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Effective Action of vacuum for QFEXT / gravity.
Independent on whether gravity should be should not be
quantized, we know that the matter fields should.

Therefore, it is reasonable to ask whether the quantum effects of
matter fields are capable to produce significant effects on the
astrophysical or even cosmological scale.

At quantum level the dynamics of gravity is governed by the
Effective Action of vacuum Γ[gµν ].

eiΓ[gµν ] =

∫
dΦeiS[Φ, gµν ] , Φ =

{
matter fields

}
.

In case of renormalizable theory

S[Φ, gµν ] = Svac[gµν ]+Sm[Φ, gµν ] ⇒ Γ[gµν ] = Svac[gµν ]+ Γ̄[gµν ] .
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In case of renormalizable theory

Svac = SEH + SHD , SEH = − 1
16πG

∫
d4x

√
−g (R + 2Λ) ,

and SHD includes higher derivative terms.

SHD =

∫
d4x

√
−g

{
a1C2 + a2E + a3�R + a4R2 } .

Here
C2(4) = R2

µναβ − 2R2
αβ + 1/3 R2

is the square of the Weyl tensor and

E = RµναβRµναβ − 4 RαβRαβ + R2

the integrand of the Gauss-Bonnet topological invariant.

The main problem is to evaluate Γ̄[gµν ], at least at 1-loop.
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The case of massless conformal fields.

Γ̄[gµν ] can be obtained, e.g., by integrating conformal anomaly.
Riegert, Fradkin & Tseytlin, (1984).

Γ̄ind = Sc[gµν ] +
β1

4

∫
x

∫
y

(
E − 2

3
�R
)

x
G(x , y)

(
C2)

y

−β2

8

∫
x

∫
y

(
E − 2

3
�R
)

x
G(x , y)

(
E − 2

3
�R
)

y
+

3β3 − 2β2

6

∫
x

R2 .

Here
∫

x =
∫

d4x
√

g and ∆xG(x , x ′) = δ(x , x ′) .

∆ = �2 + 2Rµν∇µ∇ν − 2
3

R�+
1
3
(∇µR)∇µ .

Sc[gµν ] is an arbitrary conformal functional. The β-functions
depend on the number of fields, N0, N1/2, N1, β1

−β2
β3

 =
1

360(4π)2

 3N0 + 18N1/2 + 36N1
N0 + 11N1/2 + 62N1
2N0 + 12N1/2 − 36N1


An important application: Starobinsky model.
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Massive fields are more complicated and interesting.

And especially if we are interested in the low-energy effects,
decause one has to account for the decoupling phenomenon.

High energy QED: − e2

4
FµνFµν +

e4

3(4π)2 Fµν ln
(
− �

µ2

)
Fµν .

At high energy limit we meet a standard (MS) β-function and at
low energies there is quadratic decoupling.

UV limit p2 ≫ m2 =⇒ β1 UV
e =

4 e3

3 (4π)2 + O
(m2

p2

)
.

IR limit p2 ≪ m2 =⇒ β1 IR
e =

e3

(4π)2 · 4 p2

15 m2 + O
( p4

m4

)
.

Appelquist and Carazzone decoupling theorem (PRD, 1977).
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General expression interpolates between UV and IR.

e t( )
-2

t

These plots show the effective electron charge as a function of
log(µ/µ0) in the case of the MS-scheme,
and for the momentum-subtraction scheme, with ln(p/µ0) .

An interesting high-energy effect is a small apparent shift of the
initial value of the effective charge.
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Similar results can be obtained for gravity.

E.g., for a massive scalar field (Gorbar & I.Sh., JHEP, 2003).

β1 = − 1
(4π)2

(
1

18a2 − 1
180

− a2 − 4
6a4 A

)
.

