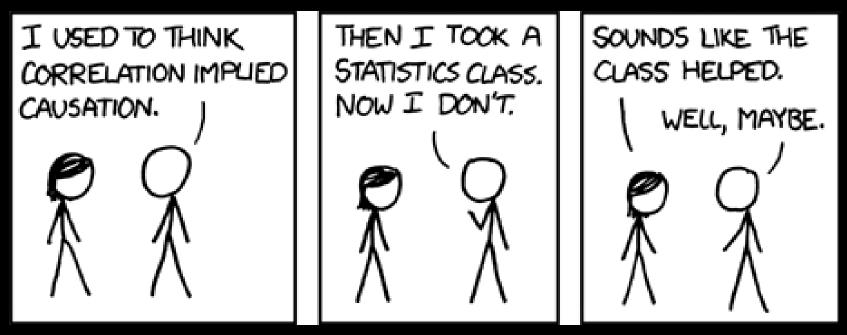
## If Correlation Doesn't Imply Causation, What Does?

### Rob Spekkens



From XKCD comics

Causal Structure in Quantum Theory, Benasque, June 3, 2013









## Simpson's Paradox

P(recovery | drug) > P(recovery | no drug)

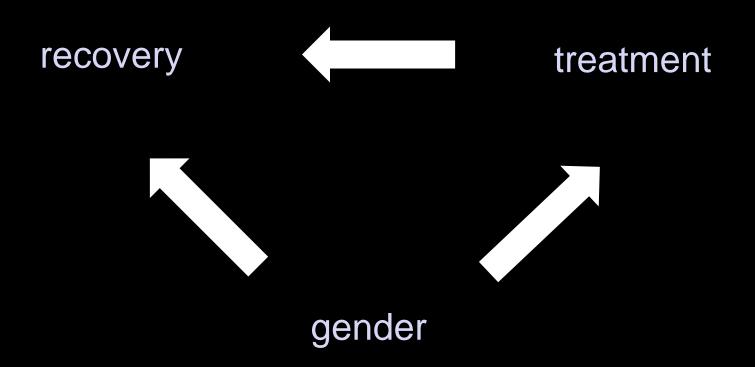
P(recovery | drug, male) < P(recovery | no drug, male)

P(recovery | drug, female) < P(recovery | no drug, female)

#### Recovery probability

|          | drug          | no drug       |
|----------|---------------|---------------|
| male     | 180/300 = 60% | 70/100 = 70%  |
| female   | 20/100 = 20%  | 90/300 = 30%  |
| combined | 200/400 = 50% | 160/400 = 40% |

# Simpson's Paradox



# Simpson's Paradox

```
P(recovery | do (drug)) # P(recovery | observe (drug))

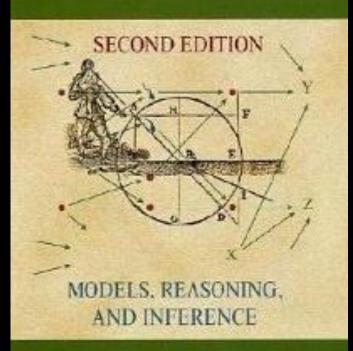
causation correlation
```

What formalism can we use to describe causal relations?

How do we come to have knowledge of causal relations? ("we" = children, scientists, machine learning systems)

How do we come to have knowledge of causal relations in uncontrolled experiments?

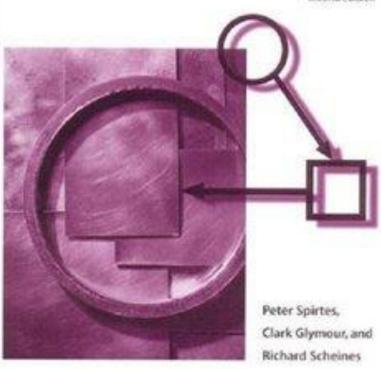
# CAUSALITY



JUDEA PEARL

#### Causation, Prediction, and Search

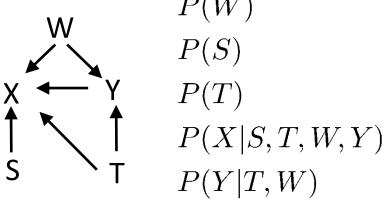
second edition



What is a Causal Model?

### Causal Model

Causal Causal-Statistical Structure Parameters P(W)

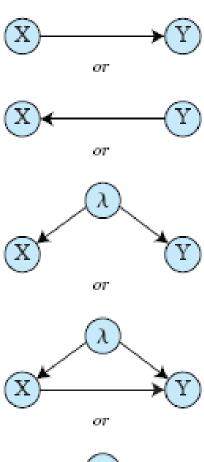


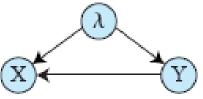
## Reichenbach's principle

No correlation without causation!

If X and Y are correlated, then either

- (i) X causes Y
- (ii) Y causes X
- (iii) X and Y have a common cause
- (iv) both (i) and (iii)
- (v) both (ii) and (iii)



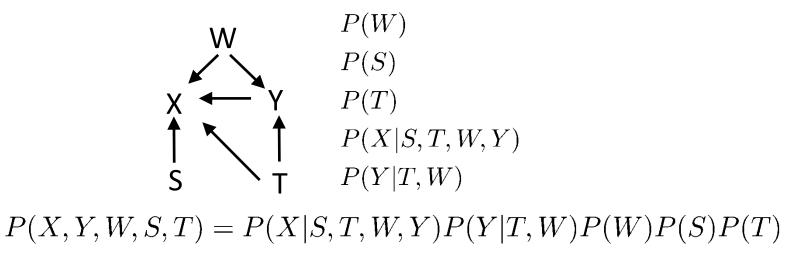


#### Causal Model

Causal Causal-Statistical Parameters P(W) P(S) P(T) P(X|S,T,W,Y) P(Y|T,W)

- Parentless variables are independently distributed
- Conditionals arise from autonomous mechanisms

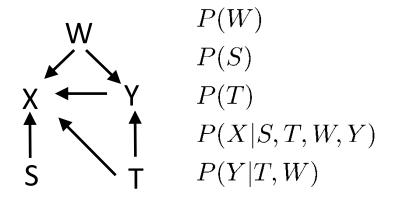
#### Given a causal model, what sorts of correlations can arise?



Causal inference algorithms seek to solve the inverse problem

Inferring facts about the causal structure from statistical independences

#### Given a causal model, what sorts of correlations can arise?

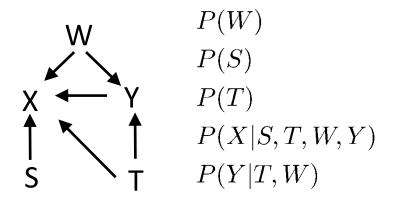


$$P(X,Y,W,S,T) = P(X|S,T,W,Y)P(Y|T,W)P(W)P(S)P(T)$$

#### Def'n: A and B are marginally independent

$$P(A|B) = P(A)$$
 Denote this  $P(B|A) = P(B)$   $A \perp B$   $A \perp B$ 

#### Given a causal model, what sorts of correlations can arise?



$$P(X,Y,W,S,T) = P(X|S,T,W,Y)P(Y|T,W)P(W)P(S)P(T)$$

#### Def'n: A and B are conditionally independent given C

$$P(A|B,C) = P(A|C)$$
 Denote this  $P(B|A,C) = P(B|C)$   $(A \perp B|C)$   $P(A,B|C) = P(A|C)P(B|C)$ 

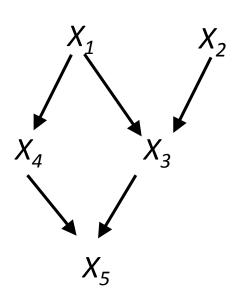
chain 
$$A \longrightarrow B \longrightarrow C$$
  $A \not\perp C$   $(A \perp C|B)$ 

confounded cause 
$$A \not = C$$
  $A \not \perp C$   $A \not \perp C \mid B$ 

collider 
$$A \downarrow C$$
  $A \perp C$   $A \not\perp C|B$ 

**Markov condition:** The joint distribution induced by a causal model is such that every variable X is conditionally independent of its nondescendants given its parents,

$$(X \perp Nondescendants(X) \mid Parents(X))$$



$$(X_1 \perp X_2)$$
  
 $(X_2 \perp \{X_1, X_4\})$   
 $(X_3 \perp X_4 \mid \{X_1, X_2\})$   
 $(X_4 \perp \{X_2, X_3\} \mid X_1)$   
 $(X_5 \perp \{X_1, X_2\} \mid \{X_3, X_4\})$ 

