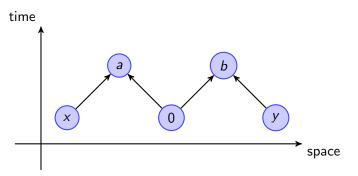
Bell's Theorem on arbitrary causal structures

Follow-up to Beyond Bell's Theorem: Correlation Scenarios arXiv:1206.5115

Benasque, June 2013

Causal structure of Bell's Theorem I

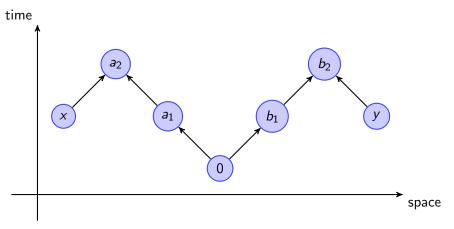
Spacetime diagram of bipartite Bell scenario:



- A network of **events** connected by **causal links**.
- Every event has an associated **outcome**. In practice, even the source will have a non-trivial outcome!
- Hidden variables propagate along the causal links.
- Repeated trials give measurement statistics P(a, b, x, y, 0).

Causal structure of Bell's Theorem II

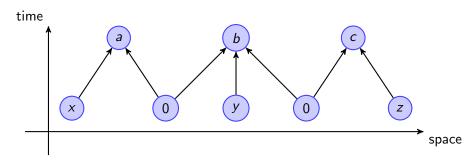
Spacetime diagram of Popescu's "hidden nonlocality" scenario:



Same story! A network of outcome-producing events connected by hidden-variable-carrying causal links.

Causal structure of Bell's Theorem III

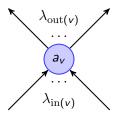
Spacetime diagram of Branciard–Gisin–Pironio's "bilocality" scenario:



What's going on here, generally?

Bayesian networks with classical hidden variables I

- ► The events and causal links form a DAG (directed acyclic graph) G = (V, E) with a node set V and edge set E.
- Every v ∈ V carries a random variable a_v. Notation: when S ⊆ V, write a_S for (a_v)_{v∈S}.
- For $v \in \mathcal{V}$, write
 - in(v) = set of ingoing edges at v,
 - out(v) = set of outgoing edges at v.
- Intended local structure of a node v:



Bayesian networks with classical hidden variables II

Definition

A joint distribution $P(a_{\mathcal{V}})$ is a **classical correlation** with respect to *G* if there exist random variables $(\lambda_e)_{e \in \mathcal{E}}$ and for all $v \in \mathcal{V}$ a conditional distribution

 $P(a_v, \lambda_{out(v)}|\lambda_{in(v)})$

such that

$$P(\mathbf{a}_{\mathcal{V}}) = \int \prod_{\mathbf{v} \in \mathcal{V}} P(\mathbf{a}_{\mathbf{v}}, \lambda_{\text{out}}(\mathbf{v}) | \lambda_{\text{in}}(\mathbf{v})) \, \mathrm{d}\lambda_{\mathcal{V}}$$

Computational interpretation:

- information flow λ_e along every edge e,
- ► an information processing gate P(a_v, λ_{out(v)} | λ_{in(v)}) at every node.

Bayesian networks with classical hidden variables III

Correspondence with the usual notions:

- If $in(v) = \emptyset$ and $a_v = 0$, then v acts like a source.
- If in(v) = Ø and |out(v)| = 1, then v acts like a choice of measurement setting.
- If $out(v) = \emptyset$, then v acts like a measurement.
- In general, a node combines all these things!

The emphasis on the causal structure helps to clarify the assumptions made on the hidden variables:

- Realism/Factorizability/Separability: usage of classical probability theory.
- Locality: only the given causal links can create dependencies among variables.

Bayesian networks with classical hidden variables IV

Theorem (Properties of classical correlations)

In the above definition, one can assume that all P(a_ν, λ_{out(ν)}|λ_{in(ν)}) with λ_{in(ν)} ≠ Ø are deterministic:

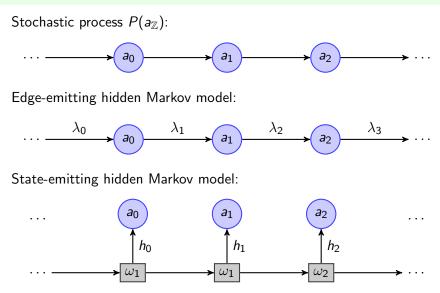
$$a_{\nu} = f(\lambda_{\mathrm{in}(\nu)}), \qquad \lambda_{\mathrm{out}(\nu)} = g(\lambda_{\mathrm{in}(\nu)}).$$

P(a_V) is classical if and only if there exists a hidden Bayesian network P(ω_V) on G with a variable ω_v at each v ∈ V and functions h_v such that

$$a_{v}=h_{v}(\omega_{v}).$$

► The set of classical correlations only depends on the causal set (=partial order) induced by G.

