega \gamma) = (4.4^{+1.8}_{-1.6}) \cdot 10^{-7}$ Like a needle in a haystack!
- Systematic method: optimize cuts maximizing $\frac{S}{\sqrt{S+B}}$.
- Data: 2 fb^{-1} from 2012 LHCb data at 8 TeV.

Data directly from the stripping:

$B \rightarrow \omega \gamma$: Signal fit

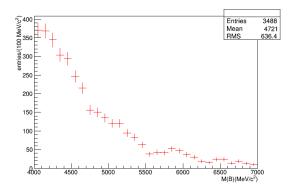
After applying all cuts:

Fit:

$$p_0 \exp(p_1 x) + p_2 \exp\left(-0.5\left(\frac{p_3-x}{p_4}\right)^2\right)$$

- From fit: $N_{fit} = 50 \pm 40$
- From MC: $N_{expected} = 47 \pm 15$

Compatible but with large uncertainty!


Comparing to fitting a single exponential: better fit when including the Gaussian \rightarrow Small signal accumulation in the m_B region

$B \rightarrow \omega \gamma$: Neural net approach

To improve selection: neural net

- Trained with same samples as before
- Variables cut before used as input

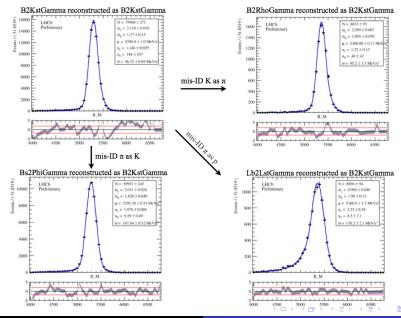
Applying output cut giving maximum significance:

No hint of signal but compatible with previous result

Multichannel fit: b-hadron \rightarrow V meson + γ

Purpose: fit simultaneously the radiative decays:

- $B^0 \to K^* \gamma$
- $\bullet ~B^0_s \to \phi \gamma$
- $\bullet ~B^0 \to \rho \gamma$
- $\Lambda_b \to \Lambda^* \gamma$


Interest in:

- CP asymmetry
- Discovery (Λ_b channel not seen yet)
- Branching ratios (with $K^*\gamma$ as control channel)

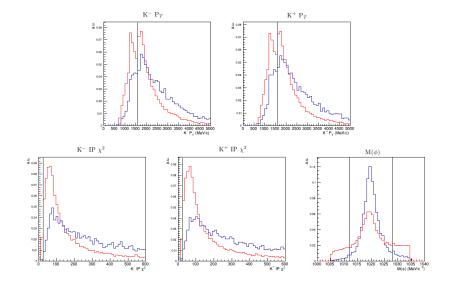
Steps:

- Generate MC for signals and all backgrounds In process
- Define a common selection In process
- Compute contaminations Trouble with PID efficiency
- Build a simultaneous fitter Almost done

Multichannel fit: Example (LHCb unnoficial)

Carla Marin Benito

- Master thesis with the LHCb group in Universitat de Barcelona
 - Event selection for $B_s \rightarrow \phi \gamma$ and $B \rightarrow \omega \gamma$ with 2012 data.
- Starting PhD with the radiative decays group of LHCb
 - Participating in the multichannel fit to the main radiative decays.
 - $\bullet\,$ Future: study of γ polarization with radiative B decays.

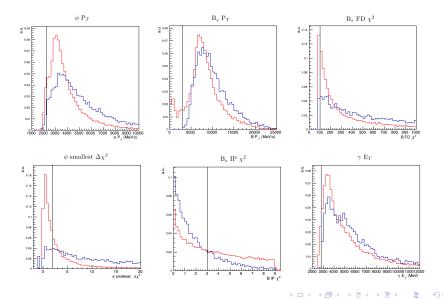

Thank you for your attention!

BACK-UP

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

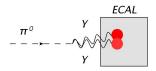
$B_s \rightarrow \phi \gamma$ linear cuts graphics



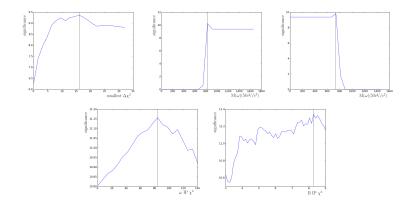
Signal/Background

▲圖 ▶ ▲ 圖 ▶

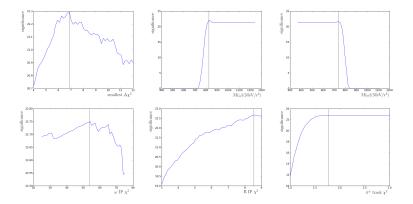
э


$B_s \rightarrow \phi \gamma$ linear cuts graphics

		Stripping	Offline
Track IP χ^2		> 16	> 25
Track P_T	(MeV/c)	> 500	> 1600
V meson P_T	(MeV/c)	-	> 2200
V meson ΔM_{PDG}	(MeV/c^2)	< 15	< 8
V meson smallest $\Delta \chi^2$		-	> 2
Photon \mathbf{E}_T	(MeV)	> 2500	> 2800
B candidate IP χ^2		< 9	< 3
B candidate FD χ^2		> 64	> 100
π^0/γ separation		-	> 0.5


▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Peculiarity: merged and resolved π^0 events have different properties \rightarrow separate analysis.

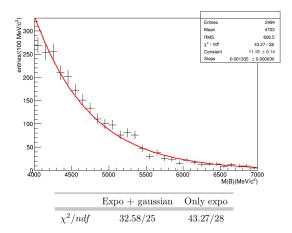

$B \rightarrow \omega \gamma$ linear cuts optimization

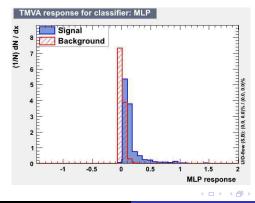
For merged π^0 events:

$B \rightarrow \omega \gamma$ linear cuts optimization

For resolved π^0 events:

$B \rightarrow \omega \gamma$: fitting single exponential




Image: A mathematical states and a mathem

$B \rightarrow \omega \gamma$: Neural nets approach

Purpose: improve the offline selection.

 $\textbf{Method: multivariate technique} \rightarrow \text{Neural net.}$

- Multilayer feed-forward net with 1 hidden layer.
- Same signal and background samples.
- Input variables: ones used in linear cuts.

$B \rightarrow \omega \gamma$: Neural nets approach

Comparison between linear and neural net selections:

• Cut on net output \rightarrow same background rejection.

	Neural network $out > 0.13$	Linear cuts
Background rejection	0.989	0.989
Signal efficiency	0.343	0.221
Significance	10.55	7.37

Much improvement: $\sim 50\%$ more efficiency and $\sim 40\%$ more significance!