#### Semi-graphoid axioms

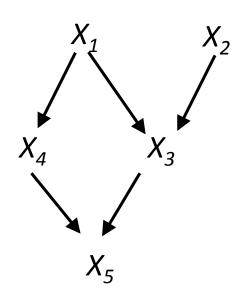
Symmetry:  $(X \perp Y \mid Z) \Leftrightarrow (Y \perp X \mid Z)$ 

Decomposition:  $(X \perp YW \mid Z) \Rightarrow (X \perp Y \mid Z)$ 

Weak Union:  $(X \perp YW \mid Z) \Rightarrow (X \perp Y \mid ZW)$ 

Contraction:  $(X \perp Y \mid Z)$  and  $(X \perp W \mid ZY)$ 

$$\Rightarrow (X \perp YW \mid Z)$$



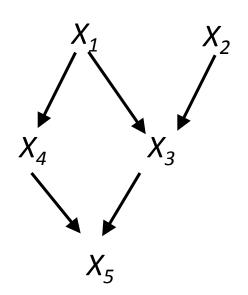
$$(X_1 \perp X_2)$$
  
 $(X_2 \perp \{X_1, X_4\})$   
 $(X_3 \perp X_4 \mid \{X_1, X_2\})$   
 $(X_4 \perp \{X_2, X_3\} \mid X_1)$   
 $(X_5 \perp \{X_1, X_2\} \mid \{X_3, X_4\})$ 

The semi-graphoid axioms then imply

$$(X_4 \perp X_2 \mid X_1)$$
  
 $(\{X_4, X_5\} \perp X_2 \mid \{X_1, X_3\})$ 

. . .

## The values of the causal-statistical parameters can imply further CI relations



#### Suppose:

$$X_3 = (X_1 + X_2) \bmod 2$$

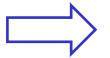
$$X_3 = (X_1 + X_2) \mod 2$$
  
 $P(X_2 = 0) = P(X_2 = 1) = \frac{1}{2}$ 

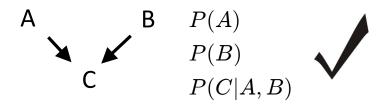
#### Then:

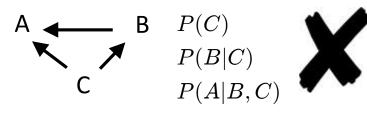
$$X_3 \perp X_1$$

 $A \perp B$  and no other independence relations

 $A \perp B$  and no other independence relations







No Fine-tuning!

# A key assumption of causal discovery algorithms

## No fine-tuning (a.k.a. stability, a.k.a. faithfulness):

A causal model M is not fine-tuned relative to a probability distribution P if the conditional independences that hold in P continue to hold for any variation of the parameters in M

 $(A \perp B|C)$ 

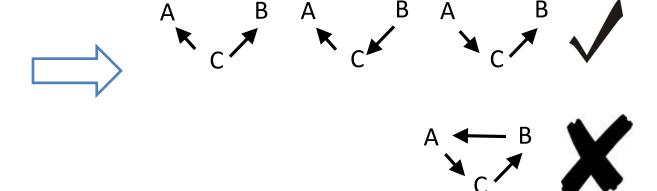
and no other independence relations



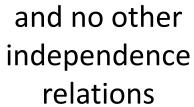
A ? B



and no other independence relations

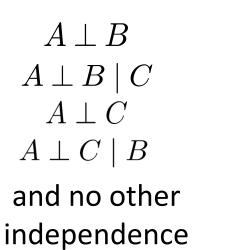


 $A \perp B$   $A \perp B \mid C$   $A \perp C$   $A \perp C \mid B$ 

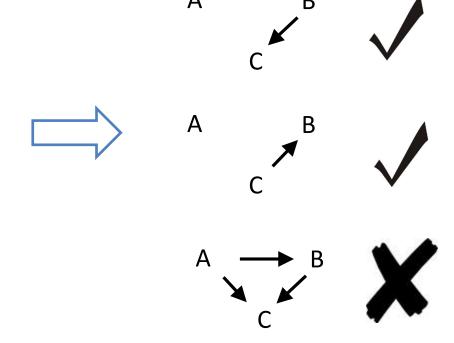








relations



## Allowing latent variables in the causal structure

What's given: probability distribution over observed variables

What we must infer: a causal structure over a set of variables that includes the observed variables and may include one or more latent variables

**Notational Convention** 

Observed variables: A, B, C,...

Latent variables:  $\lambda$ ,  $\mu$ ,  $\nu$ , ...

## Does smoking cause lung cancer?

$$S \not\perp C \qquad \qquad S \rightarrow C ?$$

$$S \downarrow C \qquad \qquad S \downarrow C \qquad ?$$

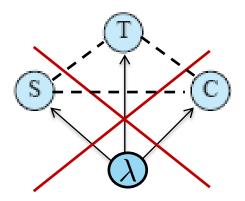
Suppose you also observe

$$S \perp C \mid T$$

and no other independences

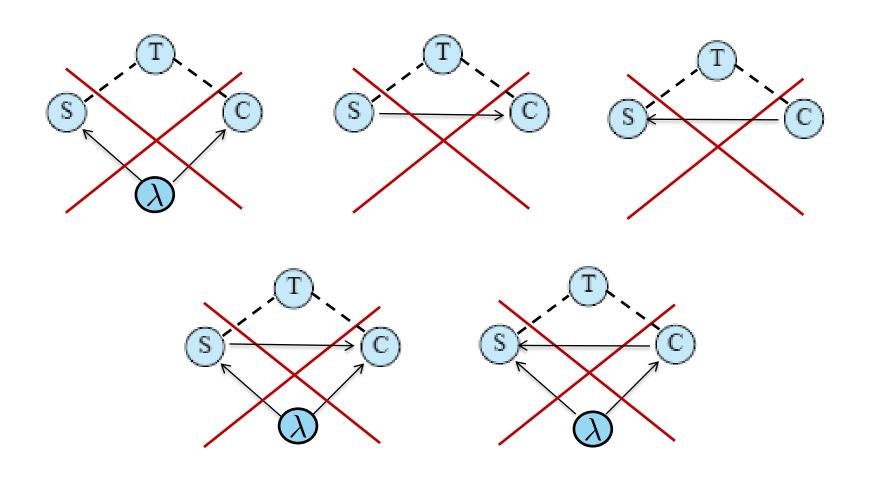
$$(S \perp C / T)$$

Latent common cause for S, C and T?



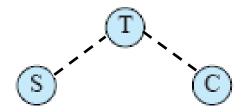
$$(S \perp C / T)$$

# Latent common cause or direct causal relation (or both) between S and C?



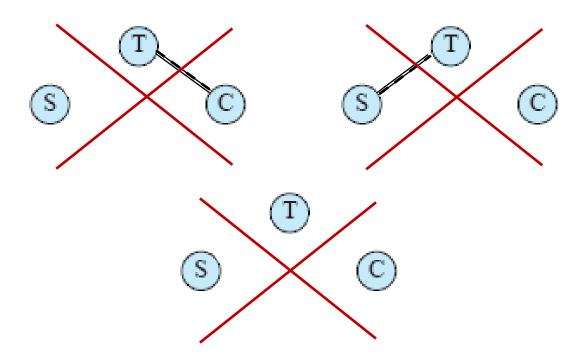
$$(S \perp C / T)$$

So the causal structure must be of the form

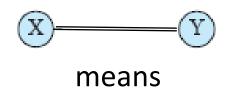


$$(S \perp C / T)$$

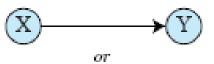
Marginal independence between remaining pairs?

