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AIMS OF THIS TALK (I) 

  

- To counteract some common misconceptions:

   • The SCI-FI effect: time-travels are not a topic for   
       serious scientific investigation

   • The free-will issue: closed timelike curves are 
       incompatible with free will (cf. grandfather paradox)

  • The “no-operational consequences” idea: 
      even if closed timelike curves are possible at all 
      in some weird GR solution, 
      the dynamics of the the universe should include a    
      mechanism that prevents us from observing them
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AIMS OF THIS TALK (II)

  

On the positive side, this talk aims at putting forward an 
approach to CTCs based on notions from quantum 
information/foundations and from theoretical computer 
science.  

Key point:  higher-order computation as 
(the) model for arbitrary causal structures

(will explain later what I mean)
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WHAT I WILL 
NOT

TALK ABOUT
(AND WHY)
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SCI-FI

Wait a minute, Doc. Ah... Are you 
telling me that you built a time 
machine... out of a DeLorean?

The way I see it, if you're gonna 
build a time machine into a car, 
why not do it with some style?
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DEUTSCH’S MODEL OF CLOSED TIMELIKE 
CURVES (CTCS)

Unitary dynamics U, coupling a quantum system outside 
the CTC with quantum system inside the CTC 

S S
UE E

State of the system inside the CTC depends on the state of 
S: ρE = TrS [U(ρS ⊗ ρE)U

†]

Non-linear evolution of S
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NON-LINEAR POSTSELECTED 
TELEPORTATION

Recipe: represent time-travel as probabilistic teleportation, 
and then forget about the probability (cf. Lloyd et al, 2010). 

Φ E

S S
UE E

S SM=

non-linear evolution of S: ρ�S =
M(ρS)

Tr[M(ρS)]
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WHAT’S WRONG WITH NON-LINEARITY?

Theorem (GC, D’Ariano, Perinotti, PRA 2010): in any 
probabilistic theory, the evolution of the state is linear.
(see also Hardy 2001, different proof requiring convexity of 
state space)

Evolution non-linear in the density matrix implies that

• the state space no longer the set of density matrices. 
• mixed quantum states can become pure in the new 
state space
•quantum theory would be falsified for all systems      
  that interacted with a CTC (virtually, all systems)
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Not surprisingly, non-linear models can be used to violate 
most of the usual quantum laws 
(again, recall that they imply that QT does not hold): 

•  non-orthogonal states can be perfectly cloned 
•  “        “                   “        “    “      “           distinguished
• one can efficiently solve PSPACE problems
• BB84 is not secure
• an adversary can steer the state in your lab to any 
   desired state
• ... 

for a comprehensive critical discussion, 
see forthcoming work by Debbie Leung
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WHAT I WILL
TALK ABOUT
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PLAN OF THE TALK 

  

• Probabilistic simulation of time-travels within ordinary 
    QT:
   -non-classical features, 
   -fundamental role of CTCs in quantum 
    information

• Higher-order quantum computation as the generator of 
   causal and non-causal structures

    -quantum supermaps
    -the Quantum Switch

• The consistency requirement for CTCs
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PROBABILISTIC SIMULATION 
OF TIME TRAVELS

WITHIN 
A GIVEN CAUSAL STRUCTURE

(with Dina Genkina and Lucien Hardy,
 PRA 2011)
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PROBABILISTIC TELEPORTATION

Φ

E

S S=

S

S

I
1

d2S

• Probabilistic 
   teleportation

(BBCJPW)

(Bell state)

(Bell effect)

Φ := d−1
S

�

m,n

|m�|m��n|�n|

E(·) := Tr

�
d−1
S

�

m,n

|m�|m��n|�n| ·
�
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DEFINITION: TIME TRAVEL

Φ E

S S
d2S

• Idea (Bennett-Schumacher, Coecke, Svetlichny) 
stretch the wires in the teleportation diagram,
so to obtain an identity channel from the future to 
the past.