Then

βUV
1 = − 1

(4π)2
1

120
+O

(
m2

p2

)
= βMS

1 +O
(

m2

p2

)
,

βIR
1 = − 1

1680 (4π)2 · p2

m2 + O
(

p4

m4

)
,

This is the Appelquist & Carazzone Theorem for gravity

However, in the momentum-subtraction scheme βG = βΛ = 0 .
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In the gravitational sector we meet Appelquist and Carazzone -
like decoupling, but only in the higher derivative sectors.
In the perturbative approach, with gµν = ηµν + hµν , we do not
see running for the cosmological and inverse Newton constants.

Why do we get βΛ = β1/G = 0 ?

Momentum subtraction running corresponds to the insertion of,
e.g., ln(�/µ2) formfactors into effective action.

Say, in QED: − e2

4
FµνFµν +

e4

3(4π)2 Fµν ln
(
− �

µ2

)
Fµν .

Similarly, one can insert formfactors into

Cµναβ ln
(
− �

µ2

)
Cµναβ .

However, such insertion is impossible for Λ and for 1/G,
because �Λ ≡ 0 and �R is a full derivative.

Further discussion:
Ed. Gorbar & I.Sh., JHEP (2003); J. Solà & I.Sh., PLB (2010).
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Is it true that physical βΛ = β1/G = 0 ?

Probably not. Perhaps the linearized gravity approach is simply
not an appropriate tool for the CC and Einstein terms.

Let us use the covariance arguments. The EA can not include
odd terms in metric derivatives. In the cosmological setting this
means no O(H) and also no O(H3) terms, etc. Hence

ρΛ(H) =
Λ(H)

16πG(H)
= ρΛ(H0) + C

(
H2 − H2

0

)
.

Then the conservation law for G(H; ν) gives

G(H; ν) =
G0

1 + ν ln
(
H2/H2

0

) , where G(H0) = G0 =
1

M2
P
.

Here we used the identification

µ ∼ H in the cosmological setting.
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A small note on the Cosmological Constant (CC) Problem.

The main relation is Λobs = Λvac(µc) + Λind (µc) .

Λobs which is likely observed in SN-Ia, LSS, CMB etc is

Λobs(µc) ≈ 0.7 ρ0
c ∝ 10−47 GeV 4 .

The CC Problem is that the magnitudes of Λvac(µc) and Λind (µc)
are a huge 55 orders of magnitude greater than the sum!

Obviously, these two huge terms do cancel.
“Why they cancel so nicely” is the CC Problem (Weinberg, 1989).

We take a phenomenological point of view and don’t try solving
CC problems. Instead we consider whether CC may vary due to
IR quantum effects, e.g., the ones of matter fields.

Ilya Shapiro, Quantum corrections and implications for cosmology and astrophysics



The same ρΛ(µ) immediately follows from the assumption of the
Appelquist and Carazzone - like decoupling for CC.

A.Babic, B.Guberina, R.Horvat, H.Štefančić, PRD 65 (2002);
I.Sh., J.Solà, JHEP 02 (2002).

We know that for a single particle

βMS
Λ (m) ∼ m4 ,

hence the quadratic decoupling gives

βIR
Λ (m) =

µ2

m2 βMS
Λ (m) ∼ µ2m2 .

The total beta-function will be given by algebraic sum

βIR
Λ =

∑
kiµ

2m2
i = σM2 µ2 ∝ 3ν

8π
M2

P H2 .

This leads to the same result in the cosmological setting,

ρΛ(H) = ρΛ(H0) +
3ν
8π

M2
p
(
H2 − H2

0

)
.
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One can also obtain the same G(µ) in a different way.

I.Sh., J. Solà, JHEP (2002); C. Farina, I.Sh. et al, PRD (2011).

Consider MS-based renormalization group equation for G(µ):

µ
dG−1

dµ
=

∑
particles

Aij mi mj = 2ν M2
P , G−1(µ0) = G−1

0 = M2
P .

Here the coefficients Aij depend on the coupling constants,
mi are masses of all particles. In particular, at one loop,∑

particles

Aij mi mj =
∑

fermions

m2
f

3(4π)2 −
∑

scalars

m2
s

(4π)2

(
ξs −

1
6

)
.