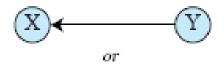


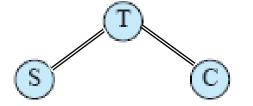
 $(S \perp C / T)$ 

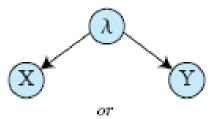


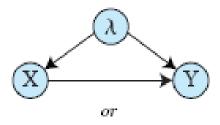
So the causal structure must be of the form

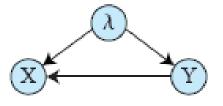






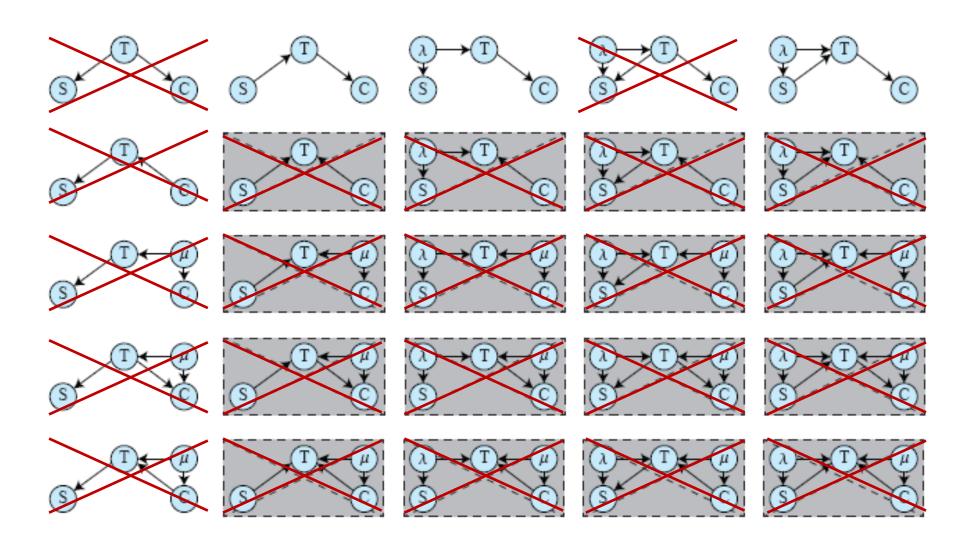






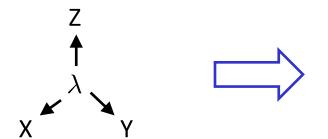
 $(S \perp C / T)$ 

## Assume one extra piece of data: S always precedes T



Inferring facts about the causal structure from the strength of correlations

# Strength of Correlations



P(X,Y,Z) can have perfect three-way correlation



P(X,Y,Z) is bounded away from perfect three-way correlation

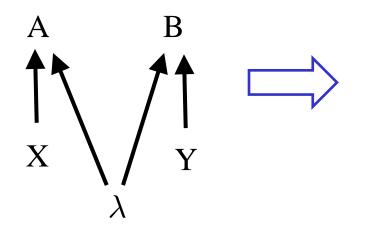
Janzing and Beth, arXiv:quant-ph/0208006

Steudel and Ay, arXiv:1010:5720

Fritz, New J. Phys. 14, 103001 (2012)

Branciard, Rosset, Gisin, Pironio, arXiv:1112.4502

# Strength of Correlations



Inequalities on P(A,B|X,Y)

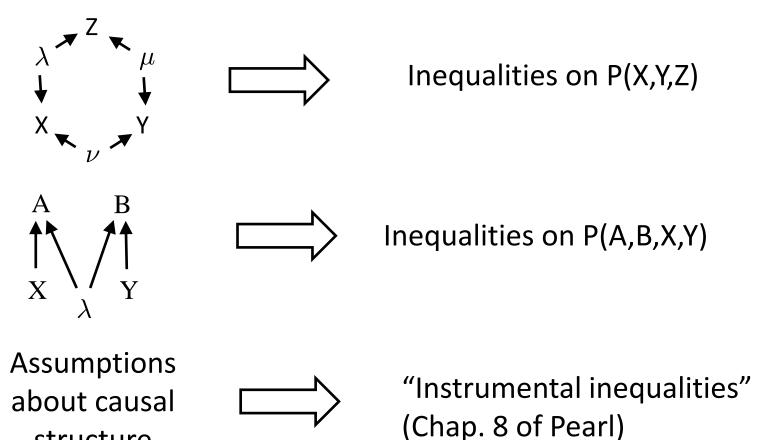
$$P(A = B|0,0) + P(A = B|0,1) + P(A = B|1,0) + P(A \neq B|1,1) \cdot 3$$

where

$$P(A=B|X,Y) := \sum_{a=b} P(A=a,B=b|X,Y)$$

$$P(A \neq B|X,Y) := \sum_{a \neq b} P(A = a, B = b|X,Y)$$

# Testing candidate causal structures

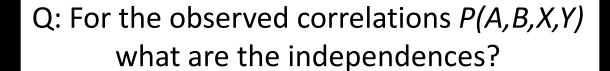


structure

# The lesson of causal inference for Bell-inequality-violating correlations

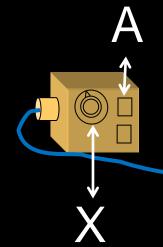
Joint work with Christopher Wood

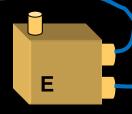
See: arXiv:1208.4119

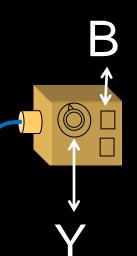


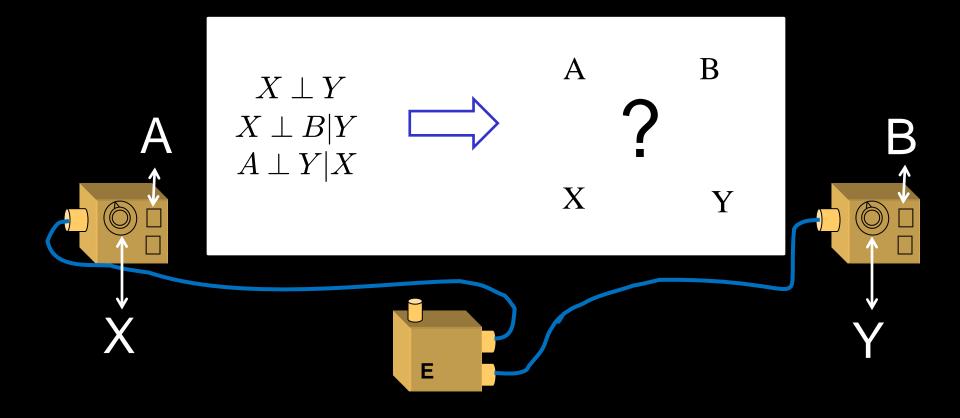
A: The set generated by

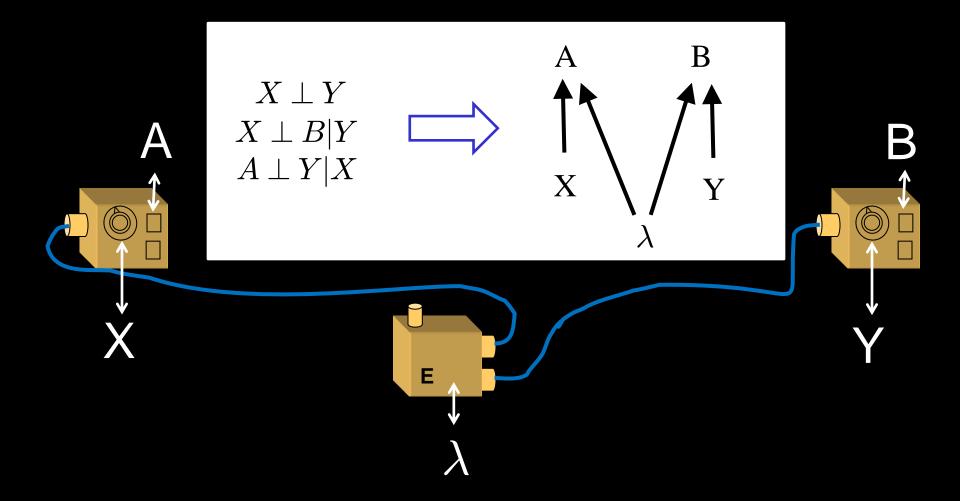
$$(X \perp Y)$$
,  $(A \perp Y / X)$ ,  $(B \perp X / Y)$ 