Example: hidden Markov models

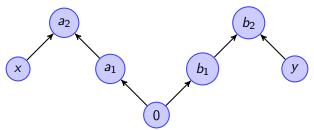


Applications to speech recognition and many other things!

Bayesian networks with quantum hidden variables

What are **quantum correlations** on *G*?

Answer: Interpret G as a diagram in categorical quantum mechanics!



- Each wire represents a Hilbert space \mathcal{H}_e ,
- each node represents quantum instrument, i.e. a completely positive map

$$\Phi_{a_{v}} : \mathcal{B}(\mathcal{H}_{\mathrm{in}(v)}) \longrightarrow \mathcal{B}(\mathcal{H}_{\mathrm{out}(v)})$$

such that $\sum_{a_v} \Phi_{a_v}$ is trace-preserving.

Intuition: quantum computer with classical outcome at each gate.

Generalizing No-Signaling

Definition

 $P(a_{\mathcal{V}})$ is a **correlation** if for any number of subsets $X_1, \ldots, X_n \subseteq \mathcal{V}$ with pairwise disjoint causal past,

$$P(a_{X_1},\ldots,a_{X_n})=\prod_i P(a_{X_i}).$$

Examples:

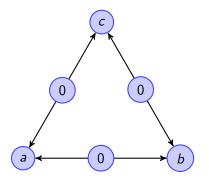
- Any quantum correlation is a correlation.
- ▶ In a Bell scenario, P(a, b, x, y) is a correlation if and only if

$$P(a,x,y) = P(a,x) \cdot P(y), \qquad P(b,x,y) = P(b,y) \cdot P(x).$$

 \rightarrow equivalent to standard no-signaling equations!

Results on new scenarios (arXiv:1206.5115)

The triangle scenario:



One possible implementation: three parties and three sources.
Space-like separation between: any two parties; every party and the opposite source.

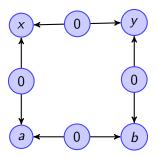
Theorem

In the triangle scenario, there are non-classical quantum correlations P(a, b, c).

- Proof is simple, but not obvious. Idea: let c "simulate" the measurement settings of a bipartite Bell scenario. Use entropic inequalities to reduce to Bell's Theorem.
- Characterizing the set of classical correlations is very challenging!
- It's not even clear how the bound the number of values needed for each hidden variable.

Results on new scenarios III (arXiv:1206.5115)

The square scenario:



Theorem

In the square scenario, there are non-classical correlations P(a, b, c, d).

- Proof is simple, but not obvious. Idea: take P(a, b, c, d) to be given by the P(a, b, x, y) of a PR-box, and find a Hardy-like paradox.
- The existence of non-classical quantum correlations is open.

Tobias Fritz (June 2013)

Beyond quantum information

The present framework is an approach to **causal inference** in the presence of **hidden variables**. This is applicable very generally! One does not need to assume G to be known: test several possibilities for G and see which ones turn the given data into a classical correlation.

One should expect such hidden variables to naturally occur in many fields of science! Whenever there is a system which gets probed at different locations, repeated trials reveal correlations between these locations, but the underlying variables and processes are partially or completely unknown.

 \rightarrow E.g.: microbiology, meteorology.

Converse application: use a concrete hidden variable model as a computational paradigm to **generate** a desired complicated pattern of classical correlations.

 \rightarrow Example: some existing applications of hidden Markov models.

For example:

- Relation to quantum information processing protocols: which protocols are secretly based on these ideas?
 Is the idea of causal hidden variables helpful for the development of new protocols?
- Find bounds on classical and quantum correlations!
- Classify the scenarios: which graphs display non-classical correlations?

- ▶ Bell scenarios are a very special subclass of correlation scenarios!
- The general approach unifies the notions of source, choice of measurement setting and measurement into the notion of event: information processing of hidden variables together with output of a classical outcome.
- These hidden Bayesian networks are a general idea for doing causal inference in the presence of hidden variables.
- Lots of challenging open problems!