• Definition: SS

:=

Linear, deterministic time travel.

SUMMARY 
OF THE PREVIOUS EPISODES

Wednesday, December 7, 2011
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PROBABILISTIC SIMULATIONS

Quantum operations with the input in the future 
and the output in the past can be simulated probabilistic 
using probabilistic teleportation

2

the role of probabilistic teleportation in simulating closed
timelike curves has been further explored by Lloyd et al
in Refs. [10, 11]. In particular, Ref. [10] reports an exper-
iment that uses probabilistic teleportation to simulate a
quantum computation within a closed timelike curve. De
Silva, Galvao and Kashefi [12] showed that some patterns
in measurement-based quantum computation can be in-
terpreted as deterministic simulations of closed timelike
curves.

All the works mentioned so far focused on the use of
teleportation for the probabilistic simulation of an ideal
quantum channel from the future to the past. However,
there are many interesting scenarios where one needs to
consider the simulation of more general quantum chan-
nels. For example, suppose that we have N identical
copies of a the same state and that we want to teleport
just one copy to the past. Does the probability of success
increase with the number if input copies? And, if it does,
what is the the asymptotic value of the success probabil-
ity in the limit N → ∞? To answer these questions we
have to address the probabilistic simulation of channels
that trace all systems but one.

In this paper we will address the general problem of
the probabilistic simulation of a given channel from the
future to the past, showing how the causality principle
determines the maximum probability of success. To find
the maximum probability we will optimize over all gen-
eralized teleportation schemes where a bipartite state is
prepared and the input of the channel is jointly measured
along with half of the bipartite state, so that, for a par-
ticular outcome, the desired channel is simulated, as in
Fig. 2. The spirit of this work is similar to the spirit of

FIG. 2. Probabilistic simulation of a given quantum channel
from the future to the past via a generalized teleportation
scheme. The output system and an ancilla are first prepared
in a bipartite state Ψ. When the input becomes available, the
input state and the ancilla are measured jointly. For a partic-
ular measurement outcome i0 the simulation will be success-
ful: The effective transformation from input to output will
be proportional to the desired quantum channel, with pro-
portionality constant p equal to the probability of successful
simulation.

the early works on the optimal cloning of non-orthogonal
quantum states [13–17]: In that case, one knew from the
no-cloning theorem [18, 19] that it is impossible to pro-
duce perfect copies of the input state and the goal was to
find the optimal physical process that approximates the
impossible cloning transformation. In our case, we know
from causality that it is impossible to have a channel that
deterministically transfers information from the future to
the past and our goal is to find the optimal process that
achieves the desired channel with maximum probability
of success. In the same way in which the study of optimal

cloning shed light on the process of copying information
in the quantum world, we expect that the study of op-
timal simulations of channels to the past will shed light
the interplay between causal structure and quantum in-
formation flow.
The main message of this paper is that the maximum

probability of simulating a quantum channel from the fu-
ture to the past is a decreasing function of the amount of
information that the channel can transmit. This general
feature will be illustrated in several examples. First, we
will consider ideal classical channels (those that perfectly
transmit the states of an orthonormal basis) and, second,
ideal quantum channels (those that perfectly transmit all
states of a given quantum system). In the first case we
find the maximum probability

pcl =
1

d
, (1)

where d is the dimension of the Hilbert space, while in
the second case we find

pq =
1

d2
, (2)

which is exactly the probability of the outcome that does
not require correction operations in the original telepor-
tation protocol [3]. We will then focus on the probabilis-
tic simulation of measure-and-prepare channels, which
are a class of channels that transmit only classical in-
formation. In this case, we will find that the maximum
probability of success is at least equal to the probability
pcl = 1/d for a classical channel with the same output
Hilbert space. The exact value of the probability of suc-
cess will be computed in two relevant cases of measure-
and-prepare channels: the channel associated to the op-
timal estimation of a pure state, and the universal NOT
channel [20]. Finally, we will analyze in detail the case
of trace channels, sending N copies of a given pure state
to M ≤ N copies of the same state, and the case of uni-
versal cloning channels [15], sending N copies of a pure
state to M > N optimal approximate copies. In both
cases we find that the maximum probability of success is
given by

p+q,N→M =
d(|N−M |)
+

d(N)
+ d(M)