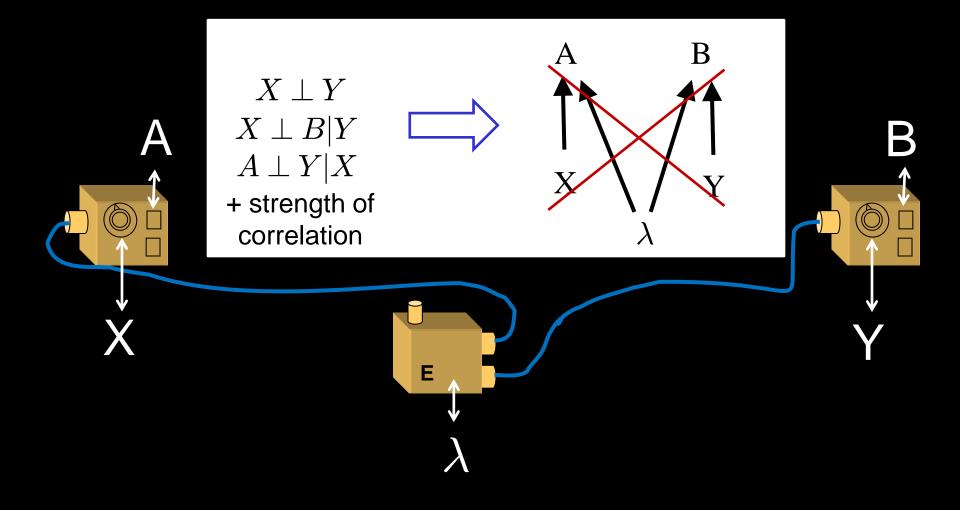


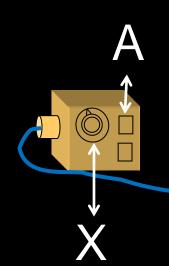


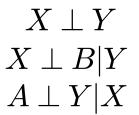




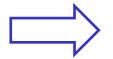




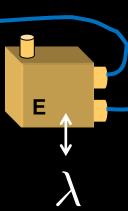


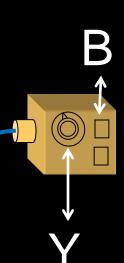


+ strength of correlation



No causal explanation without fine-tuning!





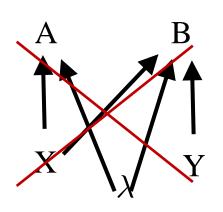
# What are the key assumptions of Bell's theorem?

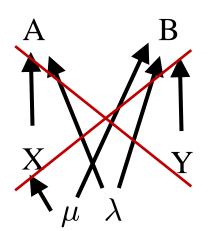
## A "standard" response:

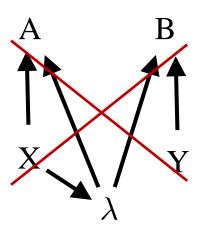
- Realism
- Local causality
- No superdeterminism
- No retrocausation

## What is proposed here:

- Reichenbach's principle
- No fine-tuning
- A causal model is a directed acyclic graph supplemented with conditional probabilities



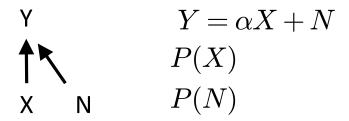




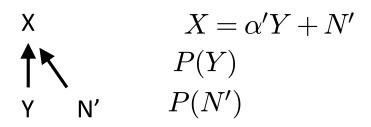
Distinguishing  $X \rightarrow Y$  from  $Y \rightarrow X$  under assumption of additive noise

