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Causal structure of Bell’s Theorem I

Spacetime diagram of bipartite Bell scenario:

time

space

0x y

a b

I A network of events connected by causal links.

I Every event has an associated outcome. In practice, even the
source will have a non-trivial outcome!

I Hidden variables propagate along the causal links.

I Repeated trials give measurement statistics P(a, b, x , y , 0).
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Causal structure of Bell’s Theorem II

Spacetime diagram of Popescu’s “hidden nonlocality” scenario:
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I Same story! A network of outcome-producing events connected
by hidden-variable-carrying causal links.
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Causal structure of Bell’s Theorem III

Spacetime diagram of Branciard–Gisin–Pironio’s “bilocality” scenario:
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I What’s going on here, generally?
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Bayesian networks with classical hidden variables I

I The events and causal links form a DAG (directed acyclic
graph) G = (V, E) with a node set V and edge set E .

I Every v ∈ V carries a random variable av . Notation: when S ⊆ V,
write aS for (av )v∈S .

I For v ∈ V, write
I in(v) = set of ingoing edges at v ,
I out(v) = set of outgoing edges at v .

I Intended local structure of a node v :

av

λout(v)
. . .

λin(v)

. . .
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Bayesian networks with classical hidden variables II

Definition

A joint distribution P(aV) is a classical correlation with respect to G
if there exist random variables (λe)e∈E and for all v ∈ V a conditional
distribution

P(av , λout(v)|λin(v))

such that

P(aV) =

∫ ∏
v∈V

P(av , λout(v)|λin(v)) dλV

Computational interpretation:

I information flow λe along every edge e,

I an information processing gate P(av , λout(v)|λin(v)) at every
node.
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Bayesian networks with classical hidden variables III

Correspondence with the usual notions:

I If in(v) = ∅ and av = 0, then v acts like a source.

I If in(v) = ∅ and |out(v)| = 1, then v acts like a choice of
measurement setting.

I If out(v) = ∅, then v acts like a measurement.

I In general, a node combines all these things!

The emphasis on the causal structure helps to clarify the assumptions
made on the hidden variables:

I Realism/Factorizability/Separability: usage of classical probability
theory.

I Locality: only the given causal links can create dependencies
among variables.
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Bayesian networks with classical hidden variables IV

Theorem (Properties of classical correlations)

I In the above definition, one can assume that all
P(av , λout(v)|λin(v)) with λin(v) 6= ∅ are deterministic:

av = f (λin(v)), λout(v) = g(λin(v)).

I P(aV) is classical if and only if there exists a hidden Bayesian
network P(ωV) on G with a variable ωv at each v ∈ V and
functions hv such that

av = hv (ωv ).

I The set of classical correlations only depends on the causal set
(=partial order) induced by G .
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Example: hidden Markov models

Stochastic process P(aZ):

a0 a1 a2. . . . . .

Edge-emitting hidden Markov model:

a0 a1 a2. . . . . .
λ0 λ1 λ2 λ3

State-emitting hidden Markov model:

ω1ω1 ω2

a1a0 a2

. . .

. . .

. . .

. . .

h0 h1 h2

Applications to speech recognition and many other things!
Tobias Fritz (June 2013) Bell’s Theorem 9 / 17



Bayesian networks with quantum hidden variables

What are quantum correlations on G?
Answer: Interpret G as a diagram in categorical quantum mechanics!

a1 b1

0

x y

a2 b2

I Each wire represents a Hilbert space He ,
I each node represents quantum instrument, i.e. a completely

positive map

Φav : B(Hin(v)) −→ B(Hout(v))

such that
∑

av
Φav is trace-preserving.

I Intuition: quantum computer with classical outcome at each gate.
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Generalizing No-Signaling

Definition

P(aV) is a correlation if for any number of subsets X1, . . . ,Xn ⊆ V
with pairwise disjoint causal past,

P(aX1 , . . . , aXn) =
∏
i

P(aXi
).

Examples:

I Any quantum correlation is a correlation.

I In a Bell scenario, P(a, b, x , y) is a correlation if and only if

P(a, x , y) = P(a, x) · P(y), P(b, x , y) = P(b, y) · P(x).

→ equivalent to standard no-signaling equations!
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Results on new scenarios (arXiv:1206.5115)

The triangle scenario:

a b

c

0

0

0

I One possible implementation: three parties and three sources.
Space-like separation between: any two parties; every party and
the opposite source.
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Results on new scenarios II (arXiv:1206.5115)

Theorem

In the triangle scenario, there are non-classical quantum correlations
P(a, b, c).

I Proof is simple, but not obvious. Idea: let c “simulate” the
measurement settings of a bipartite Bell scenario. Use entropic
inequalities to reduce to Bell’s Theorem.

I Characterizing the set of classical correlations is very challenging!

I It’s not even clear how the bound the number of values needed
for each hidden variable.
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Results on new scenarios III (arXiv:1206.5115)

The square scenario:

a

x

b

y

0

0

0

0

Theorem

In the square scenario, there are non-classical correlations P(a, b, c , d).

I Proof is simple, but not obvious. Idea: take P(a, b, c , d) to be
given by the P(a, b, x , y) of a PR-box, and find a Hardy-like
paradox.

I The existence of non-classical quantum correlations is open.
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Beyond quantum information

The present framework is an approach to causal inference in the
presence of hidden variables. This is applicable very generally! One
does not need to assume G to be known: test several possibilities for
G and see which ones turn the given data into a classical correlation.

One should expect such hidden variables to naturally occur in many
fields of science! Whenever there is a system which gets probed at
different locations, repeated trials reveal correlations between these
locations, but the underlying variables and processes are partially or
completely unknown.
→ E.g.: microbiology, meteorology.

Converse application: use a concrete hidden variable model as a
computational paradigm to generate a desired complicated pattern of
classical correlations.
→ Example: some existing applications of hidden Markov models.
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Lots of open problems!

For example:

I Relation to quantum information processing protocols: which
protocols are secretly based on these ideas?
Is the idea of causal hidden variables helpful for the development
of new protocols?

I Find bounds on classical and quantum correlations!

I Classify the scenarios: which graphs display non-classical
correlations?
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Summary

I Bell scenarios are a very special subclass of correlation scenarios!

I The general approach unifies the notions of source, choice of
measurement setting and measurement into the notion of event:
information processing of hidden variables together with output of
a classical outcome.

I These hidden Bayesian networks are a general idea for doing
causal inference in the presence of hidden variables.

I Lots of challenging open problems!
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