+

d(k)+ :=

�
d+ k − 1

k

�
, (3)

where d is the dimension of the one-particle Hilbert space
and the superscript in p+q,N→M reminds that we are re-
stricting ourselves to the symmetric subspaces, in which
the N input copies and the M output copies of the given
pure state live. In the particular case of M = 1 Eq. (3)
yields the value

p+q,N→1 =
N

d(d+N − 1)
, (4)

which increases with the number of input copies, start-
ing from p+q,1→1 = 1/d2 and reaching the classical value

= Φ E
CHin

Hin

HinHout1

d2
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OPTIMAL PROBABILISTIC SIMULATIONS

2

the role of probabilistic teleportation in simulating closed
timelike curves has been further explored by Lloyd et al
in Refs. [10, 11]. In particular, Ref. [10] reports an exper-
iment that uses probabilistic teleportation to simulate a
quantum computation within a closed timelike curve. De
Silva, Galvao and Kashefi [12] showed that some patterns
in measurement-based quantum computation can be in-
terpreted as deterministic simulations of closed timelike
curves.

All the works mentioned so far focused on the use of
teleportation for the probabilistic simulation of an ideal
quantum channel from the future to the past. However,
there are many interesting scenarios where one needs to
consider the simulation of more general quantum chan-
nels. For example, suppose that we have N identical
copies of a the same state and that we want to teleport
just one copy to the past. Does the probability of success
increase with the number if input copies? And, if it does,
what is the the asymptotic value of the success probabil-
ity in the limit N → ∞? To answer these questions we
have to address the probabilistic simulation of channels
that trace all systems but one.

In this paper we will address the general problem of
the probabilistic simulation of a given channel from the
future to the past, showing how the causality principle
determines the maximum probability of success. To find
the maximum probability we will optimize over all gen-
eralized teleportation schemes where a bipartite state is
prepared and the input of the channel is jointly measured
along with half of the bipartite state, so that, for a par-
ticular outcome, the desired channel is simulated, as in
Fig. 2. The spirit of this work is similar to the spirit of

FIG. 2. Probabilistic simulation of a given quantum channel
from the future to the past via a generalized teleportation
scheme. The output system and an ancilla are first prepared
in a bipartite state Ψ. When the input becomes available, the
input state and the ancilla are measured jointly. For a partic-
ular measurement outcome i0 the simulation will be success-
ful: The effective transformation from input to output will
be proportional to the desired quantum channel, with pro-
portionality constant p equal to the probability of successful
simulation.

the early works on the optimal cloning of non-orthogonal
quantum states [13–17]: In that case, one knew from the
no-cloning theorem [18, 19] that it is impossible to pro-
duce perfect copies of the input state and the goal was to
find the optimal physical process that approximates the
impossible cloning transformation. In our case, we know
from causality that it is impossible to have a channel that
deterministically transfers information from the future to
the past and our goal is to find the optimal process that
achieves the desired channel with maximum probability
of success. In the same way in which the study of optimal

cloning shed light on the process of copying information
in the quantum world, we expect that the study of op-
timal simulations of channels to the past will shed light
the interplay between causal structure and quantum in-
formation flow.
The main message of this paper is that the maximum

probability of simulating a quantum channel from the fu-
ture to the past is a decreasing function of the amount of
information that the channel can transmit. This general
feature will be illustrated in several examples. First, we
will consider ideal classical channels (those that perfectly
transmit the states of an orthonormal basis) and, second,
ideal quantum channels (those that perfectly transmit all
states of a given quantum system). In the first case we
find the maximum probability

pcl =
1

d
, (1)