#### Linear functional model with additive noise

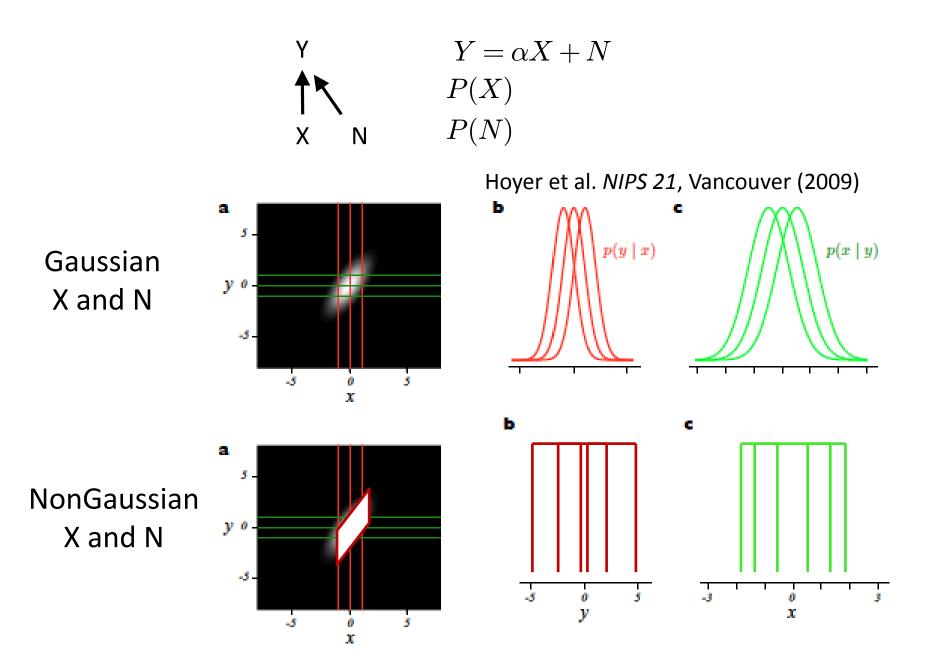
## distinguish



#### from

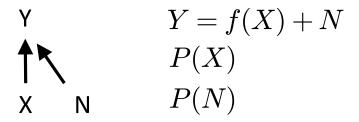


## Linear functional model with additive noise

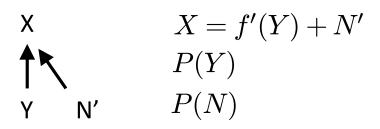


#### Nonlinear functional model with additive noise

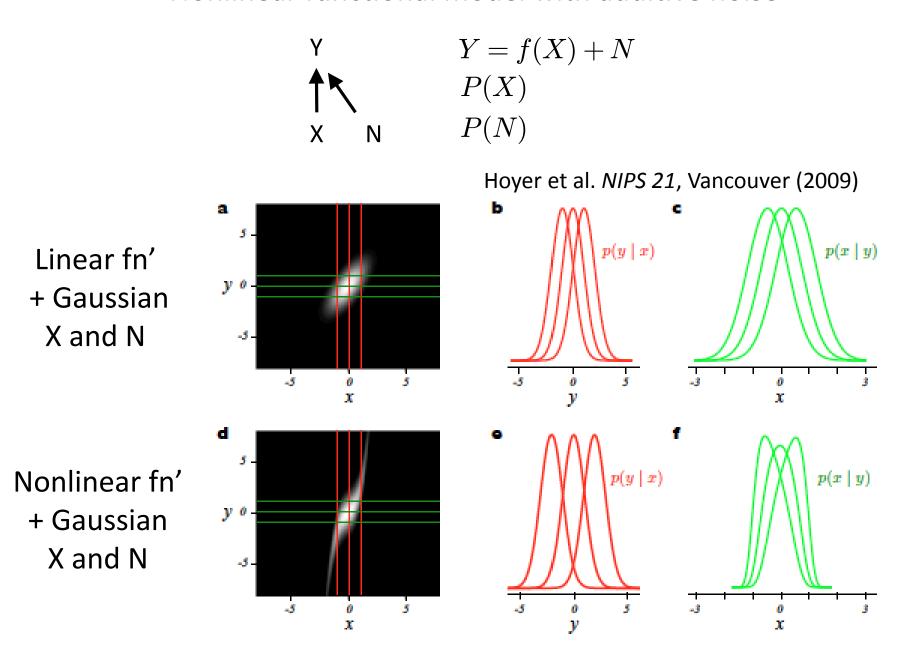
## distinguish



#### from



#### Nonlinear functional model with additive noise

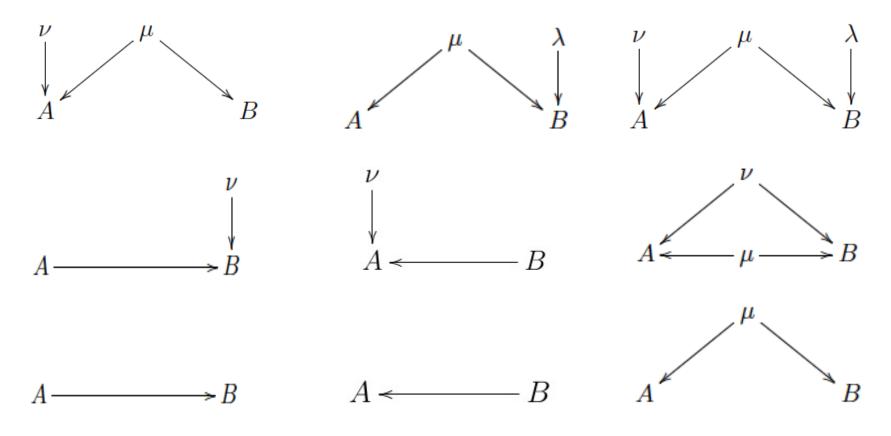


# Causal inference from correlations on a pair of binary variables

Joint work with Ciaran Lee

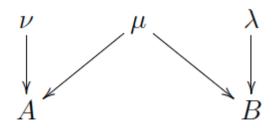
# Functional Causal Models where A and B have at most two binary variables as parents

Possible Causal structures



Note: all noise is assumed to come from the root nodes

# Possible functional dependences of A and B on their parents



$$A = \nu \oplus \mu$$
  $B = \lambda \oplus \mu$   $A = \nu \oplus \mu \oplus 1$   $B = \lambda \oplus \mu \oplus 1$   $B = \lambda \mu \oplus 1$   $A = \nu \mu \oplus 1$   $B = \lambda \mu \oplus 1$ 

$$B = \lambda \oplus \mu$$

$$B = \lambda \oplus \mu \oplus 1$$

$$B = \lambda \mu$$

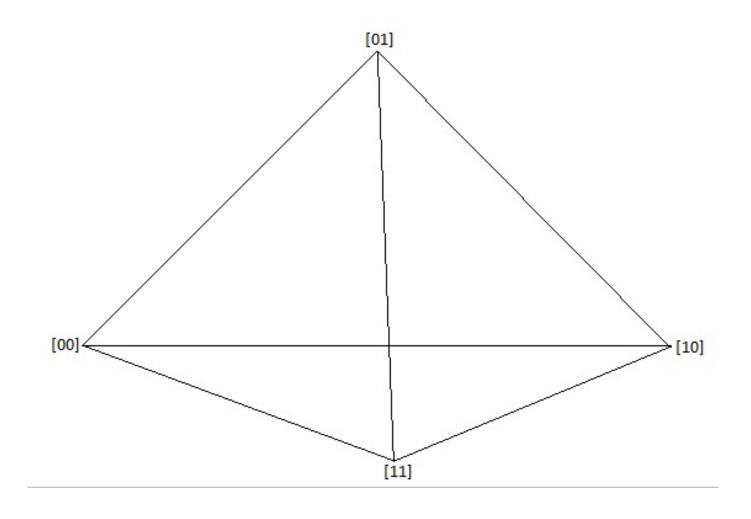
$$B = \lambda \mu \oplus 1$$

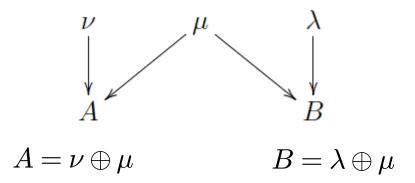
#### Note:

| $\mu$ | $\nu$ | $f = \mu \oplus \nu \oplus \mu \nu$ |
|-------|-------|-------------------------------------|
| 0     | 0     | 0                                   |
| 0     | 1     | 1                                   |
| 1     | 0     | 1                                   |
| 1     | 1     | 1                                   |

| $\mu$ | $\nu$ | $g = (\mu \oplus 1)(\nu \oplus 1) \oplus 1$ |
|-------|-------|---------------------------------------------|
| 0     | 0     | 0                                           |
| 0     | 1     | 1                                           |
| 1     | 0     | 1                                           |
| 1     | 1     | 1                                           |

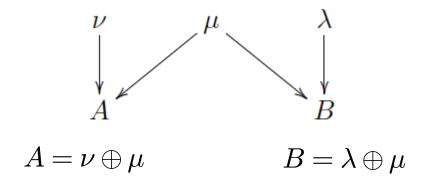
$$P(A,B) = p_{00}[00] + p_{01}[01] + p_{10}[10] + p_{11}[11]$$