One can rewrite it as

µ
d(G/G0)

dµ
= −2ν (G/G0)

2 , =⇒ G(µ) =
G0

1 + ν ln
(
µ2/µ2

0

) . (∗)

It is the same formula which results from covariance and/or from
AC-like quadratic decoupling for the CC plus conservation law.
All in all, (*) seems to a unique possible form of a relevant G(µ).
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All in all, it is not a surprise that the eq.

G(µ) =
G0

1 + ν ln
(
µ2/µ2

0

) .
emerges in different approaches to renorm. group in gravity:

• Higher derivative quantum gravity.
A. Salam and J. Strathdee, PRD (1978);
E.S. Fradkin and A. Tseytlin, NPB (1982).

• Non-perturbative quantum gravity with (hipothetic) UV-stable
fixed point.
A. Bonanno and M. Reuter, PRD (2002).

• Semiclassical gravity.
B.L. Nelson and P. Panangaden, PRD (1982).
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So, we arrived at the two relations:

ρΛ(H) = ρΛ(H0) +
3ν
8π

M2
p
(
µ2 − µ2

0

)
(1)

and G(µ) =
G0

1 + ν ln
(
µ2/µ2

0

) . (2)

Remember the standard identification

µ ∼ H in the cosmological setting.

A. Babic, B. Guberina, R. Horvat, H. Štefančić, PRD (2005).

Cosmological models based on the assumption of the standard
AC-like decoupling for the cosmological constant:

Models with (1) and energy matter-vacuum exchange:
I.Sh., J.Solà, Nucl.Phys. (PS), IRGA-2003;
I.Sh., J.Solà, C.España-Bonet, P.Ruiz-Lapuente, PLB (2003).

Models with (1), (2) and without matter-vacuum exchange:
I.Sh., J.Solà, H.Štefančić, JCAP (2005).

Ilya Shapiro, Quantum corrections and implications for cosmology and astrophysics



• Models with constant G ≡ G0 and permitted energy
exchange between vacuum and matter sectors.

For the equation of state P = αρ the solution is analytical,

ρ(z; ν) = ρ0 (1 + z)r ,

ρΛ(z; ν) = ρΛ0 +
ν

1 − ν
[ ρ(z; ν)− ρ0 ] ,

and
ρΛ(H) = ρΛ(H0) +

3ν
8π

M2
p
(
H2 − H2

0

)
.

The limits from density perturbations / LSS data |ν| < 10−6.

J. Fabris, I.Sh., J. Solà, JCAP 0702 (2007).

Also analog models:
R. Opher, A. Pelinson, PRD 70 (2004);
P. Wang, X.H. Meng, Cl.Q.Gr. 22 (2005).
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How to perturb a model with variable ρΛ = ρΛ(H) ?

ρt = ρm + ρΛ , PΛ = −ρΛ , Pm = 0 .

Introduce Uα. In the co-moving coordinates U0 = 1 and
U i = Ui = 0.

T ν
µ =

(
ρt + Pt

)
UνUµ − Pt δ

ν
µ ,

such that T 0
0 = ρt and T j

i = −Pt δ
j
i .

Let us derive the covariant derivative of Uµ

∇µUµ = 3H .

The last equation enables one to perturb the running CC.

ρΛ = A + B
(
∇µUµ

)2
,

where

A = ρ0
Λ − 3 ν

8π
M2

P H2
0 , B =

ν M2
P

24π
.
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Final form of the perturbations equations

v ′ +
(3f1 − 5)

1 + z
v − k2ϱ(1 + z)

Hf1
v = −k2ϱ(1 + z)

2H
ĥ;

ĥ′ +
2(ν − 1)

1 + z
ĥ =

2 ν

(1 + z)

(
2 v
f1

− f1δm

ϱ

)
;

δ′m+

(
f ′1
f1

− 3f2
1 + z

)
δm =

1
f1

(
ϱ ĥ
2

− ϱ v
f1

)′

+
1

1 + z

(
3ϱ− 1

H

) (
ĥ
2
− v

f1

)
,

where (f1, f2) =
(
ρm

ρt
,
ρΛ
ρt

)
, f (x⃗ , t) =

∫
d3k
(2π)3 f̃ (k⃗ , t) ei k⃗ ·⃗x .

v = f1∇i(δU i), ĥ ≡ ∂

∂t

(
hii

a2

)
, δρm = ρmδm

Given the Harrison-Zeldovich initial spectrum, the power
spectrum today can be obtained by integrating this system.