where d is the dimension of the Hilbert space, while in
the second case we find

pq =
1

d2
, (2)

which is exactly the probability of the outcome that does
not require correction operations in the original telepor-
tation protocol [3]. We will then focus on the probabilis-
tic simulation of measure-and-prepare channels, which
are a class of channels that transmit only classical in-
formation. In this case, we will find that the maximum
probability of success is at least equal to the probability
pcl = 1/d for a classical channel with the same output
Hilbert space. The exact value of the probability of suc-
cess will be computed in two relevant cases of measure-
and-prepare channels: the channel associated to the op-
timal estimation of a pure state, and the universal NOT
channel [20]. Finally, we will analyze in detail the case
of trace channels, sending N copies of a given pure state
to M ≤ N copies of the same state, and the case of uni-
versal cloning channels [15], sending N copies of a pure
state to M > N optimal approximate copies. In both
cases we find that the maximum probability of success is
given by

p+q,N→M =
d(|N−M |)
+

d(N)
+ d(M)

+

d(k)+ :=

�
d+ k − 1

k

�
, (3)

where d is the dimension of the one-particle Hilbert space
and the superscript in p+q,N→M reminds that we are re-
stricting ourselves to the symmetric subspaces, in which
the N input copies and the M output copies of the given
pure state live. In the particular case of M = 1 Eq. (3)
yields the value

p+q,N→1 =
N

d(d+N − 1)
, (4)

which increases with the number of input copies, start-
ing from p+q,1→1 = 1/d2 and reaching the classical value

=
Hin

Teleportation allows for a probabilistic simulation 
of  time-travel channels with probability ptele =

1

d2

Question: what is the maximum probability
                  such that 

pC

Hout

R

for some state         and some effect        ?Ψ

Ψ F

F

pC
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EXAMPLE: TELEPORTING PURE STATES WITH MANY 
COPIES

10

FIG. 4. Probabilistic teleportation from N copies to M = 1

copy of a pure state. Here, C represents the symmetrized

partial trace over all but one input copy, restricted to the

symmetric subspace.

where the output Hilbert space is labelled by 0, the input

Hilbert spaces are labelled with numbers from 1 to N ,

and the projector P (N−1)
+ acts on the tensor product of

all input Hilbert spaces except the first.

We want to find the maximum value pq,N→1 compat-

ible with the causality bound of Eq. (11), which now

reads

p C+
q,N→1 ≤ ρout ⊗ Iin. (28)

To this purpose, we notice that the Choi operator

C+
q,N→1 has the symmetry

(U ⊗ U∗⊗N
)C+

q,N→1(U
† ⊗ UT⊗N

) = C+
q,N→1 ,

for every U ∈ SU(d). Following again the group theoretic

argument of subsection III B we can rewrite Eq. (28) as

p C+
q,N→1 ≤ 1

d
Iout ⊗ Iin. (29)

Hence, it only remains to find the eigenvalues of C+
q,N→1.

Expanding the projector P (N−1)
+ as

P (N−1)
+ =

d(N−1)
+�

n=1

|ϕn��ϕn| ,

where {|ϕn�}
d(N−1)
+

n=1 is an orthonormal basis for�
H⊗(N−1)

�
+
, we can express C+

q,N→1 as

C+
q,N→1 =

= (I0 ⊗ P (N)
+ )




d(N−1)
+�

n=1

|I����I|01 ⊗ |ϕn��ϕn|



 (I0 ⊗ P (N)
+ )

=

d(N−1)
+�

n=1

|Φn��Φn|, (30)

having defined

|Φn� := (I0 ⊗ P (N)
+ )|I��01|ϕn�.