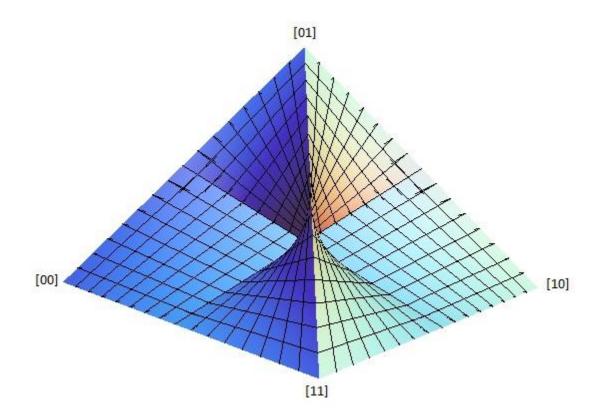


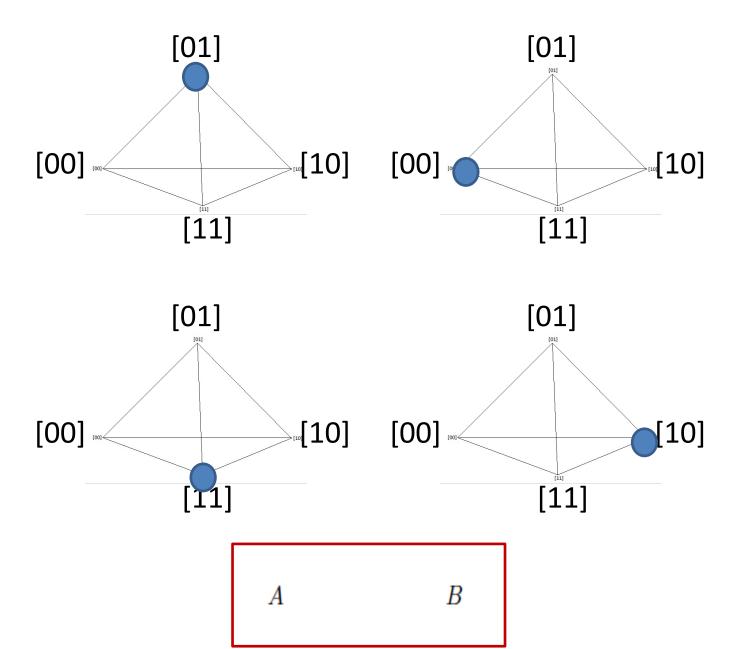


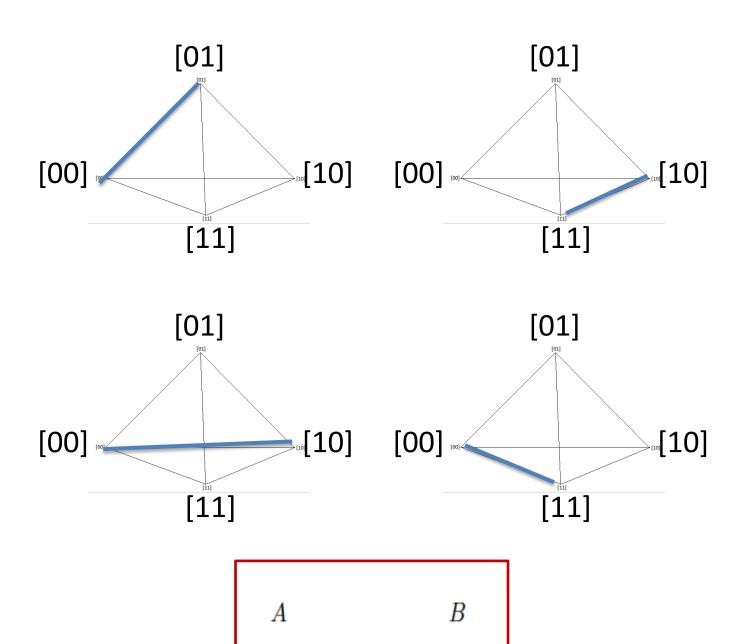
| $\mu$ | $\nu$ | $\lambda$ | $A = \mu \oplus \nu$ | $B = \mu \oplus \lambda$ |
|-------|-------|-----------|----------------------|--------------------------|
| 0     | 0     | 0         | 0                    | 0                        |
| 0     | 0     | 1         | 0                    | 1                        |
| 0     | 1     | 0         | 1                    | 0                        |
| 1     | 0     | 0         | 1                    | 1                        |
| 1     | 1     | 0         | 0                    | 1                        |
| 0     | 1     | 1         | 1                    | 1                        |
| 1     | 0     | 1         | 1                    | 0                        |
| 1     | 1     | 1         | 0                    | 0                        |

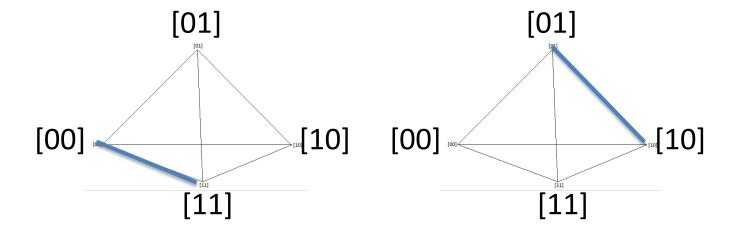
$$P(A,B) = (q_1q_2q_3 + \bar{q}_1\bar{q}_2\bar{q}_3)[00] + (q_1q_2\bar{q}_3 + \bar{q}_1\bar{q}_2q_3)[01] + (q_1\bar{q}_2q_3 + \bar{q}_1q_2\bar{q}_3)[10] + (\bar{q}_1q_2q_3 + q_1\bar{q}_2\bar{q}_3)[11],$$