Initial data based on w(z) from J.M. Bardeen et al, Astr.J. (1986).
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Results of numerical analysis:
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The ν-dependent power spectrum vs the LSS data from the
2dfFGRS. The ordinate axis represents P(k) = |δm(k)|2 where
δm(k) is the solution at z = 0. In all cases
(Ω0

B,Ω
0
DM ,Ω0

Λ) = 0.04, 0.21, 0.75) & ν = 10−8, 10−6, 10−4, 10−3.
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• • Models with variable G = G(H) but without energy
exchange between vacuum and matter sectors.

Theoretically this looks better!

ρΛ(H) = ρΛ(H0) +
3ν
8π

M2
p
(
H2 − H2

0

)
.

By using the energy-momentum tensor conservation we find

G(H; ν) =
G0

1 + ν ln
(
H2/H2

0

) , where G(H0) =
1

M2
P
.

These relations exactly correspond to the RG approach
discussed above, with µ = H .

I.Sh., J.Solà, H.Štefančić, JCAP (2005).
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The limits on ν from density perturbations

J.Grande, J.Solà, J.Fabris & I.Sh., Cl. Q. Grav. 27 (2010) .

An important general result is: In the models with variable Λ
and G in which matter is covariantly conserved, the solutions
of perturbation equations do not depend on the wavenumber k .

˙̂h + 2Hĥ = 8π
[
ρm − 2ρΛ

]
δG + 8πG

[
δρm − 2δρΛ

]
;

δρ̇m + ρm

(
θ − ĥ

2

)
+ 3Hδρm = 0 ;

θ̇ + 2Hθ = 0 ;

δĠ(ρm + ρΛ) + δGρ̇Λ + Ġ(δρm + δρΛ) + Gδρ̇Λ = 0 ;

k2 [GδρΛ + ρΛδG] + a2ρmĠθ = 0 .

Ilya Shapiro, Quantum corrections and implications for cosmology and astrophysics



As a consequence we meet relatively weak modifications of the
spectrum compared to ΛCDM.

In our case the bound ν < 10−3 comes just from the “F-test”

R. Opher & A. Pelinson, astro-ph/0703779.
J.Grande, R.Opher, A.Pelinson, J.Solà, JCAP 0712 (2007)

It is related only to the modification of the function H(z) .

One can obtain the same restriction for ν also from the
primordial nucleosynthesis (BBN).
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Can we apply the running G(µ) to other physical problems?

In the renormalization group framework the relation

G(µ) =
G0

1 + ν ln
(
µ2/µ2

0

) , where µ = H

in the cosmological setting.

What could be an interpretation of µ in astrophysics?

Consider the rotation curves of galaxies. The simplest
assumption is µ ∝ 1/r .

Applications for the point-like model of galaxy:

J.T.Goldman, J.Perez-Mercader, F.Cooper & M.M.Nieto, PLB (1992).
O. Bertolami, J.M. Mourao & J. Perez-Mercader, PLB 311 (1993).
M. Reuter & H. Weyer, PRD 70 (2004); JCAP 0412 (2004).
I.Sh., J.Solà, H.Štefančić, JCAP (2005).
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We can safely restrict the consideration by a weakly varying G,

G = G0 + δG = G0(1 + κ) , |κ| ≪ 1 .

We already know that the appropriate value of the parameter ν is
small, the same should be with κ = δG/G0.

In order to link the metric in the variable G case with the
standard one, perform a conformal transformation

ḡµν =
G0

G
gµν = (1 − κ)gµν .

Up to the higher orders in κ, the metric ḡµν satisfies usual
Einstein equations with constant G0.