Eq. (30) is the desired diagonalization of the Choi oper-

ator C+
q,N→1: Indeed, we have

�Φn|Φm� = ��I|01�ϕn|

�
I0 ⊗ P (N)

+

�
|I��01|ϕm�

= �ϕn|Tr1

�
P (N)
+

�
|ϕm�

=
d(N)
+

d(N−1)
+

�ϕn|P
(N−1)
+ |ϕm�

=
d(N)
+

d(N−1)
+

δn,m,

that is, the vectors {|Φn�}
d(N−1)
+

n=1 are mutually orthogonal

and have the same norm. Therefore, C+
q,N→1 only has one

non-zero eigenvalue, given by γN→1 =
d(N)
+

d(N−1)
+

. Plugging

this value into the causality bound of Eq. (29) we obtain

p γN→1 ≤ 1
d . The maximum probability of success is

then given by

pq,N→1 =
d(N−1)
+

d d(N)
+

=
N

d(d− 1 +N)
.

Note that the probability of successful teleportation in-

creases with the number N of input copies, unlike in the

classical case. For N = 1 we retrieve the value pq =
1
d2

of the standard teleportation protocol, while in the limit

of N going to infinity we observe that pq,N→1 tends to-

wards the classical limit pcl =
1
d . Such an asymptotic

behaviour will be explained in section VI.

C. From N copies of a pure state in the future to
M ≤ N copies of the same state in the past

Here we calculate the maximum probability of telepor-

tation from N input copies to M ≤ N output copies of

a generic pure state. Again, since for every integer num-

ber k the density matrix of k identical copies of a pure

state has support in the symmetric subspace
�
H⊗k

�
+
,

we will restrict the input of the partial trace channel

Cq,N→M to be in Hin :=
�
H⊗N

�
+

and the output to be

in Hout :=
�
H⊗M

�
+
. In other words, we will focus on

the probabilistic simulation of the channel C
+
q,N→M given

by

C
+
q,N→M (ρ) := P (M)

+

�
Cq,N→M

�
P (N)
+ ρP (N)

+

��
P (M)
+ ,

where Cq,N→M is the symmetrized partial trace channel

defined in Eq. (22).

Again, thanks to the projection on the symmetric sub-

space we can write

C
+
q,N→M (ρ) := P (M)

+

�
TrN . . .TrM+1

�
P (N)
+ ρP (N)

+

��
P (M)
+ .

(31)

N identical copies of a pure state in the future, 
we want to transfer one copy to the past

Equivalent to the probabilistic simulation of the channel

TraceN→1(ρ) = Tr2,...,N
�
P (N)
+ ρP (N)

+

�
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CAN THE PROBABILITY INCREASE WITH N?

Question: Does the probability depend on the number of 
                  input copies N?

In the classical world, no dependence:

since pure states can be perfectly copied, 
the probability to simulate a classical transfer of data 
from the future to the past
does not depend on how many copies of these data
are available.
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ANSWER TO THE QUESTION:

Non-classical feature in the interplay between information 
flow and causal structure!

pN→1 =
N

d(d+N − 1)
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IN OTHER WORDS

Travelling back in time would be more likely
if you had at many identical twins. 

(well, the probability would be still less than                     ...) 2−Navogadro
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DUALITY
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TIME LOOPS

Definition of time loop:

C

D

Φ E

:=

C D

C D

d2=

Thursday, June 27, 2013



DUAL EXPRESSION FOR THE OPTIMAL 
PROBABILITY

C

D

pC =
1

maxD

D = quantum channel

Interpretation: the probability of successful simulation is 
the maximum one compatible with the fact that 
probabilities cannot be larger than 1.
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QI LINK #1: ENTANGLEMENT FIDELITY IN 
QUANTUM ERROR CORRECTION

By definition

C

D

Φ EC D
d2=max

D
max
D {

entanglement fidelity:
quantifies how well we can 
restore entanglement by 
correcting the action of C
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QI LINK #2: FIDELITY OF OPTIMAL 
CHANNELS

Consider a set of input states (ρx)x∈X

given with prior probabilities (px)x∈X

Suppose that we want to realize the transformation

(φx)x∈X

ρx �→ φx

where is a set of pure target states

Examples: cloning, state estimation, transpose, purification, 
broadcasting, ...
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Maximum fidelity over all quantum channels:

with

Fmax = max
D

�

x∈X

px�φx| D(ρx) |φx�

=
C

D

C(σ) := γ−1
�

x∈X

px�φx|σ|φx� ρTx

γ =

�����
�

x∈X

pxρx

�����
∞

γ
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Hence:  

The optimal quantum fidelities inversely proportional 
to the optimal probabilities of simulated time-travels.

cf. optimal cloning, ...