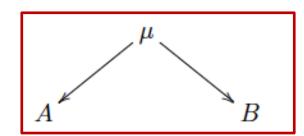


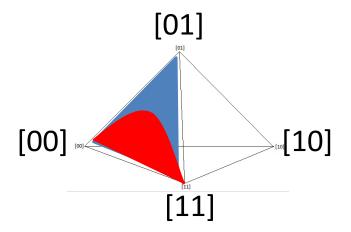




$$A \longrightarrow B$$

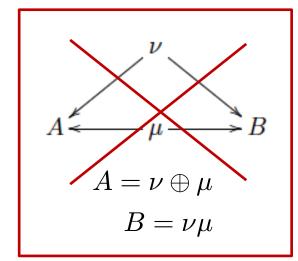


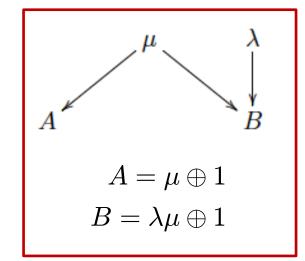


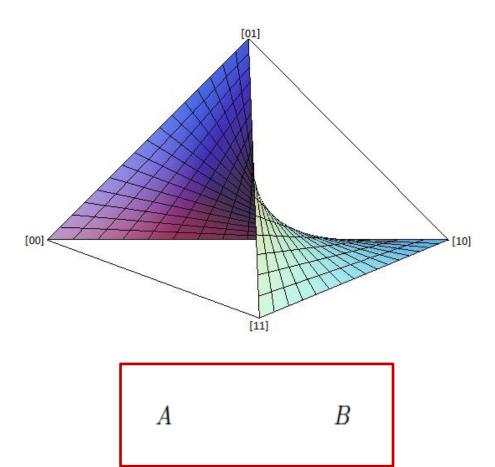


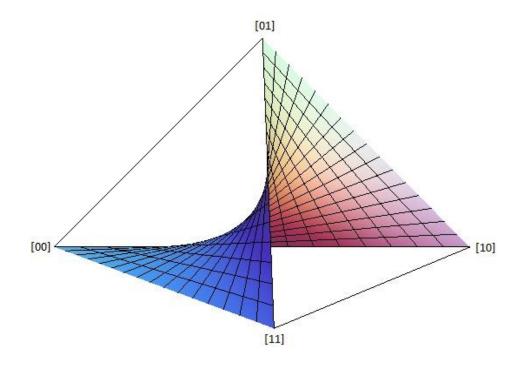
$$A \xrightarrow{\nu} B$$

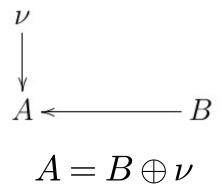
$$B = \nu(A \oplus 1) \oplus 1$$

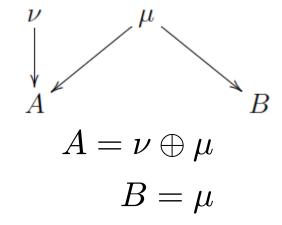


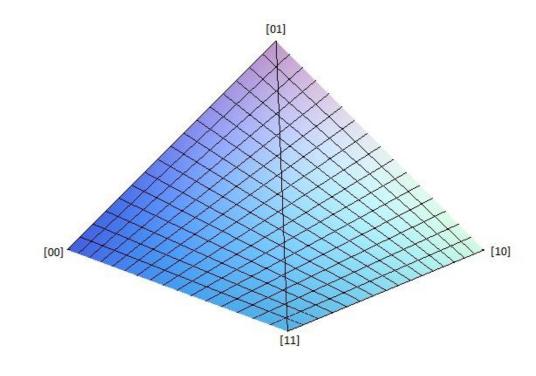






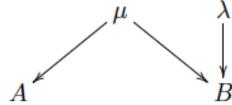






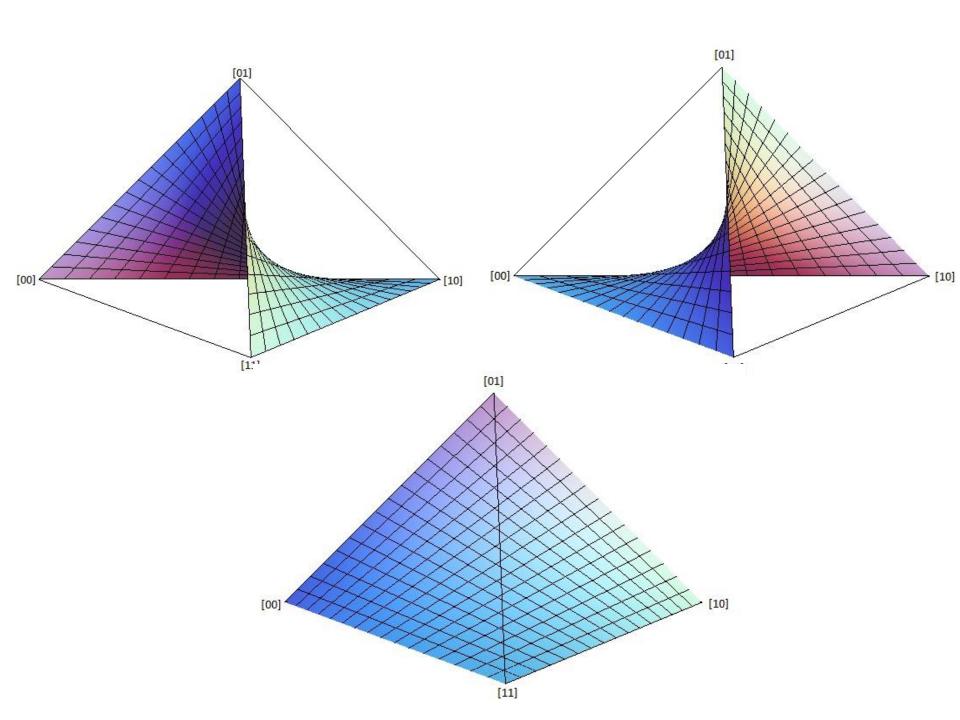
$$A \xrightarrow{\nu} B$$

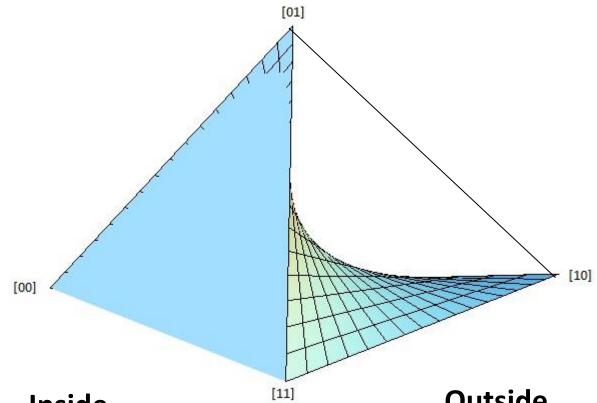
$$B=A\oplus \nu$$



$$A = \mu$$

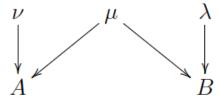
$$B=\mu\oplus\lambda$$





# Inside

#### Consistent with

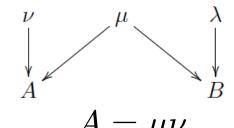


$$A = \mu \nu$$
$$B = \mu \lambda$$

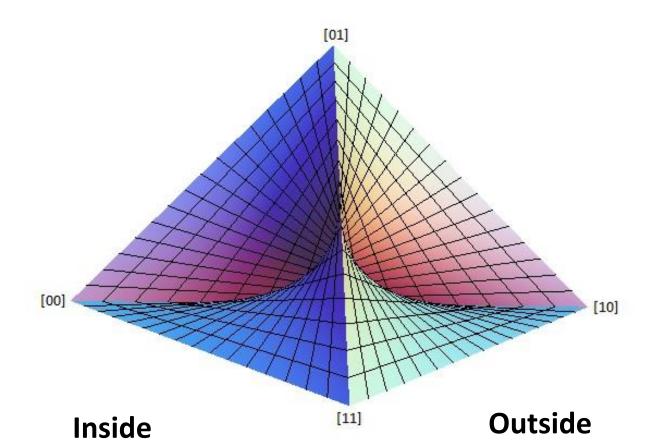
$$B = \mu \lambda$$

# **Outside**

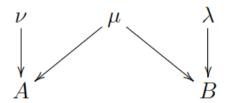
#### Consistent with



$$A = \mu \nu$$
 
$$B = \mu \lambda \oplus 1$$



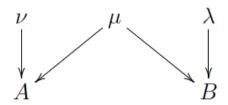
#### Consistent with



$$A = \mu \oplus \nu$$

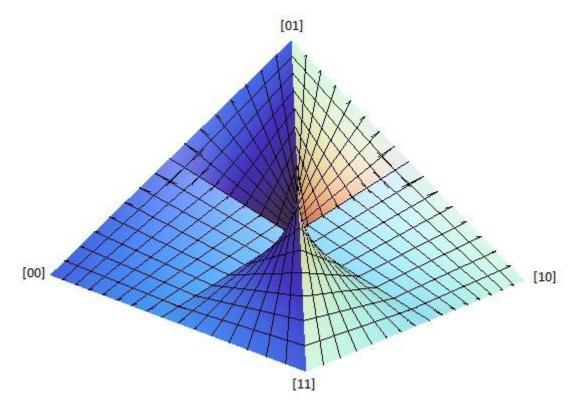
$$B = \mu \lambda$$

## Consistent with



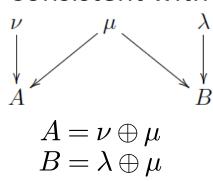
$$A = \mu \oplus \nu$$

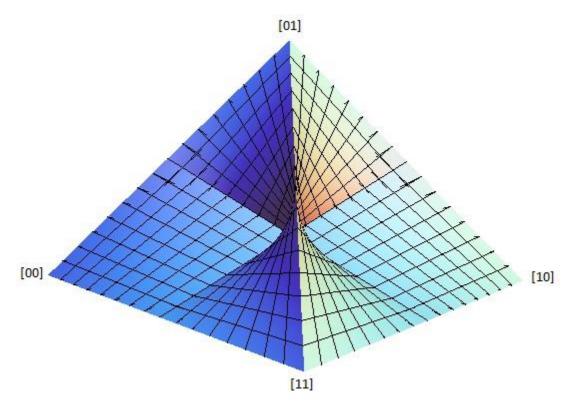
$$B = \mu \lambda \oplus 1$$



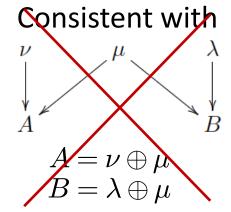
# Inside

# Consistent with





# Outside



# Quantum Bayesian Inference and Quantum Causal Models

joint work with Matt Leifer

See: arXiv:1107.5849, arXiv:1110.1085

Classical

Quantum

Joint state P(R,S)

 $ho_{AB}$ 

Marginalization

 $P(S) = \sum_{R} P(R, S)$ 

 $\rho_B = \text{Tr}_A \rho_{AB}$ 

Conditional state

P(S|R)  $\sum_{S} P(S|R) = 1$ 

 $\operatorname{Tr}_B(\rho_{B|A}) = I_A$ 

 $\rho_{B|A}$ 

Belief propagation

 $P(S) = \sum_{R} P(S|R)P(R)$ 

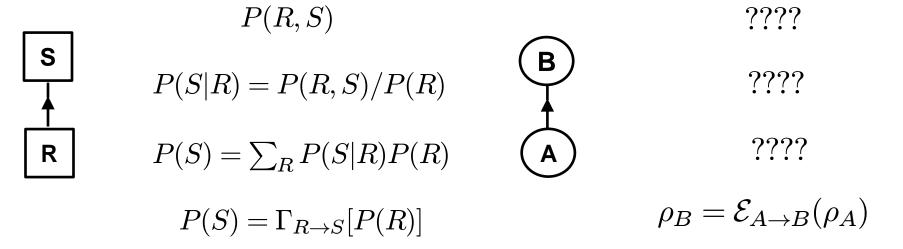
 $\rho_B = \text{Tr}_A(\rho_{B|A}\rho_A)$ 

$$P(S|R) = P(R,S)$$

$$P(S|R) = P(R,S)/P(R)$$

$$P(S) = \sum_{R} P(S|R)P(R)$$

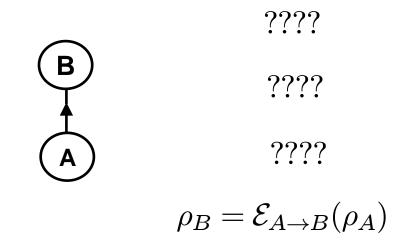
$$P(S) = \Gamma_{R \to S}[P(R)]$$



$$egin{aligned} oldsymbol{eta}_{A} --- oldsymbol{eta} & 
ho_{AB} \ 
ho_{B|A} = 
ho_A^{-1/2} 
ho_{AB} 
ho_A^{-1/2} \ 
ho_B = \mathrm{Tr}_A (
ho_{B|A} 
ho_A) \ 
ho_B = \mathfrak{E}_{A 
ightarrow B} (
ho_A) \end{aligned}$$