The nonrelativistic limits of the two metrics

g00 = −1 − 2Φ
c2 and ḡ00 = −1 − 2ΦNewt

c2 ,

where ΦNewt is the usual Newton potential and Φ is a potential of
the modifies gravitational theory.
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We have

g00 = −1 − 2Φ
c2 = (1 + κ)ḡ00

= (1 + κ)(−1 − 2ΦNewt

c2 ) ≈ −1 − 2ΦNewt

c2 − κ

and, hence,

Φ = ΦNewt +
c2

2
κ = ΦNewt +

c2 δG
2 G0

.

For the nonrelativistic limit of the modified gravitational force we
obtain, therefore,

−Φ,i = −Φ,i
Newt −

c2 G,i

2 G0
,

where we used the relation G,i = (δG),i .
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The last formula

−Φ,i = −Φ,i
Newt −

c2 G,i

2 G0
= −Φ,i

Newt −
c2

2
κ,i ,

is indeed very instructive.

• Quantum correction comes multiplied by c2 =⇒ it does not
need being large to make real effect at the typical galaxy scale.

E.g., for a point-like model of galaxy and µ ∝ 1/r it is
sufficient to have ν ≈ 10−6 to provide flat rotation curves.

I.Sh., J.Solà, H.Štefančić, JCAP (2005).

•• µ ∝ 1/r is, obviously, not a really good choice for a
non-point-like model of the galaxy.

The reason is that this identification produces the
“quantum-gravitational” force even if there is no mass at all !!
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What would be the “right” identification of the renormalization
group scale parameter µ in the quase-Newtonian regime?

Let us come back to the quantum field theory (QFT). We are
currently unable to derive quantum corrections to the GR action.

At the same time the QFT gives us a good hint:
µ must be accociated to some parameter which characterizes
the energy of the particle corresponding to the external
gravitational line in the Feynman diagram.

Of course, µ ∝ 1/r is not not the right choice.
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We need a relatively simple parameter which can characterize
the energy of the gravitational field in the almost-Newtonian
(that means almost static, in particular) regime.

The most natural choice is to associate µ with the Newtonian
potential ΦNewt at the given point of space.

The phenomenologically good choice is

µ

µ0
=
(ΦNewt

Φ0

)α
,

where α is a phenomenological parameter which can be
distinct for different spiral galaxies. We have found that
α is nonlinearly growing with the mass of the galaxy.

D. Rodrigues, P. Letelier & I.Sh., JCAP (2010).
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Definitely, α is a “good guy” in this story.

From the QFT viewpoint the presence of α reflects the fact that
the association of µ with ΦNewt is not an ultimate choice.
Remember the vacuum EA is a relativistic object and taking ΦNewt

as a scale definitely ignores some relevant information.

With greater mass of the galaxy the “error” in identification
becomes greater too, hence we need a greater α to correct this.
Furthermore, if α increases with the mass of the galaxy, it must
be very small at the scale of the Sun system and of course at the
scale of laboratory, when the Newton law is better verified.

Remarkably, the recently-proposed regular scale-setting
procedure gives the very same result:

S. Domazet, H.Štefančić, PLB (2011) - in press.
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Last, but not least, the astro-ph application is
impressively successful

D. Rodrigues, P. Letelier & I.Sh., JCAP (2010). (9 samples)
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Rotation curve of the spiral galaxy NGC 3198
[Collaboration THINGS (2008)].
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One more example, this time with descendent rotation curve.
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Rotation curve of the galaxy NGC 2841. RGGR is based on
hypothetical covariant quantum corrections without DM.
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One more example, this time with low-surface brightness galaxy
with ascendent rotation curve.
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Rotation curve of the dwarf galaxy DDO 154.
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What about the Solar System?

C. Farina, W. Kort-Kamp, S. Mauro, I.Sh., PRD 83 (2011).

We used the dynamics of the Laplace-Runge-Lenz vector in the
G(µ) = G0/(1 + µ log(µ/µ0)) - corrected Newton gravity.

Upper bound for the Solar System: αν ≤ 10−17.

One of the works now on track: extending the galaxies sample.