Fmax =
γ

pC
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QI LINK #3: MIN ENTROPY 

Min-entropy (cf. Renner, Koenig-Renner-Schaffner)
important quantity in quantum communication and 
cryptography:

Choi state: 

Φ
C

C :=
B

A

BA

A

pC =
2Hmin(A|B)

dA
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QI LINK # 3.5: STATE MERGING 

Stinespring dilation: C VAA B B

E

=

A

B

E

V Φ:=
A

VA B

E

Purified Choi
state:

State merging problem:  transfer A’s state to E, 
preserving the correlations with B.
Amount of quantum communication needed: 
(Mario Berta, diploma thesis, ETH)

Hmin(A|B)
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Hence: the log of the maximum probability of 
simulated time-travel is proportional to the 
amount of quantum communication needed to 
throw information from the input into the 
environment. 
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SUMMARY OF PROBABILISTIC SIMULATION

• non-classical effects: increase of the probability of 
simulation with the number of copies

• duality

• the simulation of time travels has deep roots in quantum 
   info: error correction, optimal quantum fidelities, min-
   entropy, state merging...

C

D

pC =
1

maxD
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QUANTUM CIRCUITS
WITH TIME LOOPS
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INCLUDING LOOPS IN THE CIRCUIT

Φ E

S S
d2S

Until now we simulated time travels within a given causal 
structure (= DAG =  computational circuit)

Now we want to add loops in the picture, 
i.e. to introduce CTCs

S

The problem is how to do it consistently.

SUMMARY 
OF THE PREVIOUS EPISODES

Wednesday, December 7, 2011

=
S
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INTERACTING WITH THE CTC

d2S

However, we cannot plug arbitrary channels in the loop:  
e.g. plugging the identity gives probability larger than 1

S

=

cf.grandfather paradox, where the probability would be 0

Connecting quantum 
devices to the CTC: 

SUMMARY 
OF THE PREVIOUS EPISODES

Wednesday, December 7, 2011

C
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CONSISTENCY REQUIREMENT

When we plug part of a channel in a CTC, 
the remaining part outside the CTC must be a valid 
quantum channel (CPTP map)

• the requirement imposes that ordinary quantum theory 
   holds outside the CTC 

• limits the set of boxes that can be connected with the CTC 

SUMMARY 
OF THE PREVIOUS EPISODES

Wednesday, December 7, 2011

C
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LIMITATION TO FREE WILL..?

Well, no: in this operational theory, 
we are free to choose within the set of allowed channels.
 
There is no physical reason to expect that arbitrary quantum 
channels should be implementable. 

[cf. in ordinary quantum theory we cannot implement PR-
boxes, but this does not mean that we have no free-will...]
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HIGHER ORDER COMPUTATIONS

The mapping C �→ =C�

is an example of higher-order transformation:
transforms an input channel into an output 
channel.

Idea: the structure of higher-order transformations 
identifies all possible quantum circuits containing CTCs. 

SUMMARY 
OF THE PREVIOUS EPISODES

Wednesday, December 7, 2011

C
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HIGHER-ORDER 
QUANTUM COMPUTATION
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Forget everything you know about quantum theory, 
forget causal structure,
forget CTCs

just remember the fact that quantum states are density 
matrices.

LET’S PLAY A GAME

Thursday, June 27, 2013



Question: What are the most general deterministic transformations of 
quantum states?