$$P(R,S)$$
 
$$P(S|R) = P(R,S)/P(R)$$
 
$$P(S) = \sum_{R} P(S|R)P(R)$$
 
$$P(S) = \Gamma_{R \to S}[P(R)]$$

 $P(S) = \Gamma_{R \to S}[P(R)]$ 



$$P(S|R) = P(R,S) / P(R)$$
 
$$P(S) = \sum_{R} P(S|R) P(R)$$

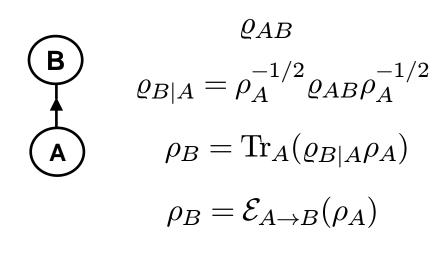
 $P(S) = \Gamma_{R \to S}[P(R)]$ 

$$\rho_{B|A} = \rho_A^{-1/2} \rho_{AB} \rho_A^{-1/2}$$

$$\rho_B = \text{Tr}_A(\rho_{B|A}\rho_A)$$

$$\rho_B = \mathfrak{E}_{A \to B}(\rho_A)$$

$$P(R,S)$$
 
$$P(S|R) = P(R,S)/P(R)$$
 
$$P(S) = \sum_{R} P(S|R)P(R)$$
 
$$P(S) = \Gamma_{R \to S}[P(R)]$$



$$P(R,S)$$
 
$$P(S|R) = P(R,S)/P(R)$$

$$P(S) = \sum_{R} P(S|R)P(R)$$

$$ho_{B|A}=
ho_A^{-1/2}
ho_{AB}
ho_A^{-1/2}$$
  $ho_B=\mathrm{Tr}_A(
ho_{B|A}
ho_A)$ 

$$\rho_{B|A} \ge 0$$

$$P(R,S)$$
 
$$P(S|R) = P(R,S)/P(R)$$
 
$$P(S) = \sum_{R} P(S|R)P(R)$$

$$\begin{array}{c} \mathcal{Q}_{AB} \\ \\ \mathcal{Q}_{B|A} = \varrho_A^{-1/2} \varrho_{AB} \rho_A^{-1/2} \\ \\ \mathcal{Q}_{B|A} = \mathrm{Tr}_A (\varrho_{B|A} \rho_A) \end{array}$$

$$\varrho_{B|A}^{T_A} \ge 0$$

|                                | Conventional expression               | In terms of conditional states |
|--------------------------------|---------------------------------------|--------------------------------|
| Probability distribution for X | P(X)                                  | $ ho_X$                        |
| Set of states on A             | $\{ ho_x^A\}$                         | $ ho_{A X}$                    |
| POVM on A                      | $\{E_x^A\}$                           | $ ho_{X A}$                    |
| Channel from A to B            | $\mathcal{E}^{A	o B}$                 | $ ho_{B A}$                    |
| Instrument                     | $\{\mathcal{E}_{x}^{A ightarrow B}\}$ | $ ho_{XB A}$                   |

# Conventional expression

In terms of conditional states

Action of quantum channel

$$\bigcirc$$
 B

$$\rho_B = \mathcal{E}^{A \to B}(\rho_A)$$

$$\rho_B = \operatorname{Tr}_A(\rho_{B|A}\rho_A)$$

Born's rule

$$P(Y=y) = \text{Tr}_A(E_y^A \rho_A)$$

$$\rho_Y = \operatorname{Tr}_A(\rho_{Y|A}\rho_A)$$

Ensemble averaging

$$\triangle$$
  $\triangle$ 

$$\rho_A = \sum_x P(X = x) \rho_x^A$$

$$\rho_A = \operatorname{Tr}_X(\rho_{A|X}\rho_X)$$

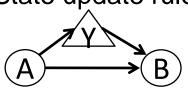
Composition of channels

$$A \rightarrow B \rightarrow C$$

$$\mathcal{E}^{A o C}=\mathcal{E}^{B o C}\circ\mathcal{E}^{A o B}$$

$$\rho_{C|A} = \text{Tr}_B(\rho_{C|B}\rho_{B|A})$$

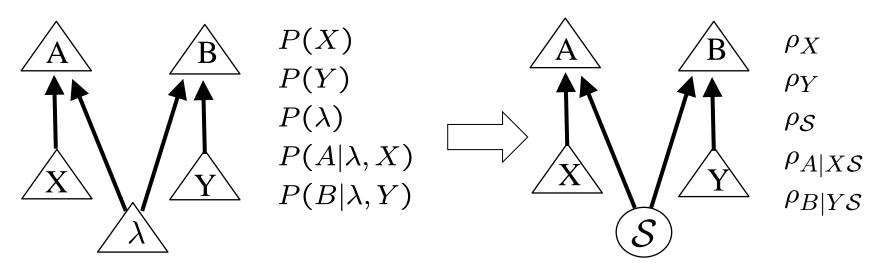
State update rule



$$P(Y=y)\rho_y^B = \mathcal{E}_y^{A\to B}(\rho_A) \qquad \rho_{YB} = \text{Tr}_A(\rho_{YB|A}\rho_A)$$

$$\rho_{YB} = \text{Tr}_A(\rho_{YB|A}\rho_A)$$

# **Quantum Causal Models**



$$P(A, B|X, Y) \qquad \rho_{AB|XY} = \sum_{\lambda} P(A|\lambda, X) P(B|\lambda, Y) P(\lambda) \qquad = \operatorname{Tr}_{\mathcal{S}}(\rho_{A|X} \mathcal{S} \rho_{B|Y} \mathcal{S} \rho_{\mathcal{S}})$$

Deriving quantum correlations

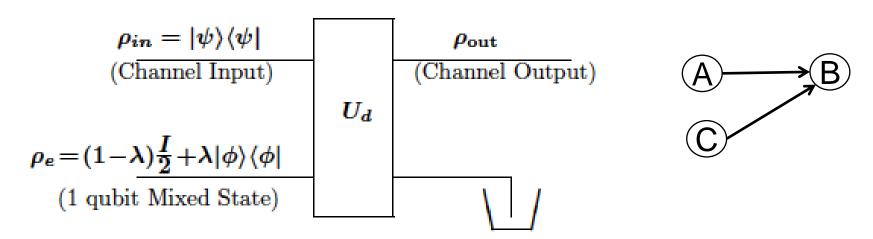
A possible line of attack:

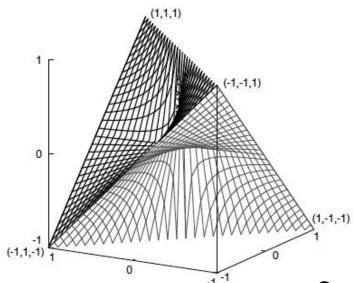
Principles about inference → Quantum Bayesian inference

+ Assumptions about causal structure

See: Coecke and RWS, Synthese 186, 651 (2012)

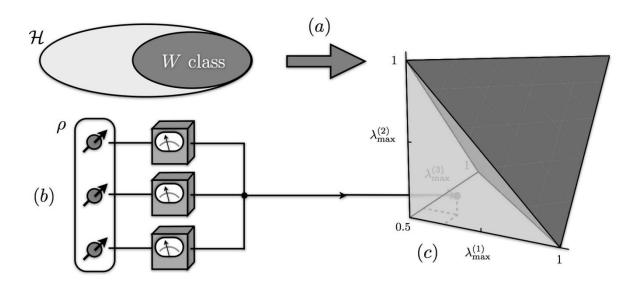
Understanding the subset of qubit channels induced by a single qubit ancilla





See: Narang and Arvind, arXiv:quant-ph/0611058

# Understanding multipartite entanglement SLOCC classes



See: Walter et al. arXiv:1208.0365