P. Louzada, D. Rodrigues, J. Fabris, ..., in work: 50+ disk galaxies.

D. Rodrigues, N. Napolitano, ..., in progress: elliptical galaxies.

The general tendency which we observe so far is greater α
needed to for larger mass of the astrophysical object: from
Solar System (upper bound) to biggest tested galaxies.
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It looks like we do not need CDM to explain the rotation curves
of the galaxies. However, does it really mean that we can really
go on with one less dark component?

Maybe not, but it is worthwhile to check it. It is well known that
the main requests for the DM come from the fitting of the LSS,
CMB, BAO, lenthing etc.

However there is certain hope to relpace, e.g., ΛCDM by a
ΛWDM (e.g. sterile neutrino) with much smaller ΩDM .

The idea to trade 0.04, 0.23, 0.73 =⇒ 0.04, 0.0x, 0.9(1-x)

Such a new concordance model would have less relevant
coincidence problem, and in general such a possibility is
interesting to verify.

First move:
J. Fabris, A. Toribio & I.Sh., Testing DM warmness and quantity via
the RRG model. arXiv:1105.2275 [astro-ph.CO]

We are using “our” Reduced Relativistic Gas model.
Ilya Shapiro, Quantum corrections and implications for cosmology and astrophysics



The Reduced Relativistic Gas model is a Simple cosmological
model with relativistic gas.

G. de Berredo-Peixoto, I.Sh., F. Sobreira, Mod.Ph.Lett. A (2005);
J. Fabris, I.Sh., F.Sobreira, JCAP (2009).

The model describes ideal gas of massive relativistic particles
with all of them have the same kinetic energy.

The Equation of State (EOS) of such gas is

P =
ρ

3

[
1 −

(mc2

ε

)]2
=

ρ

3

(
1 −

ρ2
d

ρ2

)
.

In this formula ε is the kinetic energy of the individual particle,
ε = mc2/

√
1 − β2. Furthermore, ρd = ρ2

d0(1 + z)3 is the mass
(static energy) density. One can use one or another form of the
equation of state (1), depending on the situation.
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The nice thing is that one can solve the Friedmann equation in
this model analytically. The deviation from Maxwell or relativistic
Fermi-Dirac distribution is less than 2.5%.

The model was sucessfully used to impose the upper bound to
the warmness of DM from LSS data, providing the same results
as more complicated models.

J. Fabris, I.Sh., F.Sobreira, JCAP (2009). DM particles: how warm
they can be?

So, why it is “our” and not just our model?

Because we were not first. The same EOS has been used by
A.D. Sakharov in 1965. to predict the oscillations in the CMB
spectrum for the first time!!

A.D. Sakharov, Soviet Physics JETP, 49 (1965) , 345.
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In the recent preprint (under consideration in PRD)

J. Fabris, A. Toribio & I.Sh., Testing DM warmness and quantity via
the RRG model. arXiv:1105.2275 [astro-ph.CO]

we have used RRG without quantum effects to fit
Supernova type Ia (Union2 sample), H(z), CMB (R factor),
BAO, LSS (2dfGRS data)
In this way we confirm that ΛCDM is the most favored model.

However, for the LSS data alone we met the possibility of an
alternative model with a small quantity of a WDM.

This output is potentially relevant in view of the fact that the LSS
is the only test which can not be affected by the possible
quantum renormalization-group running in the low-energy
gravitational action.
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Conclusions

• The evaluation of quantum corrections from massive fields is,
to some extent, reduced to existing-nonexisting paradigm.

• In the positive case we arrive at the cosmological and
astrophysical model with one free parameter ν plus certain
freedom of scale identification.

• The rotation curves of all tested galaxies can be described by
the G(µ) formula. The situation with clasters and other tests,
especially CMB and lensing, remains unclear.

• The power spectrum tests are less sensible to the G(µ) and
exactly in this case we meet an alternative to ΛCDM in the
zero-order approximation.

• Finally, there is still some (albeit small) chance that the
vacuum effects of QFT in an external gravitational field play
more significant role in our Universe that we use to imagine.
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