Answer:  Quantum channel (linear, completely positive, trace-
preserving maps)

Completely positive and trace-preserving: output states should be valid 
density matrices for all possible inputs

THE MOST GENERAL EVOLUTIONS

ρ
E

Linear: mixture of input states is mapped into mixture of output states 
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THE MOST GENERAL TRANSFORMATIONS OF 
TRANSFORMATIONS

E S(E)S

Question: What are the most general deterministic transformations of 
quantum states?

Let us call these transformations supermaps and represent them as 
follows:

=

E

S(E)

S

Thursday, June 27, 2013



• must map quantum channels into quantum channels, 
  even when acting on parts of larger quantum devices

ADMISSIBLE SUPERMAPS

Requirements: 

• supermaps must be linear in their input (same reason as before)

S

E
=

E �
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REALIZATION OF ADMISSIBLE SUPERMAPS:  
SEQUENTIAL QUANTUM NETWORKS

Theorem (GC, G M D’Ariano, and P Perinotti, EPL 2008) 
any admissible supermap can be realized by a quantum network 
consisting in 

• a pre-processing channel 
• a post-processing channel 

=

E E

C0 C1S
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THE HIERARCHY OF ADMISSIBLE SUPERMAPS

Recursive definition of admissible (deterministic) transformations:
a deterministic 1-map is a quantum channel,
for N>1 a deterministic N-map transforms deterministic (N-1)-maps 
into quantum channels, and must be 

• linear 
• sending (N-1) maps into quantum channels also when applied locally    
   on one side of a bipartite input

T

S

T (S)=
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HIERARCHY OF ADMISSIBLE SUPERMAPS 

N=1 quantum channel

N=2

N=3

S
(1)

S
(2)

S
(3)
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REALIZATION OF ADMISSIBLE N-MAPS

Theorem (GC, M D’Ariano, and P Perinotti, PRA 80, 2009): 
any admissible N-map can be realized by a sequential network of 
quantum channels with memory. 

The outcome of the application of an N-map to an (N-1)-map is the 
channel resulting from the interlinking of the corresponding networks.

C0 C1 CN−1 CN

EN−1EN−2E1E0

Thursday, June 27, 2013



RECONSTRUCTING CAUSAL SEQUENCES

Remember the game we were playing: 
forget everything except the fact that quantum states are density 
matrices.

Now, just by basic compositional reasoning, 
we reconstructed causal sequences
of quantum channels!

However, as anticipated, the hierarchy of higher-order transformations
includes also a lot of new, non-causal stuff,
some of which are equivalent to CTCs.
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THE EASIEST NON-CAUSAL EXAMPLE

Question:  what is the most general transformation that maps a 
quantum channel into a quantum supermap?  

E �→
S

S
(3)

In this case, there are at least two possible realizations:

E E
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MIXTURE AND SUPERPOSITION OF CAUSAL 
STRUCTURES

Since there are two possible choices of circuits, 
surely we can choose randomly between them.  

What’s more, since quantum mechanics satisfies the 
purification principle, 
we can also generate a coherent superposition of these two 
scenarios...  
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THE QUANTUM SWITCH
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THE TASK “SWITCH”

A A A AE F

Suppose we are given two black boxes,
implementing two generic channels          and        :E F

Suppose that we are given a qubit system Q       

A AE AF

A A AF E  if the state of the qubit is 

You want to connect the boxes as
 if the state of the qubit is 
ϕ0 = |0��0|

ϕ1 = |1��1|
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Imagine that the control qubit Q is able to control the 
path of system A:

PHYSICAL INTUITION (I)

E

F

E F

State       ,  
causal structure 0:  
the system is routed first to
     and then to 

|0�

E

F

EF

State   
causal structure 1:  
the system is routed first to
     and then to 

|1�
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PHYSICAL INTUITION (II)

If Q is prepared in the superposition state

ϕ+ = |+��+|, |+� = |0�+ |1�√
2

we will have the joint evolution:

ϕ

ϕ+

E

F
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NO-SWITCH OF BLACK BOXES IN A CIRCUIT

Theorem (GC, D’Ariano, Perinotti, Valiron, 2009) 
It is impossible to find quantum systems M and N
and quantum channels        ,       , and      
such that 

A B C

A A E A A F A A

M N
A B C

=
A A AF E        and      E F∀

Q
ϕ1
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IN OTHER WORDS

Once two black boxes have been inserted in a circuit in a 
given order,
there is no way to invert their causal relation.

Theorem: The task SWITCH cannot be implemented 
                  by a quantum circuit that is both deterministic 
                   and causal
                  (i.e. a circuit where the two input channels 
                  are composed with quantum channels in a given 
                  causal sequence)
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RELATION WITH TIME TRAVELS 

Theorem:      If a circuit  
                       implements the task SWITCH, 
                       then it must contain a CTC.

The converse can also be proved: 

If we have access to a circuit of 
that implements a deterministic time travel,
then we use it to construct a circuit that implements the 
task SWITCH. 
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REALIZATION OF THE SWITCH IN A CIRCUIT 
WITH CTC

E F

S
W
A
P

S
W
A
P

S
W
A
PA A A A AA

A A

Q Q Q Q Qψ
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INFORMATION-THEORETIC 
ADVANTAGE OF THE 
QUANTUM SWITCH:
DISCRIMINATION OF 

BLACK BOXES
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A CLASSIFICATION PROBLEM

Problem: You are given two black boxes 

A A A AE F

E(ρ) =
�

i

EiρE
†
i F(ρ) =

�

i

FiρF
†
i

with the following promise:  
                         either  (+) 
                         or         (-) 

EiFj = FjEi ∀i, j
EiFj = −FjEi ∀i, j

Task: Find out whether the two black boxes are 
          of type (+) or type (-)
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PERFECT CLASSIFICATION PROTOCOL 
USING QUANTUM SWITCH 

• Prepare the control qubit in the state |+� = |0�+ |1�√
2

• For every i,j  in the (+) case you will obtain

|ϕ�|+� �→ FjEi|ϕ� ⊗ |0�+ EiFj |ϕ� ⊗ |1�√
2

= FjEi|ϕ� ⊗ |+�

while in the (-) case you will obtain

• Apply the Quantum Switch

|ϕ�|+� �→ FjEi|ϕ� ⊗ |0�+ EiFj |ϕ� ⊗ |1�√
2

= FjEi|ϕ� ⊗ |−�
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IMPOSSIBILITY OF PERFECT DISCRIMINATION 
WITHIN THE QUANTUM CIRCUIT MODEL

Theorem (GC, PRA 2012): No causal deterministic circuit    
can perfectly discriminate between the two classes of 
black boxes (+) and (-) using a single query. 

For this classification problem
there is always a non-zero error in the framework of 
quantum circuits!
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REFUTING THE “NO OPERATIONAL 
CONSEQUENCES” IDEA 

It was longly believed that the only way CTCs can exist
and be consistent with the resto of physics is that they  
do not lead to any observable consequence.

Here, instead, we have a consistent CTC that leads to an 
observable advantage in an operational setting.

Similar comment for the non-causal game invented by 
Oreshkov, Costa, and Brukner
(which is also an example of higher order map realizable 
in a circuit with CTC)

Thursday, June 27, 2013



CONCLUSIONS
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CONCLUSIONS

• Probabilistic simulation of time travels within ordinary    
    quantum theory:  
    non-classical features, and roots in quantum info 

• Introducing CTCs in quantum circuits: 
    consistence requirement

• The hierarchy of higher-order quantum maps:
    abstract way to reconstruct causal (and non-causal) 
    structures
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• The quantum SWITCH: example of higher-order map 
   that is not compatible with a pre-defined causal structure. 
 
• Switching boxes is equivalent to introducing a CTC in 
   the circuit
 
• Observable consequences of the CTC, without 
   inconsistencies and without violations of standard 
   quantum theory outside the CTC:
   classification of pair of boxes 
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